Sustainable Carbon Materials from Biomass Hydrothermal Processes

Sustainable Carbon Materials from Biomass
Hydrothermal Processes
Magda Titirici
Queen Mary University of London
Materials Research Institute
28 April 2016, Timisoara
My Scientific Journey
Full Professor
Assistant Professor
Group Leader
PostDoc
PhD
Research Stage
BSc
2014-now London, Full Professor in Sustainable Materials Chemistry
2013-2014 London: Reader in Materials Science
2006-2013 Berlin Germany: Consolidate Hydrothermal Carbonization
2005-2006 Berlin Germany: Discover Hydrothermal Carbonization
2001-2005 Mainz & Dortmund, Germany: Imprinted Polymers
1999-2001: INFIM Magurele & Rostock, Germany: Sol-Gel Ferroelectrics
1995-1999 Bucharest, Romania: Organic Chemistry
Queen Mary University of London
20,000 students and over 4,000 staff
Three faculties:
Humanities and Social Sciences
Medicine and Dentistry
Science and Engineering
25% international students – 151 nationalities
£300 million of infrastructure
investment in past 5 years
Ranked 6 in the UK for general engineering
(REF2014)
QMUL Location
Conflict: Energy vs Materials
World Energy Consumption:
500 EJ/year
Materials &
Chemicals
Energy
• Making materials & chemicals
consumes about 35% of the
global energy
• Materials & chemicals today are
derived from fossil fuels
• Energy today is from fossil fuels
• To build renewable energy we
need materials & chemicals
Supply Risk
Critical Materials
Economic Importance
http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm
Critical Materials: Geographical Distribution
http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm
Renewable Energy and Critical Materials
http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf
Materials and Chemicals from Biomass
The Carbon Biorefinery Concept
•
•
•
•
RENEWABLE
CHEAP
LOW ENERGY IMPUT
NO CO2 EMISSIONS
Liquid: Chemicals
HTC
HMF
FA




Basic chemicals
Liquid fuels
Green Solvents
Polymers





Functional materials
Catalysts
Electrode materials
Adsorbents
Solid fuels
LA
200-300 C
self-generated
pressure
Solid: Carbon
Titirici et al, Chem. Soc. Rev., 2015, 44, 250-29
Titirici et al, Sustainable Carbon Materials via Hydrothermal processes, Wiley, 2013
Titirici et al, Energy and Environmental Science, 2012, 5, 6796
6
Materials Design
Characterisation
Energy Storage
Modelling
PEM Electrocatalysis
Processing
Carbon Capture
Abundant Resources
Carbon Quantum Dots
Reactivity
Biomass to Chemicals
Structure-Function
Metals Recovery
Nanoscale
Assessment
Outline
Energy Storage
Hydrothermal Carbonisation
PEM Electrocatalysis
Carbon Capture
Abundant Resources
Carbon Quantum Dots
Biomass to Chemicals
Platinum Recovery
Carbohydrates: Glucose
10%wt Glucose, HTC @180°C
2h
GC-MS of the residual liquid
4h
2h
8h
20h
12h
glucose
HMF
-3H2O
Carbohydrates: Glucose
 Time
Glucose Solution 10%wt, 180°C
4h-solid fraction
12h-solid fraction
2µm
glucose solution
2µm
polymerisation/
nucleation
12h
HTC formation/
growth
Carbohydrates: Glucose
 Concentration
180°C, 12h
Glucose 5% wt
Glucose 3% wt
Problem: Low Carbon Yield
HTC Structure
13C-Solid
State NMR
C=C-O
COOH
C=C-C
CHx
C=O
•
•
•
•
J. Phys. Chem. C, 2010, 2009, 113, 9644
INEPT
1H-13C CP experiments
1H-13C IRCP experiments
13C homonuclear DQ-SQ
HTC Structure
connections with
functional groups
cross-linked
furanic species
HTC Structure
Glucose, 180°C
Chemical Analysis
69% C - 4.5% H - 26.5% O
HTC Chemistry
Glucose dehydration
2H2O
+
-3H2O
HMF
HMF polymerization-aromatisation
Diels–Alder
HMF
levulinic acid
formic acid
Heat Treatment
XRD
HRTEM
a)
(002)
b)
(100)
HTC 180°C
(110)
Intensity
Intensity
HTC-G-950
HTC-G-750
HTC-G-550
HTC-G-350
HTC-G
HTC 550°C
0
20
40
60
80
100
0
2
13
(002)
C-
Solid State NMR
(100)
(110)
Intensity
HTC 950°C
d)
Intensity
c)
HTC-St-950
HTC-St-750
HTC-St-550
HTC-St-350
HTC-St
0
Langmuir, 2011, 27, 14460
20
40
60
2
80
100
0
Graphitization
XRD
+ FeCl2
Fe2+
RAMAN
Fe2+
Fe2+
G
D
Fe2+ Fe2+
Fe2+
2+
Fe2+
Fe
Fe2+
1000°C
Raman
HCl
Fe3C@Graphitic Carbon
Graphitic Carbon
D+G
Exfoliation to Graphene
500 nm
200 nm
2D
G
Hard Templating
A- Mesoporous Carbon Spheres: Adv. Funct.
Mater, 2007, 17, 1010
A
B
B- Ordered Mesoporous Carbon: J. Mater.
Chem, 2007, 17, 3412
C
D
C- Hierarchically Porous Carbon
Fig.Monoliths1 TEM micrographs of A, D : SBA-15 silica template, B: composite obtained by total p
replica obtained by silica removal from B (OH C-100), E: composite obtained by filling 25
Carbon, 2013, 61, 245
replica obtained by dissolution of silica from E (OH C-25).
D- Carbon Nanotubes: Chem. Mater, 2010, 2,
6590
E- Inverse Opal-like Carbons, Chem Mater,
2013,
F -Carbon Hollow Spheres: JACS, 2010, 132,
17360
E
F
Transmission
als reveal the p
silica pores into
can be clearly o
much higher r
composite, alth
OH C-100. Thi
experiments w
Fig. 3a, later)
sufficiently uni
Soft Templating
Pluroinic Block-Copolymers (F127)
Chem. Mater, 2011, 23, 4882
Hard & Soft Templating
Chemistry of Materials, 2013 vol. 25, (23) 4781
Hard & Soft Templating
Macropores
Hg-intrusion
SAXS
Mesopores
N2 Adsorption
Micropores
CO2 Adsorption
Carbon-Inorganic Hybrids
A
B
A:
Pt/C-catalysts
for
selective
hydrogenation of phenol to cyclohexanone
(Chem. Commun. 2008, 999–1001)
B: Yolk-like Au@C particles-catalysts for
CO oxidation
C: LiFePO4/C-cathode in Li Ion batteries
(Small, 2011, 1,1127)
200nm
C
D
D: Si/C-anode ín Li ion batteires (Angew.
Chem. Int. Ed, 2008, 47, 1645 –1649)
E: TiO2/C- visible light photocatalyst (Adv.
Mater, 2010, 22, 3317–3321)
F: SnO2/C- anode in Li Ion Batteries(Chem. Mater, 2008, 20, 1227–1229)
E
F
2µm
Outline
Energy Storage
Hydrothermal Carbonisation
PEM Electrocatalysis
Carbon Capture
Abundant Resources
Carbon Quantum Dots
Biomass to Chemicals
Platinum Recovery
Na Ion Batteries
Increase in the price of Li2CO3
US$/t
Li around the globe
Glucose HTC
Δ = 1000°C; 1300°C and 1600°C
180°C
Δ
Glucose HTC
1600°C
1600°C
200 nm
Glucose HTC
Treatment@ High Temperature
mage of S-1100 material.
1600°C
1300°C
5 nm
2 nm
HTC Porosity
CO2 adsorption: HTC from pure carbohydrates is non-porous
1600°C 0.216 cm3/g
1000°C-0.190 cm3/g
80
G180
G350
G550
G750
G950
-1
-1
50
550°C- 0.146 cm3/g
3
40
CO2
3
-1
Vads / cm g STP
60
0.8
30
300°C-0.068 cm3/g
180°C- 0.066 cm3/g
20
G180
G350
G550
G750
G950
D = ~0.5 nm
0.7
dV(D) / cm nm g
70
0.9
0.6
0.5
0.4
0.3
0.2
0.1
10
0.0
0
0.000
0.005
XRD
0.010
0.015
0.020
0.025
-0.1
0.2
0.030
Raman
Relertive pressure, P/P0
0.6
0.8
1.0
1.2
Pore width / nm
D-band G-band
1600°C
1300°C
1000°C
002
0.4
1600°C
1300°C
1000°C
100
∼0.370 nm
∼0.371 nm
∼0.375 nm
ID/IG
1.44
1.84
2.09
1.4
1.6
Na Ion Batteries
Electrochemical testing conditions:
• Coin cells
• Active material and PVDF binder in N-methyl-2- pyrrolidone (NMP) at a
weight ratio of 9.5 : 0.5
• Loading mass of hard carbon electrode between 1.5–2.5 mg/cm2.
• 1 M NaClO4 in ethylene (EC) and diethyl carbonate (DEC) (1 : 1)
• Sodium foil counter electrode
• Glass fiber separator
Anodes in Na Ion Batteries
1st, 2nd and 10th discharge–charge profiles at 0.1 C (30 mA/g).
1000°C
1600°C
1300°C
Anodes in Na Ion Batteries
Cycling performance at 0.1 C (30 mA/g) for 100 cycles
1000°C
1300°C
1600°C
Anodes in Na Ion Batteries
Discharge and charge curves for the 1st cycle of HCS1000 without soft carbon
Rate Performance
Anodes in Na Ion Batteries
Asymmetric current rate test: discharging (Na insertion) at a constant current rate
of 0.1 C and charging (Na extraction) at different rates.
1600°C
20 C (3 min charge), a reversible charge capacity of 270 mA h/g was achieved
Na extraction is quite fast while Na insertion into hard carbon is the limiting step
Perspectives
Materials Design-Advanced Characterization-Electrochemical Performance
N N
N N
N N
N
N
N
200nm
20 nm
N
Sn/Sb
200nm
v
 Sodiation-Desodiation in Hard Carbons
 Alloys/Carbon Synergies
Outline
Energy Storage
Hydrothermal Carbonisation
PEM Electrocatalysis
Carbon Capture
Abundant Resources
Carbon Quantum Dots
Biomass to Chemicals
Platinum Recovery
PEM FUEL CELL
H2 →
2H+
+
2e-
½O2 + 2H+ + 2e- → H2O
Cathode
Oxygen Reduction Reaction
 O2 + 4H+ + 4e-  2H2O

O2 + 4H+ + 2e-
 H2O2
H2O2 + 2H+ + 2e-
 2H2O
Oxygen Reduction Reaction
 O2 + 4H+ + 4e-  2H2O
Pt particles supported on Carbon
slow ORR kinetic
low durability/stability
low availability and high cost
Platinum Availability
Platinum Availability
Platinum Availability
Pt
DEPLETION
N-doped Carbogels
Ovalbumin (Alb)
t = 5.5 h
H 2O
180 oC
+
D-Glucose

2o
Biomass (i.e. Glycoprotein)
 Maillard chemistry
 Surface stabilising agent(s)
ScCO2
SBET > 250 m2g-1
3D Pore System
Vpore > 0.4 cm3g-151
Green.Chem, 2011, 13, 2428
N-doped Carbogels
Calcination@1000°C, Conductivity ≈ 80 S/m
50 nm
5 nm
N-doped Carbogels
N-doped Carbogels
RAMAN
XRD
N-doped Carbogels
T p,
oC
SBET,
m2g-1
Vtotal,
cm3g-1
Vmeso,
cm3g-1
PD,
nm
%C
(EA/XPS)
%N
(EA/XPS)
180
276
0.49
0.41
3.2
57.6 / 72.3
7.5 / 6.8
350
247
0.42
0.40
3.1
65.0 / 78.4
8.0 / 7.3
550
476
0.57
0.40
3.4
79.6 / 90.4
7.3 / 5.4
750
300
0.73
0.62
3.3
83.8 / 92.4
6.0 / 5.3
900
308
0.68
0.65
3.2
84.8 / 93.2
6/ 6.11
• Large Vmeso !!!
• Broad PSD – nature of continuous network
• Variation – system condensation??
• Scope for increasing N content.
N-doped Carbogels
Intensity (a.u.)
XPS
N-6
N-Q
• 398.6 eV-pyridinic-N (N-6, 40.4%)
N-O
C1s
396
• 400.9 eV-quaternary-N (N-Q; 53.7%)
398
400 402 404
Binding Energy (eV)
O1s
• 402.7 eV-pyridine-N-oxides (N-O; 5.9
%)
N1s
C1s: 89.16 %
O1s: 4.73 %
N1s: 6.11 %
1000
800
600
400
Binding Energy (eV)
200
0
ORR Performance
RDE, LSV 1600 rmp
scan rate of 10 mV s-1
0.2 V to -1 V
1 V to -0.2 V
0
N-CC
Pt/C
-2
-1
0.5 M H2SO4
Current (mA cm )
-2
Current (mA cm )
0
0.1 M KOH
-2
-3
-4
-5
-0.8 -0.6 -0.4 -0.2 0.0
Potential (V vs. Ag/AgCl)
0.2
-1
-2
N-CC
Pt/C
-3
-4
-0.2
0.0
0.2
0.4
0.6
Potential (V vs. Ag/AgCl)
0.8
ORR Performance
Number of electrons transferred and peroxide yield
RRDE
(n) Pt/C
(n) N-CC
(%) H2O2 Pt/C
(%) H2O2 N-CC
30
20
10
2
-1.0
-0.8
-0.6
-0.4
Potential (V vs. Ag/AgCl)
0
-0.2
4
20
(n) Pt/C
(n) N-CC
(%) H2O2 Pt/C
3
(%) H2O2 N-CC
15
10
5
2
-0.2
0.0
0.2
0.4
Potential (V vs. Ag/AgCl)
0
Hydrogen peroxide yield (%)
3
40
number of electrons transferred (n)
4
0.5 M H2SO4
Hydrogen peroxide yield (%)
number of electrons transferred (n)
0.1 M KOH
0.1 M KOH
a)
-2
-3
-4
0
-1
-2
-3
-5
-0.9
-0.6
-0.3
-4
0.0
Potential (V vs. Ag/AgCl)
Pt/C
Pt/C (after 3500 cycles)
N-CC
N-CC (after 3500 cycles)
0.0
0.3
0.6
Potential (V vs. Ag/AgCl)
0.9
d)
c)
0
-2
Current (mA cm )
80
60
40
N-CC
Pt/C
20
0
Polarization Curves
Chronoamperometric
response
100
Relative current (%)
0.5 M H2SO4
-2
-1
Current (mA cm )
-2
b)
Pt/C
Pt/C (after 3500 cycles)
N-CC
N-CC (after 3500 cycles)
0
Current (mA cm )
LSV 1600 rmp
-1
-2
0.5 H2SO4
-3
0
200 400 600 800 1000
time (s)
0.5 H2SO4+2 M CH3OH
0.0
0.3
0.6
0.9
Potential (V vs. Ag/AgCl)
Perspectives
Understand the individual role of:
• Amount of N-doping
• Type of N sites (i.e. pyridinic, quaternary)
• Surface Area
• Pore Size
• Structural Order
• Electrical Conductivity
From Waste to Wealth via Advanced Materials
Acknowledgements
Money:
MATERIALS RESEARCH INSITUTE
Collaborators:
China
Spain
Prof. Qiang Zhang-Tsinghua, Beijing
Prof. Yong Sheng Hu-CAS, Beijing
Prof. Dangsheng Su-Dalian
Prof. Shu Hong Yu
Cheng Tang
Dr Yuesheng Wang
Dr. Marta Sevilla
Guilermo Alvarez
UCL
Prof Dan Brett
Prof Xiao Guo
Germany
Dr Robin White
Production of materials or the properties or applications of
materials related to energy storage and conversion,
sustainability or living.
IF= 7.5