This article was downloaded by: [Romanian Ministry Consortium] On: 7 September 2010 Access details: Access Details: [subscription number 918910197] Publisher Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK Applied Economics Letters Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713684190 Episodic dependencies in Central and Eastern Europe stock markets Alexandru Todeaa; Adrian Zoicas-Ienciua a Faculty of Economics and Business Administration, Finance Department, Babes-Bolyai University, Cluj-Napoca, Romania To cite this Article Todea, Alexandru and Zoicas-Ienciu, Adrian(2008) 'Episodic dependencies in Central and Eastern Europe stock markets', Applied Economics Letters, 15: 14, 1123 — 1126 To link to this Article: DOI: 10.1080/13504850600993614 URL: http://dx.doi.org/10.1080/13504850600993614 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Applied Economics Letters, 2008, 15, 1123–1126 Episodic dependencies in Central and Eastern Europe stock markets Alexandru Todea and Adrian Zoicas-Ienciu* Downloaded By: [Romanian Ministry Consortium] At: 07:59 7 September 2010 Faculty of Economics and Business Administration, Finance Department, Babes-Bolyai University, Teodor Mihali 58-60, 400591 Cluj-Napoca, Romania This article introduces a modified version of the Hinich and Patterson (1995) windowed-test procedure and uses it to detect linear and nonlinear dependencies in the case of six Central and East European stock markets. Testing the original methodology leads us to the same conclusions as those found on other emerging markets: relatively long random walk periods are interrupted by short and intense linear and/or nonlinear correlations. But, our findings diverge when we run the modified test procedure, additional windows rejecting the random walk hypothesis (RWH) being isolated. This divergence, heavily weighing the task of correctly evaluating the informational efficiency degree (the weak form), is significant for the Czech, Hungarian and Romanian markets. I. Introduction Random walks in stock returns are crucial to the formulation of rational expectations models and the testing of weak-form market efficiency. In an efficient market, stock prices fully incorporate all relevant information and hence stock returns will display unpredictable (or random walk) behaviour. The check of the RWH, being a joint and not a direct test of the efficient market hypothesis (EMH), leads us to the question whether the detected dependencies in stock prices can be used to earn abnormal rates of returns. In order to get a valid response two complementary research approaches are needed, one is identifying/modelling these dependencies and the other is studying their persistence in time. Numerous recent studies have used the Hinich–Patterson windowed-test procedure (1995) to research the temporal persistence of linear and especially nonlinear dependencies. Thus, Ammermann and Patterson (2003), Lim et al. (2003), Lim and Hinich (2005) or Bonilla et al. (2006) are emphasizing the existence of different stock price behaviours, namely long random walk sub periods alternating with short ones characterized by strong linear and/or nonlinear correlations. All these studies suggest that these serial dependencies have an episodic nature being also the main cause for the low performance of the forecasting models. The efficiency studies performed on Central and East European stock markets confirm, with few exceptions, the rejection of the RWH but none of them has checked to what extent the found dependencies are time persistent. Nivet (1997) finds evidence of market inefficiency in the early trading years of the Warsaw Stock Exchange. Studying the autocorrelation coefficients, he concludes that the RWH is rejected for those years. Chun (2000) and Worthington and Higgs (2004) researches also reject the RWH for the Polish, Czech an Russian stock markets, the Hungarian market being the only one to follow a random walk. According to Gilmore and McManus (2003), the significant autocorrelations found in some Central European stock markets are caused by both nonsynchronous trading and asymmetric response to good and bad news. By using a model-comparison test they also reject the RWH for all the stock markets included in *Corresponding author. E-mail: [email protected] Applied Economics Letters ISSN 1350–4851 print/ISSN 1466–4291 online ß 2008 Taylor & Francis http://www.informaworld.com DOI: 10.1080/13504850600993614 1123 A. Todea and A. Zoicas-Ienciu 1124 the research. Schotman and Zalewska (2005) confirm that the predictability of the Central European emerging markets has decreased over time as the estimated time-paths of the autocorrelation coefficient gradually become indistinguishable from zero. This article contributes to the existing literature by introducing a methodological innovation, as well as by highlighting the findings related to the informational efficiency of some Central and East European emerging stock markets. Downloaded By: [Romanian Ministry Consortium] At: 07:59 7 September 2010 II. Methodology The return sample, {R(t)}, is considered by the Hinich–Paterson methodology to be the realization of a stochastic process, where t (integer) is the time unit. The procedure implies the division of the N returns sample in NW nonoverlapped subsamples of volume n, named windows, NW being the largest integer satisfying NW (N21)/(n21). In each window, the null hypothesis is that R(t) is the realizations of a white noise process with null correlations and bi-correlations, described by CEE(r) ¼ E[R(t)R(t þ r)] and CEEE(r, s) ¼ E[R(t)R(t þ r)R(t þ s)], where r and s are integers satisfying 0 < r < s < L with L being the number of lags. Correlations identification is made using the portmanteau test (C) for linear correlations and the bicorrelation test (H) for the nonlinear ones. In order to compute them, a standardized series (Zt) is used: ZðtÞ ¼ RðtÞ mR R ð1Þ where t takes values from 1 to n and mk, k are the mean and SD within each window. The correlations and bicorrelations are then given by: CRR ðrÞ ¼ ðn rÞ1=2 ns X CRRR ðr, sÞ ¼ ðn sÞ1 nr X ZðtÞZðt þ rÞ ð2Þ t¼1 ZðtÞZðt þ rÞZðt þ sÞ t¼1 0rs ð3Þ The C and H statistics are distributed according to a 2 law of probability with L respectively (L21) * (L/ 2) degrees of freedom, having the following formulas: C¼ H¼ L X ½CRR ðrÞ2 r¼1 L X s1 X G2 ðr, sÞ ð4Þ The number of lags (L) is specified as L ¼ nb, with 0 < b < 0.5. Hinich and Patterson recommends the usage of b ¼ 0.4 in order to maximize the power of the test assuring in the same time a good asymptotical approximation. The window length must be long enough to offer a robust statistical power and yet short enough for the test to be able to identify the arrival and disappearance of transient dependencies, as changes in the variables behaviour (35 observations recommended). The rejection of the null hypothesis by the C and H tests is done with a determined risk level, generally 1 and 5%. The Hinich–Patterson methodology does not allow an accurate identification of sub-periods exhibiting linear/nonlinear dependencies, because the test results depend on how the first day of the sample is chosen. The following example shows how the RWH can be accepted in the first window just because dependencies exist in a small time fraction of the windowed sub-period, while, if we considered the first day of the sample the last fraction of the first window, RWH is rejected. RW RW NRW RW NRW A correct identification of the windows rejecting the RWH is essential for gaining a more accurate overview on the market efficiency degree (the weak form) and improves the significance of the efficiency evolution tests. Thus, the ‘first day effect’ can be eliminated by running the Hinich–Patterson methodology in a successive way, considering the first day of the sample each of the first n1 days from the first window. Due to the translation, each succesive application eliminates a return from the last window making it insignificant. Theoretically, with the exception of the last return, each return from the first window can be considered with the same probability the starting point of the sample. Thus, for each sample, the percentage of significant windows (rejecting RWH) is given by: ! n1 X 1 x1 xi þ 100 pð%Þ ¼ n 1 NW i¼2 NW 1 where xi denotes the number of significant windows found on step i. ð5Þ III. The Data ð6Þ The data consists of daily closing prices for six Central-East European stock market indices, the s¼2 r¼1 Gðr, sÞ ¼ ðn sÞ1=2 CRRR ðr, sÞ Episodic dependencies in Central and Eastern Europe stock markets starting day being given in brackets: Hungary (BUX, from 1 August 1991), Czech Republic (PX50, 14 September 1993), Slovakia (SAX, 4 July 1995), Poland (WIG, 7 January 1994), Romania (BET, 19 September 1997) and Russia (RTS, 4 September 1995). The last closing price for each index is 31 May 2006, the samples length varying between 2135 and 3850 observations. The data is transformed into a series of continuously compounded returns, rt ¼ ln (Pt/Pt 1), where Pt and Pt 1 denote two consecutive trading days. Downloaded By: [Romanian Ministry Consortium] At: 07:59 7 September 2010 IV. Empirical Results We ran both the original Hinich–Patterson methodology and the modified one in the case of six major Central and East European stock markets using 35 observations for the window length, 0.4 for the b parameter and considering a risk level of 1% (we also developed a Pascal-based software solution to do the necessary data processing). Using the original methodology we reached the same conclusions found on the Asian markets (Lim and Hinich, 2005) and those from Latin America (Bonilla et al., 2006), namely that the RWH is rejected by maximum 10% from the total 1125 number of windows. Moreover, we found significant differences between the markets, some indices like SAX and WIG having just one window rejecting the RWH while for the BET index we found nine such windows. It is also interesting to notice that we could not find any windows exhibiting nonlinear dependencies in the case of the Slovakian and Polish indices (The results are reported in Table 1). Using the modified methodology, we found a significant increase of the proportion of windows rejecting the RWH in the case of the BET, BUX and PX50 indices and some originally inexistent nonlinear correlations for the SAX and WIG indices. The most radical change of behaviour is noticed in the case of PX50 where the RWH is rejected in 30% of its windows. As an exception, we could not find significant changes for the Russian index which means that the modified methodology does not necessary leads to a decrease of the market efficiency degree (The results are reported in Table 2). V. Conclusions This article uses the Hinich and Patterson windowedtest procedure and a modified methodology in order to isolate linear and/or nonlinear correlation Table 1. The original methodology-results. Original methodology Index Total number of windows Windows – C significant Windows – H significant Windows – C or H significant BET BUX PX 50 RTS SAX WIG 61 110 86 76 75 89 3 2 6 1 1 1 6 6 4 5 0 0 9 – (14.75%) 7 – (6.36%) 8 – (9.3%) 6 – (7.89%) 1 – (1.33%) 1 – (1.12%) – – – – – – (4.92%) (1.82%) (6.98%) (1.32%) (1.33%) (1.12%) – – – – – – (9.84%) (5.45%) (4.65%) (6.58%) (0%) (0%) Table 2. The modified methodology-results Modified methodology Index Total number of windows Windows – C significant Windows – H significant Windows – C or H significant BET BUX PX 50 RTS SAX WIG 2114 3826 2996 2648 2611 3097 145 275 700 80 88 154 251 624 500 163 13 167 384 804 916 234 98 286 – – – – – – (6.85%) (7.19%) (23.36%) (3.02%) (3.37%) (4.97%) – – – – – – (11.87%) (16.3%) (16.69%) (6.15%) (0.49%) (5.39%) – – – – – – (18.16%) (21.01%) (30.57%) (8.84%) (3.75%) (9.23%) A. Todea and A. Zoicas-Ienciu Downloaded By: [Romanian Ministry Consortium] At: 07:59 7 September 2010 1126 sub-periods from those accepting the RWH in the case of six indices from Central and Eastern Europe stock markets. In its original form, the methodology leads to the same conclusions reached on other emerging markets, namely that long sub periods of random walk are interrupted by short and intense sub periods with linear and/or nonlinear correlations, the intensity of these dependencies being different from market to market. When the Hinich–Patterson methodology is used in a successive way, the proportion of windows rejecting the RWH substantially increases although this result is not a necessary consequence of the modified methodology, as we proved it. We found that by considering the ‘first day of the sample effect’ the results are different compared with the previous studies, additional sub periods rejecting the RWH being revealed. Acknowledgements The authors acknowledge Professors Timo Teräsvirta and Wladyslaw Milo for useful comments and suggestions on an earlier draft on this article. We are also benefited from conversations with Professor Joseph Plasmans and other participants at the 5th Annual International Conference Forecasting Financial Markets and Economic Decision-Making’ in Lodz (Poland, 11–13 May 2006). References Ammermann, A. H. and Patterson, D. M. (2003) The cross-sectional and cross-temporal universality of nonlinear serial ependencies: evidence from World Stock Indices and the Taiwan Stock Exchange, Pacific-Basin Finance Journal, 11, 175–95. Bonilla, C. A., Romero-Meza, R. and Hinich, M. J. (2006) Episodic nonlinearity in Latin American Stock Market Indices, Applied Economics Letters, 13, 195–9. Chun, R. M. (2000) Compensation vouchers and equity markets: evidence from Hungary, Journal of Banking and Finance, 24, 1155–78. Gilmore, C. G. and McManus, G. M. (2003) Random walk and efficiency tests of Central European Equity Markets, Managerial Finance, 29, 42–61. Hinich, M. J. and Patterson, D. M. (1995) Detecting epochs of transient dependence in white noise, mimeo, University of Texas, Austin. Lim, K. P. and Hinich, M. J. (2005) Cross-temporal universality of nonlinear dependencies in Asian Stock Markets, Economics Bulletin, 7, 1–6. Lim, K. P., Hinich, M. J. and Liew, K. S. (2003) Episodic non-linearity and non-stationarity in ASEAN exchange rates returns series, Labuan Bulletin of International Business and Finance, 1, 79–93. Nivet, J. F. (1997) Stock markets in transition: the Warsaw experiment, Economics of Transition, 5, 171–83. Schotman, P. C. and Zalewska, A. (2005) Nonsynchronous trading and testing for market integration in Central European Emerging Markets, CEPR Discussion Paper No. 5352. Available at SSRN: http://ssrn.com/abstract¼874072 Worthington, A. C. and Higgs, H. (2004) Random walks and market efficiency in European equity markets, Global Journal of Finance and Economics, 1, 59–78.
© Copyright 2026 Paperzz