Introduction of Machine Learning 2016. 1.4 Dong-Hyun Kwak 1 Table of Contents What is AI? ML? Various Field in ML The Special Thing in ML Polynomial Curve Fitting Overfitting / Underfitting Curse of Dimensionality Training / Test / Validation Error Cross-validation 2 What is AI? ML? https://www.linkedin.com/pulse/deep-dive-venture-landscape-ai-ajit-nazre-rahul-garg-nazre 3 Various Field in ML https://www.linkedin.com/pulse/how-exceed-your-goals-2016-dr-travis-bradberry-1 4 Various Algorithm in ML 5 Various Algorithm in ML 6 The Special Thing in ML y = f(x; Θ) 7 Function Approximation http://arxiv.org/pdf/1411.4555.pdf 8 https://people.mpi-inf.mpg.de/~kkim/supres/supres.htm Conventional AI vs ML http://www.rsipvision.com/exploring-deep-learning/ 9 Simplest Example of ML 10 Polynomial Curve Fitting Microsoft Excel 2007의 추세선 11 Overfitting / Underfitting 12 http://datascience.stackexchange.com/questions/361/when-is-a-model-underfitted Overfitting / Underfitting 13 https://www.researchgate.net/post/How_to_Avoid_Overfitting Curse of Dimensionality http://www.newsnshit.com/curse-of-dimensionality-interactive-demo/ 14 Training / Test / Validation Error 15 Training / Test / Validation set 16 Validation Dataset Percentage Split • Problems 1) 모든 데이터를 학습에 사용 하지 못함. 2) 해당 split에만 운좋게 잘할 수 있음.(Overfitting) 17 Cross-validation http://stackoverflow.com/questions/31947183/how-to-implement-walk-forward-testing-in-sklearn 18 The Problem of Cross-validation • Sequential Data 소리를 들려주고 사람 목소리 vs 자동차 경적소리를 구분하는 문제 라면 랜덤으로 데이터가 섞이는 과정에서 t-1의 데이터를 training에서 학습 후, t의 데이터를 validation에서 평가할 수 있음. 19 THANK YOU 20
© Copyright 2026 Paperzz