Sustainable Carbon Materials from Biomass Hydrothermal Processes Magda Titirici Queen Mary University of London Materials Research Institute 28 April 2016, Timisoara My Scientific Journey Full Professor Assistant Professor Group Leader PostDoc PhD Research Stage BSc 2014-now London, Full Professor in Sustainable Materials Chemistry 2013-2014 London: Reader in Materials Science 2006-2013 Berlin Germany: Consolidate Hydrothermal Carbonization 2005-2006 Berlin Germany: Discover Hydrothermal Carbonization 2001-2005 Mainz & Dortmund, Germany: Imprinted Polymers 1999-2001: INFIM Magurele & Rostock, Germany: Sol-Gel Ferroelectrics 1995-1999 Bucharest, Romania: Organic Chemistry Queen Mary University of London 20,000 students and over 4,000 staff Three faculties: Humanities and Social Sciences Medicine and Dentistry Science and Engineering 25% international students – 151 nationalities £300 million of infrastructure investment in past 5 years Ranked 6 in the UK for general engineering (REF2014) QMUL Location Conflict: Energy vs Materials World Energy Consumption: 500 EJ/year Materials & Chemicals Energy • Making materials & chemicals consumes about 35% of the global energy • Materials & chemicals today are derived from fossil fuels • Energy today is from fossil fuels • To build renewable energy we need materials & chemicals Supply Risk Critical Materials Economic Importance http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm Critical Materials: Geographical Distribution http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm Renewable Energy and Critical Materials http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf Materials and Chemicals from Biomass The Carbon Biorefinery Concept • • • • RENEWABLE CHEAP LOW ENERGY IMPUT NO CO2 EMISSIONS Liquid: Chemicals HTC HMF FA Basic chemicals Liquid fuels Green Solvents Polymers Functional materials Catalysts Electrode materials Adsorbents Solid fuels LA 200-300 C self-generated pressure Solid: Carbon Titirici et al, Chem. Soc. Rev., 2015, 44, 250-29 Titirici et al, Sustainable Carbon Materials via Hydrothermal processes, Wiley, 2013 Titirici et al, Energy and Environmental Science, 2012, 5, 6796 6 Materials Design Characterisation Energy Storage Modelling PEM Electrocatalysis Processing Carbon Capture Abundant Resources Carbon Quantum Dots Reactivity Biomass to Chemicals Structure-Function Metals Recovery Nanoscale Assessment Outline Energy Storage Hydrothermal Carbonisation PEM Electrocatalysis Carbon Capture Abundant Resources Carbon Quantum Dots Biomass to Chemicals Platinum Recovery Carbohydrates: Glucose 10%wt Glucose, HTC @180°C 2h GC-MS of the residual liquid 4h 2h 8h 20h 12h glucose HMF -3H2O Carbohydrates: Glucose Time Glucose Solution 10%wt, 180°C 4h-solid fraction 12h-solid fraction 2µm glucose solution 2µm polymerisation/ nucleation 12h HTC formation/ growth Carbohydrates: Glucose Concentration 180°C, 12h Glucose 5% wt Glucose 3% wt Problem: Low Carbon Yield HTC Structure 13C-Solid State NMR C=C-O COOH C=C-C CHx C=O • • • • J. Phys. Chem. C, 2010, 2009, 113, 9644 INEPT 1H-13C CP experiments 1H-13C IRCP experiments 13C homonuclear DQ-SQ HTC Structure connections with functional groups cross-linked furanic species HTC Structure Glucose, 180°C Chemical Analysis 69% C - 4.5% H - 26.5% O HTC Chemistry Glucose dehydration 2H2O + -3H2O HMF HMF polymerization-aromatisation Diels–Alder HMF levulinic acid formic acid Heat Treatment XRD HRTEM a) (002) b) (100) HTC 180°C (110) Intensity Intensity HTC-G-950 HTC-G-750 HTC-G-550 HTC-G-350 HTC-G HTC 550°C 0 20 40 60 80 100 0 2 13 (002) C- Solid State NMR (100) (110) Intensity HTC 950°C d) Intensity c) HTC-St-950 HTC-St-750 HTC-St-550 HTC-St-350 HTC-St 0 Langmuir, 2011, 27, 14460 20 40 60 2 80 100 0 Graphitization XRD + FeCl2 Fe2+ RAMAN Fe2+ Fe2+ G D Fe2+ Fe2+ Fe2+ 2+ Fe2+ Fe Fe2+ 1000°C Raman HCl Fe3C@Graphitic Carbon Graphitic Carbon D+G Exfoliation to Graphene 500 nm 200 nm 2D G Hard Templating A- Mesoporous Carbon Spheres: Adv. Funct. Mater, 2007, 17, 1010 A B B- Ordered Mesoporous Carbon: J. Mater. Chem, 2007, 17, 3412 C D C- Hierarchically Porous Carbon Fig.Monoliths1 TEM micrographs of A, D : SBA-15 silica template, B: composite obtained by total p replica obtained by silica removal from B (OH C-100), E: composite obtained by filling 25 Carbon, 2013, 61, 245 replica obtained by dissolution of silica from E (OH C-25). D- Carbon Nanotubes: Chem. Mater, 2010, 2, 6590 E- Inverse Opal-like Carbons, Chem Mater, 2013, F -Carbon Hollow Spheres: JACS, 2010, 132, 17360 E F Transmission als reveal the p silica pores into can be clearly o much higher r composite, alth OH C-100. Thi experiments w Fig. 3a, later) sufficiently uni Soft Templating Pluroinic Block-Copolymers (F127) Chem. Mater, 2011, 23, 4882 Hard & Soft Templating Chemistry of Materials, 2013 vol. 25, (23) 4781 Hard & Soft Templating Macropores Hg-intrusion SAXS Mesopores N2 Adsorption Micropores CO2 Adsorption Carbon-Inorganic Hybrids A B A: Pt/C-catalysts for selective hydrogenation of phenol to cyclohexanone (Chem. Commun. 2008, 999–1001) B: Yolk-like Au@C particles-catalysts for CO oxidation C: LiFePO4/C-cathode in Li Ion batteries (Small, 2011, 1,1127) 200nm C D D: Si/C-anode ín Li ion batteires (Angew. Chem. Int. Ed, 2008, 47, 1645 –1649) E: TiO2/C- visible light photocatalyst (Adv. Mater, 2010, 22, 3317–3321) F: SnO2/C- anode in Li Ion Batteries(Chem. Mater, 2008, 20, 1227–1229) E F 2µm Outline Energy Storage Hydrothermal Carbonisation PEM Electrocatalysis Carbon Capture Abundant Resources Carbon Quantum Dots Biomass to Chemicals Platinum Recovery Na Ion Batteries Increase in the price of Li2CO3 US$/t Li around the globe Glucose HTC Δ = 1000°C; 1300°C and 1600°C 180°C Δ Glucose HTC 1600°C 1600°C 200 nm Glucose HTC Treatment@ High Temperature mage of S-1100 material. 1600°C 1300°C 5 nm 2 nm HTC Porosity CO2 adsorption: HTC from pure carbohydrates is non-porous 1600°C 0.216 cm3/g 1000°C-0.190 cm3/g 80 G180 G350 G550 G750 G950 -1 -1 50 550°C- 0.146 cm3/g 3 40 CO2 3 -1 Vads / cm g STP 60 0.8 30 300°C-0.068 cm3/g 180°C- 0.066 cm3/g 20 G180 G350 G550 G750 G950 D = ~0.5 nm 0.7 dV(D) / cm nm g 70 0.9 0.6 0.5 0.4 0.3 0.2 0.1 10 0.0 0 0.000 0.005 XRD 0.010 0.015 0.020 0.025 -0.1 0.2 0.030 Raman Relertive pressure, P/P0 0.6 0.8 1.0 1.2 Pore width / nm D-band G-band 1600°C 1300°C 1000°C 002 0.4 1600°C 1300°C 1000°C 100 ∼0.370 nm ∼0.371 nm ∼0.375 nm ID/IG 1.44 1.84 2.09 1.4 1.6 Na Ion Batteries Electrochemical testing conditions: • Coin cells • Active material and PVDF binder in N-methyl-2- pyrrolidone (NMP) at a weight ratio of 9.5 : 0.5 • Loading mass of hard carbon electrode between 1.5–2.5 mg/cm2. • 1 M NaClO4 in ethylene (EC) and diethyl carbonate (DEC) (1 : 1) • Sodium foil counter electrode • Glass fiber separator Anodes in Na Ion Batteries 1st, 2nd and 10th discharge–charge profiles at 0.1 C (30 mA/g). 1000°C 1600°C 1300°C Anodes in Na Ion Batteries Cycling performance at 0.1 C (30 mA/g) for 100 cycles 1000°C 1300°C 1600°C Anodes in Na Ion Batteries Discharge and charge curves for the 1st cycle of HCS1000 without soft carbon Rate Performance Anodes in Na Ion Batteries Asymmetric current rate test: discharging (Na insertion) at a constant current rate of 0.1 C and charging (Na extraction) at different rates. 1600°C 20 C (3 min charge), a reversible charge capacity of 270 mA h/g was achieved Na extraction is quite fast while Na insertion into hard carbon is the limiting step Perspectives Materials Design-Advanced Characterization-Electrochemical Performance N N N N N N N N N 200nm 20 nm N Sn/Sb 200nm v Sodiation-Desodiation in Hard Carbons Alloys/Carbon Synergies Outline Energy Storage Hydrothermal Carbonisation PEM Electrocatalysis Carbon Capture Abundant Resources Carbon Quantum Dots Biomass to Chemicals Platinum Recovery PEM FUEL CELL H2 → 2H+ + 2e- ½O2 + 2H+ + 2e- → H2O Cathode Oxygen Reduction Reaction O2 + 4H+ + 4e- 2H2O O2 + 4H+ + 2e- H2O2 H2O2 + 2H+ + 2e- 2H2O Oxygen Reduction Reaction O2 + 4H+ + 4e- 2H2O Pt particles supported on Carbon slow ORR kinetic low durability/stability low availability and high cost Platinum Availability Platinum Availability Platinum Availability Pt DEPLETION N-doped Carbogels Ovalbumin (Alb) t = 5.5 h H 2O 180 oC + D-Glucose 2o Biomass (i.e. Glycoprotein) Maillard chemistry Surface stabilising agent(s) ScCO2 SBET > 250 m2g-1 3D Pore System Vpore > 0.4 cm3g-151 Green.Chem, 2011, 13, 2428 N-doped Carbogels Calcination@1000°C, Conductivity ≈ 80 S/m 50 nm 5 nm N-doped Carbogels N-doped Carbogels RAMAN XRD N-doped Carbogels T p, oC SBET, m2g-1 Vtotal, cm3g-1 Vmeso, cm3g-1 PD, nm %C (EA/XPS) %N (EA/XPS) 180 276 0.49 0.41 3.2 57.6 / 72.3 7.5 / 6.8 350 247 0.42 0.40 3.1 65.0 / 78.4 8.0 / 7.3 550 476 0.57 0.40 3.4 79.6 / 90.4 7.3 / 5.4 750 300 0.73 0.62 3.3 83.8 / 92.4 6.0 / 5.3 900 308 0.68 0.65 3.2 84.8 / 93.2 6/ 6.11 • Large Vmeso !!! • Broad PSD – nature of continuous network • Variation – system condensation?? • Scope for increasing N content. N-doped Carbogels Intensity (a.u.) XPS N-6 N-Q • 398.6 eV-pyridinic-N (N-6, 40.4%) N-O C1s 396 • 400.9 eV-quaternary-N (N-Q; 53.7%) 398 400 402 404 Binding Energy (eV) O1s • 402.7 eV-pyridine-N-oxides (N-O; 5.9 %) N1s C1s: 89.16 % O1s: 4.73 % N1s: 6.11 % 1000 800 600 400 Binding Energy (eV) 200 0 ORR Performance RDE, LSV 1600 rmp scan rate of 10 mV s-1 0.2 V to -1 V 1 V to -0.2 V 0 N-CC Pt/C -2 -1 0.5 M H2SO4 Current (mA cm ) -2 Current (mA cm ) 0 0.1 M KOH -2 -3 -4 -5 -0.8 -0.6 -0.4 -0.2 0.0 Potential (V vs. Ag/AgCl) 0.2 -1 -2 N-CC Pt/C -3 -4 -0.2 0.0 0.2 0.4 0.6 Potential (V vs. Ag/AgCl) 0.8 ORR Performance Number of electrons transferred and peroxide yield RRDE (n) Pt/C (n) N-CC (%) H2O2 Pt/C (%) H2O2 N-CC 30 20 10 2 -1.0 -0.8 -0.6 -0.4 Potential (V vs. Ag/AgCl) 0 -0.2 4 20 (n) Pt/C (n) N-CC (%) H2O2 Pt/C 3 (%) H2O2 N-CC 15 10 5 2 -0.2 0.0 0.2 0.4 Potential (V vs. Ag/AgCl) 0 Hydrogen peroxide yield (%) 3 40 number of electrons transferred (n) 4 0.5 M H2SO4 Hydrogen peroxide yield (%) number of electrons transferred (n) 0.1 M KOH 0.1 M KOH a) -2 -3 -4 0 -1 -2 -3 -5 -0.9 -0.6 -0.3 -4 0.0 Potential (V vs. Ag/AgCl) Pt/C Pt/C (after 3500 cycles) N-CC N-CC (after 3500 cycles) 0.0 0.3 0.6 Potential (V vs. Ag/AgCl) 0.9 d) c) 0 -2 Current (mA cm ) 80 60 40 N-CC Pt/C 20 0 Polarization Curves Chronoamperometric response 100 Relative current (%) 0.5 M H2SO4 -2 -1 Current (mA cm ) -2 b) Pt/C Pt/C (after 3500 cycles) N-CC N-CC (after 3500 cycles) 0 Current (mA cm ) LSV 1600 rmp -1 -2 0.5 H2SO4 -3 0 200 400 600 800 1000 time (s) 0.5 H2SO4+2 M CH3OH 0.0 0.3 0.6 0.9 Potential (V vs. Ag/AgCl) Perspectives Understand the individual role of: • Amount of N-doping • Type of N sites (i.e. pyridinic, quaternary) • Surface Area • Pore Size • Structural Order • Electrical Conductivity From Waste to Wealth via Advanced Materials Acknowledgements Money: MATERIALS RESEARCH INSITUTE Collaborators: China Spain Prof. Qiang Zhang-Tsinghua, Beijing Prof. Yong Sheng Hu-CAS, Beijing Prof. Dangsheng Su-Dalian Prof. Shu Hong Yu Cheng Tang Dr Yuesheng Wang Dr. Marta Sevilla Guilermo Alvarez UCL Prof Dan Brett Prof Xiao Guo Germany Dr Robin White Production of materials or the properties or applications of materials related to energy storage and conversion, sustainability or living. IF= 7.5
© Copyright 2026 Paperzz