Analytical method for the samples from Australia Ethyl sulfate in the wastewater samples was measured through direct injection into the liquid chromatograph coupled with tandem mass spectrometry (LC-MS/MS). The 1 mL filtered sample was spiked with 10 ng of the corresponding mass-labelled standard, ethyl sulfate-D5, before instrumental analysis. Chromatography for measuring this analyte was performed on a Synergi Polar-RP (100 × 2 mm, 2.5 µm, Phenomenex) analytical column with a Shimadzu Nexera Ultra-High Performance LC system. The column temperature was at 45 °C. The mobile phases used were (A) Milli-Q water in 0.1 % formic acid and (B) 95 % acetonitrile in 0.1 % formic acid, and run at the flow of 0.3 mL/min in the gradient as: 0 min, 100 % A; 1.9 min, 100 % A; 2.4 min, 40 % A; 5.4 min, 40 % A; 5.5 min, 100 % A for a 3-min column equilibration. The analyte was identified and quantified using a QTRAP® 6500 MS system (Applied Biosystems SCIEX, Thornhill, Ontario, Canada) at a negative electrospray ionisation mode. Both the native and mass-labelled standard of ethyl sulfate was infused into the MS system for optimising the related MS parameters and selecting two most abundant product ions as the quantifier and confirmer for measuring this analyte in the samples with the multiple reaction monitoring mode. The calibration curve was linear over the range of 0.5 – 50 ng/mL with correlation coefficient (R2) of 0.9999. The intra- and inter- day precisions (as %RSD) were 5.5 and 3.7 %, respectively while the accuracy was 106 %. Limit of quantification based on a signal-to-ratio of 10 (S/N10) was 1 ng/mL. Analytical method for the samples from Lugano The analysis of EtS was performed by direct injection of wastewater into the mass spectrometer system. 1 mL of influent wastewater was centrifuged at 8000 rpm for 5 min to separate particulate matter. Then, an aliquot of 190 µL was mixed with the internal standard ethyl sulfate-D5 (spiked amount 10 ng). After mixing, the extract was transferred into a glass vial for instrumental analysis. An Agilent 1200 series LC system with an Atlantis T3 2.1 mm × 150 mm, 3 µm column (Waters) was used for chromatographic separation. The column temperature was maintained at room temperature. The flow rate was 0.18 mL/min and the injection volume was set to 4 μL. Mobile phase consisted on milli-Q water 0.1 % acetic acid (eluent A) and acetonitrile (eluent B). The percentage of eluent A changed as follows: 0 min, 98 % eluent A; 10 min, 80 % eluent A; 11 min, 100 % eluent B; 1115 min, 100 % eluent B for column washing; 16 min, 98 % eluent A for column equilibration which was maintained for 8 min. The mass-spectrometry (MS) system was an API 5500 triple quadrupole equipped with a Turbo Ion Spray source (Applied Biosystems - Sciex, Thornhill, Ontario, Canada) and a 1200 Series pumps system (Agilent Technologies, Santa Clara, CA, USA) were used. Specific MS parameters such as source parameters and collision energy were optimised y direct infusion of standards. Quantitative analyses were performed in multiple reaction monitoring (MRM) mode, and the two most abundant fragmentation products (selected as quantifier and qualifier) were recorded. The calibration curve was established in the range of 0 – 500 ng/mL with correlation coefficient (R2) of 0.9995. Accuracy and precision were determined by analysing wastewater samples spiked at 30 and 50 ng/mL. Satisfactory accuracy and precision values were obtained, which ranged 96.2 – 101.1 % and 5.9 – 11.1 %, respectively. Limit of quantification based on S/N10 was 0.2 ng/mL. Table S1. Concentration of ethyl sulfate (ng/mL) and sewage flow (m3/day) in participating cities during the sampling period. City Population served by WWTP sampling period Canberra 338888 Toowoomba 125000 Montreal 1958257 Granby 55255 Lugano 103561 Dortmund 371788 Dülmen 34495 Dresden 593050 Concentration Day 1 11-17 Mar 2014 11.5 11-17 Mar 2014 13.0 11-17 Mar 2014 7.4 11-17 Mar 2014 14.3 18-24 Mar 2014 3.3 11-17 Mar 2014 19.6 11-17 Mar 2014 10.3 11-17 Mar 2014 25.1 Concentration Day 2 9.9 15.4 5.6 16.5 3.4 21.7 17.1 31.2 Concentration Day 3 12.1 11.2 5.4 16.0 3.0 19.7 14.9 20.3 Concentration Day 4 13.5 18.0 6.7 19.0 2.9 25.0 22.5 29.0 Concentration Day 5 19.2 24.4 7.8 20.0 1.5 25.7 38.1 70.7 Concentration Day 6 24.0 14.7 10.3 13.9 1.2 37.2 38.0 20.9 Concentration Day 7 15.2 15.4 9.0 10.6 1.6 22.9 19.4 20.4 Sewage volume Day 1 86000 18994 1971613 43980 64692 89185 4766 110198 Sewage volume Day 2 82600 20104 1978197 37500 55055 93456 7409 112925 Sewage volume Day 3 83300 19916 2457017 43180 57890 91559 8013 115085 Sewage volume Day 4 86500 19957 1935334 36360 58446 92588 7970 114330 Sewage volume Day 5 87100 19230 1940985 42460 150747 103689 9382 199395 Sewage volume Day 6 81400 19253 1918080 40750 109910 88046 7661 157839 Sewage volume Day 7 89500 20350 1932448 36880 75051 89820 7488 113819 Concentration Day 8 Sewage volume Day 8 Table S1. Continued. City Population served by WWTP sampling period Munich 1000000 Berlin M 290000 Berlin R 1300000 Berlin S 750000 Berlin W 1500000 Copenhagen 531000 Barcelona 1150874 Castellon 180690 Concentration Day 1 12-18 Mar 2014 13.7 11-17 Mar 2014 (n = 5) 33.8 10-16 Mar 2014 28.0 11-17 Mar 2014 37.5 11-17 Mar 2014 26.7 11-17 Mar 2014 25.7 18-24 Mar 2014 14.0 11-17 Mar 2014 14.6 Concentration Day 2 27.8 38.7 26.1 36.6 19.9 26.4 14.1 12.1 Concentration Day 3 28.0 39.8 25.1 34.3 25.6 31.3 14.9 11.0 Concentration Day 4 40.0 63.8 25.5 36.7 21.6 37.8 15.9 22.2 Concentration Day 5 47.2 32.1 49.1 21.7 60.3 24.2 69.3 Concentration Day 6 43.7 38.1 50.0 28.6 38.8 17.9 33.8 Concentration Day 7 <LOQ 44.7 24.2 49.1 25.3 22.7 7.7 20.4 Sewage volume Day 1 276600 34077 201520 105752 179490 132022 231488 41561 Sewage volume Day 2 268670 34303 197660 104199 179136 131041 230245 45049 Sewage volume Day 3 274290 35097 198695 106191 179323 132962 242020 50158 Sewage volume Day 4 267090 34176 199740 105414 177885 150773 233484 42636 Sewage volume Day 5 260250 33609 205060 108258 191740 136217 217266 41606 Sewage volume Day 6 263130 37547 197834 145035 230170 262325 209872 39282 Sewage volume Day 7 266400 33829 278000 105641 186693 161058 222794 40267 Concentration Day 8 Sewage volume Day 8 Table S1. Continued. City Population served by WWTP sampling period London 3400000 Milan 1122501 Amsterdam 769000 Eindhoven 450300 Utrecht 300000 Oslo 580639 Almada 138685 Concentration Day 1 11-17 Mar 2014 9.8 04-10 Feb 2015 4.1 12-18 Mar 2014 19.2 11-17 Mar 2014 (n = 6) 20.3 11-17 Mar 2014 25.0 10-17 Mar 2015 (n = 8) 4.2 11-17 Mar 2014 21.7 Concentration Day 2 9.8 3.1 30.9 21.5 5.1 30.7 Concentration Day 3 12.1 2.3 27.0 16.7 15.8 4.3 29.2 Concentration Day 4 23.6 5.0 40.6 16.0 22.5 9.1 63.3 Concentration Day 5 27.9 5.7 40.3 31.1 36.6 15.4 49.5 Concentration Day 6 17.3 3.9 21.4 36.9 20.3 32.0 42.8 Concentration Day 7 16.2 3.6 24.3 27.8 13.1 5.7 36.3 Concentration Day 8 4.0 Sewage volume Day 1 976028 403960 148310 Sewage volume Day 2 1088834 673970 147750 Sewage volume Day 3 1178888 660810 149870 Sewage volume Day 4 1184166 469900 Sewage volume Day 5 1138747 Sewage volume Day 6 Sewage volume Day 7 Sewage volume Day 8 118281 46680 392314 13900 46430 332093 14200 100504 46460 306596 13800 149770 100049 44110 275737 13700 395410 150400 97910 43960 255126 10600 1151415 423340 146400 96068 44410 248717 14400 1137846 424210 165240 105452 45600 252838 14300 251013 Table S2. Monte Carlo simulation for uncertainty assessment (Ort et al., 2014) with details of the distribution assumed for parametersa. Sampling uncertainty (Us) Per capita Concentration (C) Daily flow (F) Excretion rate (E) Population (P) consumption (L) Total uncertainty (Ut) Australia Normal (1, 0.05 ) √7 Normal (1, 0.037) 0.32 Lugano Normal (1, 0.05 ) √7 Normal (1, 0.110) 0.34 Barcelona Normal (1, 0.05 ) √7 Normal (1, 0.023) Eindhoven Normal (1, 0.05 ) √6 Normal (1, 0.046) Oslo Normal (1, 0.05 ) √8 Normal (1, 0.046) 0.32 The rest Normal (1, 0.05 ) √7 Normal (1, 0.046) 0.32 a Normal (1, 0.2) Beta (426.804, 35140.196) Normal (1, 0.2) C∙F Us ∙ E∙P 0.32 0.33 Normal (mean, SD) specifies a normal distribution with the entered mean and standard deviation, Beta (a,b) specifies a beta distribution with the entered a and b values, a = ((1 — mean) / standard error2 — 1 / mean) × mean2 and b = a × (1 / mean — 1) (Jones et al., 2014). Table S3. Detailed parameters for probabilistic comparative risk assessment of alcohol (Lachenmeier and Rehm, 2015)a. LD50 (mg/kg body weight)b MOE for city Normal (5593, 1346) with truncation (3450, 7060) BMDL10 (mg/kg body weight)c Per capita consumption (L/day/1000 inhabitants) Normal (mean, SD) with truncation (min, max)e Exposure (mg/day/person) Body weight (kg)d MOE BMDL10 Per capita consumption × 0.789 LD50 Normal (73.9, 12) MOE for Exposure ( ) × 1000 10.2 Bodyweight whole Uniform (6.3982, 44.2856) population a Normal (mean, SD) with truncation (min, max) specifies a normal distribution with the entered mean and standard deviation truncating the input distribution by minimum-maximum range, Uniform (min, max) specifies a uniform probability distribution with the entered minimum and maximum values. b Median lethal dose derived from guinea pig, mouse, rabbit and rat. The values were taken from ChemIDplus Advanced (United States National Library of Medicine; http://chem.sis.nlm.nih.gov/chemidplus) (Lachenmeier and Rehm, 2015). c Lower one-sided confidence limit of benchmark dose for a 10% incidence of health effect, estimated from LD50 using the method by Gold et al. (2003). d Values for bodyweight were assessed according to EFSA Scientific Committee (2012), Lachenmeier and Rehm (2015). e See Table S4. Table S4. Per capita consumption (L/day/1000inhabitants) of alcohol in each city. City mean SD min max Canberra Toowoomba Montreal Granby Lugano Dortmund Dülmen Dresden Munich Berlin Copenhagen Barcelona Castellon London Milan Amsterdam Eindhoven Utrecht Oslo Almada 14.6 9.7 29.2 44.3 6.5 23.6 20.3 29.4 29.5 16.9 40.2 11.7 23.4 21.5 6.4 22.0 21.7 12.9 19.2 14.6 4.6 2.5 5.7 9.7 1.4 5.6 12.0 27.7 17.0 2.9 19.5 3.5 17.8 9.5 1.3 6.4 6.7 4.2 16.1 5.1 9.3 6.9 21.8 27.3 4.5 18.1 5.5 15.1 0.5 13.8 24.6 5.7 11.6 10.9 5.1 14.3 13.7 7.7 8.8 8.4 22.3 14.5 38.8 59.3 8.4 34.0 40.0 91.7 47.4 22.3 74.0 17.6 61.6 36.0 8.1 30.5 30.4 20.7 52.9 24.1 Table S5. Per capita daily load data for the cocaine (COC), amphetamine (AMP), methamphetamine (METH), MDMA and Cannabis (mg/day/1000inhabitants) not available on EMCDDA (European Monitoring Centre for Drugs and Drug Addiction, 2015). COC Day 1 COC Day 2 COC Day 3 COC Day 4 COC Day 5 COC Day 6 COC Day 7 AMP Day 1 AMP Day 2 AMP Day 3 AMP Day 4 AMP Day 5 AMP Day 6 AMP Day 7 METH Day 1 METH Day 2 METH Day 3 METH Day 4 METH Day 5 METH Day 6 METH Day 7 MDMA Day 1 MDMA Day 2 MDMA Day 3 MDMA Day 4 MDMA Day 5 MDMA Day 6 MDMA Day 7 Cannabis Day 1 Cannabis Day 2 Cannabis Day 3 Cannabis Day 4 Cannabis Day 5 Cannabis Day 6 Cannabis Day 7 a No data reported. Canberra Toowoomba Montreal Granby 58.4 37.1 35.2 51.0 80.7 97.9 67.2 23.2 24.8 20.2 24.6 27.4 24.2 27.3 100.3 99.5 101.0 117.7 120.5 115.9 108.8 59.8 24.9 22.2 90.9 65.1 85.3 50.0 < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ 0.8 1.0 0.6 2.0 8.2 1.8 1.8 16.5 17.3 16.8 16.8 21.6 16.7 17.4 76.4 80.3 94.1 104.4 124.3 105.3 102.7 3.1 4.2 1.9 8.1 17.1 3.4 3.4 5.1 2.0 2.0 2.0 1.9 1.9 2.0 115.8 125.3 177.8 165.0 158.6 163.6 145.1 7.0 8.8 12.5 10.3 9.1 9.5 10.1 NAa NAa NAa NAa NAa NAa NAa < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ 50.7 36.4 47.7 53.4 60.5 48.0 44.4 74.0 82.8 104.7 93.4 137.2 104.7 64.7 23.1 24.4 25.8 23.7 27.7 20.6 14.8 NAa NAa NAa NAa NAa NAa NAa < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ 25 20 15 10 5 0 30 c 25 Per capita alcohol consumption (L/day/1000inhabitants) b Per capita alcohol consumption (L/day/1000inhabitants) Per capita alcohol consumption (L/day/1000inhabitants) a 30 20 15 10 5 0 2009a 2015b Oslo 30 25 20 15 10 5 0 2013c 2014b Barcelona 2012d 2013d 2014d 2015b Milan Figure S1. Intra-city comparisons of alcohol consumption in Oslo (a), Barcelona (b) and Milan (c). Error bar and asterisk indicate standard deviation and p < 0.05, respectively. aReid et al., 2011. bPresent study. cMastroianni et al., 2014. dRodríguez-Álvarez et al., 2015. Proportion of weekly alcohol consumption (%) 50 40 30 weekday weekend 20 10 0 Figure S2. Average weekday and weekend alcohol consumptions as proportions of the weekly total. The error bars indicate SDs. difference References EFSA Scientific Committee, 2012. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA Journal 10, 2579. doi:10.2903/j.efsa.2012.2579 European Monitoring Centre for Drugs and Drug Addiction, 2015. Wastewater analysis and drugs — a European multi-city study [WWW Document]. URL (accessed 8.12.15). Gold, L.S., Gaylor, D.W., Slone, T.H., 2003. Comparison of cancer risk estimates based on a variety of risk assessment methodologies. Regul. Toxicol. Pharmacol. 37, 45–53. doi:10.1016/S02732300(02)00026-0 Jones, H.E., Hickman, M., Kasprzyk-Hordern, B., Welton, N.J., Baker, D.R., Ades, A.E., 2014. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part B: Placing backcalculations in a formal statistical framework. Sci. Total Environ. 487, 642–650. doi:10.1016/j.scitotenv.2014.02.101 Lachenmeier, D.W., Rehm, J., 2015. Comparative risk assessment of alcohol, tobacco, cannabis and other illicit drugs using the margin of exposure approach. Sci. Rep. 5, 8126. doi:10.1038/srep08126 Mastroianni, N., Lopez de Alda, M., Barcelo, D., 2014. Analysis of ethyl sulfate in raw wastewater for estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona. J. Chromatogr. A 1360, 93–99. doi:10.1016/j.chroma.2014.07.051 Ort, C., van Nuijs, A.L.N., Berset, J.-D., Bijlsma, L., Castiglioni, S., Covaci, A., de Voogt, P., Emke, E., Fatta-Kassinos, D., Griffiths, P., Hernández, F., González-Mariño, I., Grabic, R., KasprzykHordern, B., Mastroianni, N., Meierjohann, A., Nefau, T., Östman, M., Pico, Y., Racamonde, I., Reid, M., Slobodnik, J., Terzic, S., Thomaidis, N., Thomas, K.V., 2014. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction 109, 1338–1352. doi:10.1111/add.12570 Reid, M.J., Langford, K.H., Mørland, J., Thomas, K.V., 2011. Analysis and Interpretation of Specific Ethanol Metabolites, Ethyl Sulfate, and Ethyl Glucuronide in Sewage Effluent for the Quantitative Measurement of Regional Alcohol Consumption. Alcohol. Clin. Exp. Res. 35, 1593–1599. doi:10.1111/j.1530-0277.2011.01505.x Rodríguez-Álvarez, T., Racamonde, I., González-Mariño, I., Borsotti, A., Rodil, R., Rodríguez, I., Zuccato, E., Quintana, J.B., Castiglioni, S., 2015. Alcohol and cocaine co-consumption in two European cities assessed by wastewater analysis. Sci. Total Environ. 536, 91–98. doi:10.1016/j.scitotenv.2015.07.016
© Copyright 2026 Paperzz