University of Central Florida Retrospective Theses and Dissertations Masters Thesis (Open Access) Testing the Radio Shack Random Number Generator to Produce Uniform and Non-Uniform Random Numbers Spring 1981 Enrique Menendez University of Central Florida Find similar works at: http://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu Part of the Engineering Commons STARS Citation Menendez, Enrique, "Testing the Radio Shack Random Number Generator to Produce Uniform and Non-Uniform Random Numbers" (1981). Retrospective Theses and Dissertations. Paper 575. This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. TESTING THE RADIO SHACK RANDOM NUMBER GENERATOR TO PRODUCE UNIFORM AND NON-UNIFORM RANDOM NUMBERS BY ENRIQUE MENENDEZ B.S.E., I.T . E.S.M., Monterrey N. L. Mexico, 1978 RESEARCH REPORT Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Graduate Studies Program of the College of Engineering at the University of Central Florida; Orlando, Florida Spring Quarter 1981 ACKNOWLEDGEMENTS The author wishes to extend his sincere appreciation to Mr. Charles James White, M.S.E., for his direction and help in this study. Special thanks is also extended to Dr. Gary E. Whitehouse and Dr. Darrell G. Linton who provided valuable guidance and help in this research effort. Sincere appreciation is expressed to all my family for their help, both financially and spiritually, and for their inspiration throughout my graduate program and life. ; ii TABLE OF CONTENTS LIST OF FIGURES. vi LIST OF TABLES . vii Chapter I. I I. INTRODUCTION 1 TES TI NG TRS-80 RANDOM NUMBERS. . 6 Goodness of Fit Test . . . . Kolmogorov-Smirnov Test . . . . . . . Runs Above and Below the Mean Test .. . Runs of Length for Above and Below the Mean Test . . . . . . . . Autocorrelation Test •. Gap Test .. Poker Test . . . . . . Yule's Test . . . . . Results. . . . . . . . III. GENERATION OF RANDOM NUMBERS Pseudo-Random Numbers . . . . . Uniformly Distributed Numbers. TRS-80 Uniform Random Numbers . . . . Additive Conoruential Generator .. Non-Uniformly Distributed Numbers. Normally Distributed Random Numbers . . . Exponentially Distributed Random Numbers IV. NON-PARAMETRIC TEST. . . . . Median of a Distribution . Central Limit Theorem . . . Runs Above and Below the Median .. Wald-Wolfowitz Run Test . . . . . iv .· 6 7 8 9 10 11 12 13 15 17 17 19 20 22 24 24 28 33 35 38 39 43 V. VI. SIMILAR METHODOLOGIES. 45 CONCLUSIONS. 47 APPENDICES A. COMPUTER PROGRAM AND PRINTOUT FOR TESTING THE TRS-80 RANDOM NUMBERS . . . . . . . . . . . 49 B. COMPUTER PROGRAM AND PRINTOUT FOR GENERATION AND A NON-PARAMETRIC TEST. . . . 119 C. NORMAL AND WALD-WOLFOWITZ TABLES . 143 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . 146 v LIST OF FIGURES I. The density function of the uniform distribution. . 21 2. The density function of the normal distribution 26 3. The density function of the exponential distribution. 30 4. The cumulative distribution function of the exponential distribution . . . 31 5. The median of a distribution. . 37 6. A two-tailed test of hypothesis . 42 vi LIST OF TABLES 1. Results of Testing TRS-80 Numbers. 2. Wald-Wolfowitz Tables. 144 3. Normal Table . 145 vii . . . 15 ABSTRACT Random numbers are a basic part in a Simulation Model, and they are also used in random sampling. These techniques are employed by quality engineers in the successful execution of their jobs. The every-day use of random numbers, however, often leads to a sense of complacency in the mind of engineers toward the exacting requirements that should be satisfied by the random number process to generate a genuine random number. Microcomputers have become a common and powerful tool that helps managers and engineers in their simulation experiments by providing sequences of random numbers. This research presents a sequence of eight tests to test the Radio Shack microcomputer system random number generator for uniformity and randomness; then, this Radio Shack random number generator is used to generate uniform and non-uniform deviates and a non-parametric test is performed to test these deviates for randomness. Two computer programs written in the BASIC language are used to test for randotmess. The first one to test the Radio Shack random number generator and the second one to test the uniform and non-uniform deviates. CHAPTER I INTRODUCTION Simulation consists basically of synthesizing or duplicating reality in a simplified form. This simplified version of reality is then subjected to intensive study and experimentation in an attempt to better understand the physical environment that is represented by the simulation model. Simulation is a practical, application-oriented procedure. In order to use it, however, one must construct an abstraction of the problem, transfer the problem to a foreign device, the computer, and then obtain indications pertaining only to the representation of the system. In order to have a complete success in the simulation, it is necessary to have a very high quality abstraction of the problem; this establishes a very reliable model and as a consequence, a highly reliable result. Computers are powerful tools in solving the simulation models. They are easy to use, fast, reliable and not too expensive. How- ever, to run a simulation model in a computer, it is required that the simulation model be processed several times in order to observe and understand the behavior of the model i n differ ent si tuations. This implies money, because each time the model is 2 processed it has a certain cost assigned. Therefore, the model has to be highly reliable in its design, and ~he computer proce- dures also have to be highly reliable in order to minimize the total cost. One of the basic components in a computer simulation run is the random numbers. These numbers usually are generated by the computer and are used by an engineer in his simulation model, but before drawing any conclusion from the model, it is necessary to test the randomness of those numbers. The simulation process is being used by industry and small and large business more and more every day; first, because it is very helpful, and, second, because it is not too costly when it is used properly. A lot of these industries and businesses use microcomputers that are replacing the big qnes, because they are equally reliable and a lot more inexpensive. This research presents two computer programs written in BASIC for a microcomputer, the TRS-80 from Radio Shack. The pro- gram generates and tests the random numbers that are going to be used in a simulation model, or for any other use. Chapter II in this research presents a sequence of tests to test the function RND(O) for randomness, before using this function in any other method. A computer program was made to test the function and eight tests were used: the goodness of fit test, the Kolmorogov-Smirnov test , the test for runs above and below the mean, the test of length for above and below the 3 mean, the test for autocorrelation, the gap test, the poker test, and the Yule's test. Chapter III in this research presents the methods that are used in order to generate or provide the random numbers. are three methods: There the first one is internal, the program will provide the random number as a choice of the user from two different distributions, uniform and non-uniform distributions; thesecond method is also internal and it is a mix from two distributions uniform and non-uniform; and finally the third one is external - the user provides the numbers that are to be tested. In the first metnod, the numbers generated by the uniform distribution are produced from two sources: using the ran- dom generation function that is a function of the TRS-80 microcomputer system, or using an additive congruential method. The numbers generated by a non-uniform distribution are produced from a normal distribution in which the user selects the mean and standard deviation, or can be produced by an exponential distribution in which the user selects the lambda value. The second method will mix the two sources - uniform and non-uniform - to produce a strange mix of numbers to be tested by the program. It will mix TRS-80 numbers with normal numbers. Finally, the program will accept that the users input their own random numbers in order to be tested. that the user has indicates one thing: All these choices the program will test any 4 sequence of numbers and will show if the sample is random, or if it is not random. Chapter IV will approach the non-parametric test that is used in order to test the sequence of numbers. of two run tests: The test consists the first one is runs above and below the me- dian and the second one is the Wald-Wolfowitz run test. The non-randomness test is non-randomness in order of appearance along a single nominal scale. In a sample, if the sample numbers can be categorized into two distinct groups on a nominal scale, the total number of runs test is appropriate and useful to test for randomness of the sample. In this second computer program, the two categories used to group the data are: first, above or equal to the median and second, below the median of the sample. The test, as stated, is non-parametric and, therefore, is applicable regardless of the underlying distribution. In Chapter V the research will approach the subject of similar methodologies ·that can be compared with the effort realized in this research. Finally, in Chapter VI, the author will list the conclusions of this research, mentioning that these computer programs are a great tool that can be used by administrators and engineers in order to test the sequence of numbers that are to be used in a simulation process. The programs are easy to manage and to input the data required, so any one can use it. Besides, 5 it will not take too much time and will make any process highly reliable. CHAPTER I I TESTING TRS-80 RANDOM NUMBERS The TRS-80 microcomputer system generates uniform random numbers over the interval 0 to 1 by calling the function RND(O). These numbers are to be used to generate 11 random" numbers for a uniform and non-uniform distribution, so these TRS-80 random numbers have to be tested for randomness before using them in any other application. This random number generator is to be used to generate random numbers in the second section of this research. This generator will produce the seeds to generate new random numbers. A computer program is to be used to test for randomness using eight different tests, 1 which came from the same reference. A significance level of 1% will be used for each test. This computer program is included in Appendix A for reference. Goodness of Fit Test The Chi-square test goodness of fit test allows one to determine whether the observed frequencies in each class are sufficiently close to the frequencies expected if the data did, in fact, come from the uniform distribution. The test statistic is given by: 1Joseph W. Schmidt and Robert E. Taylor, Simulation and Analysis of Industrial Systems (Homewood, IL: R. D. Irwin, 1970), pp. 215-254. 6 where: Q. 1 = observed number in the ith cl ass E·1 = expected number in the ith cl ass n = number of classes The value of C is to be compared with the value X2a(n-l) which comes from a chi-square distribution of (n-1) degrees of freedom with a level of significance of a. If the test statis- tic given by the above summation is less than X2a(n-l), the uniform generation can be approved. The program uses 10 classes in which the expected number of observations is the total number of observations over the number of classes. The number of expected observations in each class is greater than five observations so that the test will work. Kolmogorov-Smi rnov Test :· The Ko Jmogorov-Smi rnov test, which involves the use of a cumulative frequency distribution, is studied next. Let F(Xo) = Xo be the continuous cumulative distribution of T observations. For any given observation, Xo, ST(Xo) = m/T, where mis the observed number of observations less than or equal to Xo. The Kolmogorov-Smirnov test statistic is that D, which equals the largest single deviation between F(Xo) and ST(Xo) over the range (0,1) at a specified number of equal intervals. 8 This value of D must be compared with the critical value of o1_a from the Kolmo90r0v-Smirnov table for the sample size given. If D is less than Dl-a' then the hypothesis that the data came from a true uniform distribution is accepted. Runs Above and Below the Mean Test First, it is necessary to define what a run is. A run is defined as a sequence of like events or symbols that are preceded and followed by any event or symbol of a different type, or by none at all. number of events or symbols in a run is re- The ferred to as its length. For this test, the program described runs as being above or below the mean of the sequence of numbers to be tested. Let Nl and N2 be the number of individual observations above and below the mean, respectively. number of runs. a will be defined as the total 1 For this test, the program uses a normal approx- imation by the central limit theorem and the mean and the variance of a1 are given by: ma1 2 a a 1 2*Nl*N2 = Nl + N2 + 1 2*Nl *N2 ( 2*Nl *N2 -:- Nl - N2 ) = (Nl + N2) 2*(Nl + N2 - 1)-- For either Nl or N2 greater than 20, a 1 is normally distributed, and for this case, the te; t statistic is given by: z= al - ma1 ---- 9 Since we are interested in the occurrence of either too few or too many runs, a two-tailed test is used. If the level of significance is a, it is accepted as the hypothesis of randomness if: Ho: IZI <Zl-a/ 2 The hypothesis Hl: ~Z] ~ Zl-a/ 2 Run·s of Length for Above and Below the Mean Test As it was said, the number of events or symbols in a run is referred to as its length. This test will consist of a test of hypothesis between the expected number of runs of a given length against the observed number of runs of a given length. A chi- square test is performed in order to make a decision. Let R. be the number of runs of length i in a sequence of 1 N numbers. The expected value of Ri is given by: where: N = number of observations nl = number of observations above the mean n2 = number of observations below the mean Now, if Qi is the observed number of runs of length i, the test statistic is: x2 = ~ i =1 pi - E( Ri)J 2 E( R;) 10 where: =N L - 1 The statistic x2 is compared with the theoretical value of x21_a (L). If x2 is less than domness is accepted, where Ho: x21_a(L), the hypothesis of ranx2 < x21-a (L) Hl: x2 -~ x21-a (L) Autocorrelation Test The test for autocorrelation examines the tendency of numbers to be followed by other numbers. For this test, the program checks for correlation every 5 numbers, starting with the first number in the sequence. In order to have the observed autocorrelation factor for ev~ry sequence of the type ri, r(i.+m), r(i+ 2m), · · ·' r(i +(M+l)m), it is necessary to use: l N-m = N _ m i=l r r.r(.+) m i i m p where: P m = autocorre 1at ion factor N = total number of observations m = interval to check for autocorrelation r. 1 = ith number in the sequence For N large relative to m, Pm is approximately normally distributed with mean and variance given by: E(Pm) = 0.25 VAR( Pm) · = 13N - 19m 144(N - m)2 11 A two-tailed test of hypothesis is made where the test statistic is: Z = Pm - E(P_m) I VAR( pm) This value is compared with the theoretical value of Z(l-a/ 2) and the comparison is made. If Ho: IZI < Z(l-a/ 2 )' the hypothesis of randomness is accepted. Gap Test The gap test is used to determine the significance of the interval between the recurrence of a given digit. If the digit K is followed by X non K digits before K occurs again, then a gap of size Xis said to exist. In general, for any given digit K, the probability that the digit is followed by X non K digits before K occurs again is given by: p(X/K) = p(K followed by exactly X non K digits) = (.9) x(.1) x = 0, 1, 2, .... The program applies this procedure to a single digit between 0 and 9. After recording the frequency with which each gap occurs, it is compared to the observed relative cumulative frequency via the Kolmogorov-Smirnov test. Under the assump- tion that the digits are randomly ordered, the theoretical cumulative frequency distribution is given by: x Fx(X) = I n=O · ( .1)( .9) n = 1 - ( ,9) x+l for X = 0 to n 12 Then the program compares if: relative cumulative .frequen.cyj that the digits are ~andomly The hypothesis Ho: is less .than o _~, 1 Dmax IFx(X) the hypothesis ordered is accepted. Poker Test The poker test is used to analyze the frequency with which digits repeat in individual random numbers. The computer program works for the first 4 digits of the random number, and the program is interested in examining the frequency with which the following occur in individual numbers: 1. Four different digits 2. One Pair 3. Two pairs 4. Three like digits 5. Four like digits To apply the poker test, first select a level of significance, a, and enumerate all of the different combinations indicating the degree of digit repetition. Next, compute the pro- bability of occurrence of .each of these . combinations. The pro- bability that each of the above outcomes occurs is given by: P(Four different digits) = P(Second digit different from the first) x P( Third digit different from the first and second) x P(Fourth digit different from the first, second and third) 13 = (.9)(.8)(.7) = .504 P(One pair) = (~)(.1)(.9)(.8) = .432 P(Two pairs) = (~)(.1)(.1)(.9) = .027 P(Three like digits) = (j)(.1)(.1)(.9) = .036 P(Four like digits) = (4)(.1)(.1)(.1) = .001 Then examine the observed frequency with which each combination occurs in the sequence of numbers analyzed. The observed frequency with which each combination occurs can be compared with the expected frequency by application of the Chi-square test. To obtain the number of times each of these combinations would be expected to occur we multiply each probability by N. The test of hypothesis would be, if the expected x2 value 2 is less than x ~ (l-a)(C-1), the hypothesis that the digits within the random number are randomly ordered is accepted, where C-1 is the total number of combinations. Yule's Test The Yule's test is used to analyze the probabilities of the sum of individual digits in each of the random numbers. Let r be a four-digit random variable such that each of the four digits is uniformly distributed on the interval 0 to 9. Let r be the 1 14 ith digit of the random variable: P(r;) = .1 r 1 i = 0, = 1, 1, ... , 9 2, 3, 4 Define 11 Y" as the sum of the four digits in r: Y = 4 2: i =1 r. 1 The probability density function of Y, PY(Y), is given by: (Y+3~ ! 3!Y. (110) 4 [(Y+3f ! Y=O,l, ... ,9 4(Y-7l ~ 3! Y.11 - (Y-10 ! 3! ] Py(V)= 39-Y [ 36-Y ! 3 ! 39-Y 36-Y ! 3 ! 1 4 (10) 4(29-Y ! 1 4 26-Y !3! ] (10) 4 1 (10) y = 10, 11, y = 19, 20, e I e ' ... ' 18 27 y = 28' 29' ... ' 36 If N random numbers are drawn, each number being comprised of four digits, and if the random numbers are uniformly distributed on the interval 0 to 9999, then the expected number of times the sum 11 Y11 occurs is given by NPY(Y). The function of Yule 1 s test is to determine whether the observed number of times the sum 11 Y11 occurs is significantly different from NPY(Y). EY = Let: expected number of times the sum 11 Y" occurs 0 = observed number of times the sum "Y" occurs y If the random numbers are uniformly distributed, then the quantity T is distributed as the Chi-square distribution with 36 degrees of freedom. 15 T= 36 L: Y=O If the hypothesis Ho: Tis less than X2(l-a)( 36 )' then the hypothesis that the numbers are randomly ordered is accepted. Results Using sample numbers of 100, 200, 300, 400 and running each sample 10 times with a significance level of 1%, it was found that the Radio-Shack Random Number Generator fails to pass the following tests that are shown in Table 1. TABLE 1 RESULTS OF TESTING TRS-80 NUMBERS Test Goodness of Fit Ko 1mogorov-Smi rnov Runs Above and Below Runs of Length Autocorrelation Gap Poker Yule's Numbe·r ·o'f Rans Samples 200's 300's 400's Passes Passes Passes Tota 1 % of Fai 1ure 10 10 10 10 0 10 10 10 10 0 10 8 10 10 10 9 9 9 0 12.5 9 10 10 9 5 10 9 9 10 5 9 10 10 9 10 10 10 9 10 10 10 lOO's Passes 10 5 2.5 16 The test runs of length for above and below the mean was the one that fails more often, 12.5% of the times. The test for autocorrelation, the gap test and the poker test fails 5% of the times. The Yule's test was found to fail 2.5% of the times. The TRS-80 random number generator can be considered a good and reliable generator that generates uniform random numbers over the interval 0 to 1. The computer listing for the eight tests, as the computer printout for different samples, is included in Appendix A for reference. CHAPTER II I GENERATION OF RANDOM NUMBERS Pseudo-Random Numbers A number of techniques have been applied to overcome the inherent non-reproducibility of random sequences. Before considering some of these, it is useful to discuss some of the requirements to a random number generator. 1. The numbers produced must follow the uniform or non-uniform distribution, because truly random events follow these distributions. Any simulation of random events must there- fore follow it at least approximately. 2. Numbers produced must be statistically independent. The value of one number in a random sequence must not affect the value of the next number. 3. The sequence of random numbers produced should be reproducible, but not necessarily. This implies replication of the simula- tion experiment.. 4. The sequence must be non-repeating for any desired length. This is not theoretically possible, but for practical purposes a long repeatability cycle is adequate . The repeatability cycle of a random number generator is known as its period. 17 18 5. Generation of the random numbers must be fast. ln the course of a simulation run, a large number of random numbers are usually required. If the generator is slow, it can greatly increase the time and thus the cost of the simulation run. 6. The method used in the generation of random numbers should use as little memory as possible. Simulation models gen- erally have large memory requirements. Since memory is usually limited, as little as possible of this valuable resource should be devoted to the generation of random numbers. With these requirements, it is not possible to evaluate the approaches taken to compensate for the lack of reproducibility of random sequence. The first approach is to generate the sequence by some means and to store it, say, on a tape or on a minidisk. This approach is generally unsatisfactory because of the time involved, but it can be used as a request from the user~ Each time a random number is required for simulation or test, a read operation must be initiated, and this is a ·· time-cons~rning operation. This technique also potentially suffers from a short repeatability cycle unless a large sequence is stored. The second approach is to generate a random sequence and hold it in memory. This approach would overcome the speed prob- lem of the above technique; however, to store a list large enough 19 to satisfy the requirements of many simulation studies would require an inordinate amount of core. The third and most common approach is to use a specified input value to generate numbers using some mathematical algorithm. This technique overcomes the problems of speed and memory requirements but suffers from potential problems with independence and repeatability. The use of a .mathematical algorithm to generate random numbers seems to violate the basic principle of randomness. For this reason, numbers generated by a mathematical algorithm are called synthetic or pseudo-random numbers. These numbers meet certain criteria for randomness but always begin with a certain initial value called the seed and proceed in a completely deterministic, repeatable fashion. That is why extreme care must be taken when using pesudorandom sequences to insure that a fair degree of randomness is present and that the repeatability cycle is long enough. Random numbers are so important to simulation studies that much work and effort has to be made in order to test the randomness of those numbers. Uniformly Distributed Numbers Consider that a random number is needed from the interval [a,b]. If the number selected is a random variable with an inte- grating density function that is constant over the interval [a,b], 20 this distribution is called the uniform distribution. The density function of the uniform distribution is given by: 1 b - a a < t < b =0 -oo < a < b < co Otherwise Because of the rectangular shape of the density function (see Figure 1), the uniform distribution is also called the rectangular distribution. TRS-80 Uniform Random Numbers The program will use the function RND(O) to produce uniform random numbers. The TRS-80 microcomputer system from Radio Shack produces uniform random numbers over the interval 0 to 1, just from calling or using the statement RND(O). The function RND(O) will produce random numbers, and will not reproduce the same sequence; each time the function is needed, the computer will automatically generate a new seed to start the process, and this seed value is not available to the user. So every tirre RND'(O) is used, it is pqssible that it wil 1 generate a different sequence of random numbers. The program uses this uniform random number to produce another kind of uniform random number using the additive congruential method, and will also use this number to produce random 21 1 Fi·g, 1. The density function of the uniform distribution 22 numbers from a non-uniform distribution, in this case for a normal distribution and for an exponential distribution. ·Additive Congruenti a1 .Generator The second procedure to generate random numbers from a uniform distribution is using the. additive congruential method. The congruential method, first proposed in 1951, 2 has become the most widely used method for generating random numbers. A strictly additive congruential method was introduced in 3 1959. This method is also called the Fibonacci Method. In this type of generator, the seed consists of a sequence of n numbers, ' Xn' that are random numbers from standard tribution. The next number, Xn+l' is obtained Xn and reducing by di vi ding by largest integer in the machine. 11 m 11 by unifor~ computing x dis- 1 + For our purpose, m is the 11 • 11 This is the greatest integer number that can be stored in the compute.r for the TRS-80 mi crocomputer from Radio Shack is 215 -1, or the number 32767. When computing x1 + Xn' where O < x1 < 1 and O < Xn < 1, then, as a .conclusion, O<(X 1+Xn)<2. If 11 m11 is the largest integer in the machine, dividing by m is equivalent to retaining the fractional portion of the sum. 11 11 The sequence of n seeds are being generated using the function RND(o), explained in the last section. Specifically, the algorithm is: 2James R. Emshoff and Roger L. Sisson, Designing and Use of Computer Simulation Models (New York: MacMillan, 1970), p. 176. 3 .. Ibid., p. 177. 23 x.J = (x(J-. 1) .+ x(J-n . )) Mod u1OS m The main advantage of this technique is speed; no multiplications are necessary. 11 m 11 ; It can yield to have periods greater than to illustrate the procedure, follow the next example: Let m = 10 and extend the sequence 1, 2, 4, 8, 6 of random numbers already generated. xl = 1 x2 = 2 x3 = 4 x4 = 8 x5 = 6 X5 = (X5 + Xl)Mod 10 = (6 + 1)/10 = 7 X7 = (X 6 + X2)Mod 10 = (7 + 2)/10 = 9 Xa = (X7 + X3)Mod 10 = (9 + 4)/10 = 3 x9 = (X 8 + X4)Mod 10 X10 = (X 9 + X5 )Mod 10 = (X10 x12 = (x 11 x13 = (X 12 x14 = (X 13 x15 = (x 14 X11 xl 6 = (3 + 8)/10 = (1 + 6)/10 = (7 x7)Mod 10 = (4 + X5)Mod 10 + 7)/10 + + 9)/10 =1 =7 =4 =3 + X8 )Mod 10 = (3 + 3)/10 = 6 X9 )Mod 10 = (6 + 1)/10 = 7 + x )Mod 10 = (7 + 7)/10 = 4 10 + = At the present time, not very much is known about such an additive number generator; before its . use can be recommended, 24 it will be necessary to develop the theoretical results necessary to prove certain desirable randomness properties, and to carry out extensive tests for particular values of x1 , x2 , ... , Xn or seeds. It has been proved that when n is less than or equal to ~5 seeds, the sequence fails to pass the gap test, although when n is equal to 16 seeds, the test was satisfactory. The program uses 16 seeds that are generated using the function RND(o) in order to solve the problem, and it uses as the modu1us, 11 m 11 , the word size of the computer. Non-Uniformly Distributed Numbers The behavior of many real-system entities cannot be characterized by the uniform distribution. In fact, other theoretical distributions, such as the normal, exponential, and Garruna distributions, are encountered more frequently than is the uniform distribution. In many other cases, no appropriate theoretical distribution can be found, and an empirical distribution is used. Thus, the introduction of appropriate stochastic characteristics in simulations requires the use of the random number generators that produce numbers with distributions other than the uniform one. Normally -Distributed Random Numbers In 1733, De Moiure4 discovered what is known nowadays as the 4 Isaac N. Gibra, Probability and Statistical Inference for Scientists and Engineers (Englewood Cliffs, NJ: Prentice Hall, 19 73) ' p. 148 • 25 normal distribution. A random variable X is said to be normally distributed if its density function is specified by: 1 f ( t) x -00 < t < 0 > co 0 Where a and µ are two parameters (constants) that denote the standard deviation and the mean, respectively. The density func- tion is shown in Figure 2. Random variables following a normal distribution are commonly encountered in simulation studies. A number of techniques are used in transforming standard uniform random numbers into normally distributed random numbers. The most common and the one that is used in the computer program for generating normally distributed random numbers is by using the central limit theorem. This theorem states that the sum of identically distributed independent random variables x1 , x2, ... , X has approximately a normal distribution with a mean of nµ n and variance of no 2, where 11 and 0 2 are respectively the mean and the variance of Xj. If the variables X., J J uniform distribution, thenµ = 1, 2, ... , n, follow the standard = .5 and a = 1/12. Thus, summing n standard uniform variables gives an approximate normal 26 f ( t) x t + -00 Fig. 2. 00 The density function of the normal distribution 27 distribution with mean .5n and variance of n/12. The program provides those Xj values from a uniform distribution by utilizing the RND(o) function that has already been tested to be uniform. The choice of n is largely up to the analyst. Of course, the larger the value of n chosen, the better the approximation to the normal distribution. Studies have shown that with n equals 12, the techniques provide fairly good results, while at the same time . maintaining calculation efficiency. This is because it yields a equals one, so in the transformation from a non-standard normal to the standard normal, a division operation is saved. For a better understanding, suppose that using RND(o) we obtained the next 12 uniform random numbers: 0.1062, 0.1124, 0.7642, 0.4314, 0.6241, 0.8121, 0.2419, 0.3124, 0.5412, 0.6212, 0.0021, and 0.9443. Generate a normal random number from a dis- tribution with means 25 and a variance of 9 . ..-· Summing the 12 standard uniform numbers gives y equal to 5.5135. This number is from an approximate normal distribution with mean of 6 and a variance of one. The corresponding stan- dard normal number is Z = y - 6 = -0.4865. Now, transforming this number to a normal distribution with mean 25 and a variance af 9 generates the desired result: x =µ + aZ = 25 + 3 ( -0 . 486 5) = 23 . 540 5 When the user selects to use the normal distribution, it is necessary to input the value of the mean and standard deviation, 28 in order to have the desired sequence. This is a very helpful situation because those values depend on the user's needs. Exponentially Distributed_ Random Numbers A variable, X, is said to be exponentially distributed if its density function is given by: A > 0 =0 t > 0 otherwise The exponential distribution is characterized by the following property known as complete lack of memory: P(X > r + s!X > r) = P(X > s) where r and s are any positive numbers. This means that P(X > s) is independent of r. In other words, if a piece of equipment has not failed during r time units, its conditional probability of serving r + s or more time unit? is independent of rand is equal to the probability of serving s or more time units. Stated differently, if time to failure at a piece of equipment follows the exponential distribution, then aging of the equipment is irrnnaterial. The mean and the variance of the exponential distribution areµ= l/A and a 2 = l/A 2 . It can be noted that the mean and standard deviation of the exponential distribution are equal . 29 The density function and distribution function of the exponential distribution are shown in Figures 3 and 4, respectively. The generation of exponentially distributed random numbers is easily accomplished with the use of the inverse transformation technique. Recall that the cumulative distribution function for an exponentially distributed random variable Xis: Fx(t) = l - e-At A> 0 t > 0 The inverse of F is then F-l (a) =(-1/A)ln(l - a) where a is a random number uniformly distributed, however, the value of (l - a) is also uniformly distributed, and the desired random numbers can be generated by using: -1 F (a) =(-1/A)ln(r) r =1 - a Thus, generating a standard uniform number r permits the formation of an exponentially distributed number. The program gen- erates the r random number by using the function RND(o) and subtracting one, as we said before RND(o) has been tested to be uniformly distributed, so it is appropriate to use it, in order to produce exponential random numbers. Note that this method is simple to program, yet it is very time-consuming because it involves the calculation of the natural logarithm function. For a better understanding of the process, suppose that it is desired to generate random numbers from an exponential ~o f· (t) t 0 Fig. 3. The density function of the exponential distribution 31 . Fx { t) 1.0 - - - t 0 Fig. 4. The cumulative distribution function of the exponential distribution 32 distribution with A= 1. Then: Fx(t) = 1 - e-t t >0 F- l (a) =(-l) 1n(l - a) 1 Now, if a uniformly distributed random number, say 0.0214, is generated by using the function RND(o), the desired random number from the exponential distribution would be: X = (- } ) 1n ( 1 - 0. 0214) = - ( -3. 861 3) x = 3.8613 If the user selects to use the exponentially random numbers generator, it is necessary that he enter the value for A. This is very helpful for the user because he will have the numbers that are really needed when the value of A is entered. In Appendix S, a· copy of each of the s.ubro'utfries that evaluate the four basic methods to generate random numbers. These subroutines are part of the program, they are written in BASIC, and can be used in almost every computer. CHAPTER IV NON-PARAMETRIC TEST A non-parametric procedure is a statistical procedure that has certain desir~ble properties that hold under relatively mild assumptions regarding the underlying population from which the data are obtained. The rapid development of non-parametric statistical procedures may be traced in part to: First, a non-parametric method required from assumptions about the populations from which the data are obtained. Second, non-parametric techniques are often easier to apply than normal theory counterparts. Third, non- parametric procedures are often quite easy to understand. Fourth, non-parametric procedures are applicable in situations where the normal theory procedures cannot be utilized; in other words, many of the procedures required not the actual magnitudes of the observations, but rather, their ranks. Fifth, although at first most non-parametric procedures seem to sacrifice too much of the basic information in the sample, theoretical investigations have shown that this is not the case. More often than not, the non-parametric procedures are only slightly less efficient than their normal theory competitors when the populations are normal, and they can be mildly and widely more efficient 33 34 than these competitors when the underlying populations are not normal. Some of the advantages of the non-parametric procedures are given below: 1. Since most non-parametric procedures depend on a minimum of assumptions, the chance of their being improperly used is small. 2. For some parametric procedures, the computations can be quickly and easily performed, especially if calculations are done by hand. Thus, using them saves computation time. 3. Researchers with minimum preparation in mathematics and statistics usually find the concepts and methods of nonparametric procedures easy to understand. 4. Non-parametric procedures may be applied when the data are measured on a weak measurement scale, as when only count data or rank data are available for analysis. Non-parametric procedures, however, are not without disadvantages. The following are some of the more important disad- vantages: 1. Because the calculations needed for most non-parametric procedures are simple and rapid, these procedures are sometimes used when parametric procedures are more appropriate. Such a practice often wastes information. 35 2. Although non-pararretric procedures have a reputation for requiring only simple calculations, the arithmetics in many instances is tedious and laborious. The computer program utilizes two kinds of non-parametric tests; the first one, when the number of observations are greater than 20, and the second one, when the number of observations in the sample are less than or equal to 20. The program selects two categories used to group the sample data, above or equal to the median and below the median. Medi an of a Dis tri b_uti on In many scientific problems, it is desirable to describe the probability distribution of a random variable in a concise form. Some of the properties of the distribution function may be used to describe some features of the random variable under consideration. In many situations, knowledge of these functions or some of their properties is all that is needed in order to make the required probability calculations. Th e med i an of a random var i ab 1e X i s the va1ue that fit) = 1/2. 11 t 11 s uch The median always exists if the random varia- ble is continuous, whereas it may not exist if the random varNow, suppose that a sample (X 1 , x2, ... , X2n) of size 2n is drawn from a population having probability density function f(x). The order statistics of this sample is iable is discrete. given by: 36 Figure 5 shows the representation of the order statistic, in this case, the median value is the value that the variable Xn+l takes. The computer program uses 3 different subroutines in orde r to evaluate a median from a sample of numbers. First, sort the numbers in ascending order . Second, calculate the median . Third, find the values above and below the median . The first subroutine that sorts the numbers in ascending order works by comparing each of the numbers to one another; this procedure takes a lot of time when the number of observations increases, but it is necessary to do this in order to evaluate the median in the following subroutine. Calculating the median becomes easier when the numbers are -· already ordered in ascending order; the program divides the total number of observations by two, and takes that value into an integer variable, then divides the total number of observations plus one by two and takes that value into another integer variable. If these two variables have the same value, the program takes the number that is represented by first integer variable and is added to the number that is represented by the second variable plus one and all this quantity is divided by two, and that value becomes the median. If the values of the two inte - ger variables is not the same, the program takes the number that 37 ME = median µ ME F~gf 5, = mean µ The median of a distribution 38 is reported by the second variable and that value becomes the median; a copy of these subroutines are available in Appendix B. After the median is calculated, the next subroutine will evaluate the number of observations that are above the median and below the median by simply comparing each number with the value of the median already found, and as the numbers are ordered in ascending order, the process becomes very easy, and the program stores in N the number of observations that are greater or 1 equal to the median and in N the number of observations that 2 are less than the median. ' Now, the program utilizes a subroutine to evaluate the number of runs. The number of runs are the number of times the se- quence of numbers changes in order. Each number that is generated or entered is compared with the median. If the first number, for example, is above the median, a run is counted. ber is above the median, no run is counted. If the next one is below the median, a run is counted, and so on. stores in 11 If the next num- The program IR 11 the number of runs that will be used in the non- par amet r i c te s t. ... Central Limit Theorem The central limit theorem plays an important role in the non-parametric tests that the program uses in order to determine the randomness of a certain sample of numbers. Let the random variables x1 , x2, ... , Xn be independent 39 with means µ 1 , µ 2, ... , µn, respectively, and variance 0 2, 0 2, 1 2 2 ... , 0n ' respectively. Consider· the random variable Zn·· n zn = n L:.1= 1 X.J - L: 1= • l µ.1 Then, under certain regularity conditions, Zn is approximately normally distributed with zero mean and unit variance. The sample means from random samples tend toward normality in the sense just described ·by the central limit theory, even if x.1 are not normally distributed. It is difficult to establish sample sizes beyond which the central limit theorem applies, and approximate normality can be assumed for sample means. This, of course, does not depend upon the form of the underlying distribution. From a practical point of view, moderate sample sizes, like 10 or more, are often sufficient. Runs Above and Below the Median In many situations, it is desired to know and conclude that if a set of numbers are random, this test will run above and b~low the median and will tell the user if the sample under observation is or is not random. The program uses a normal approximation for large samples; and the assumption is that a large sample is the one that has more than 20 observations in one sample. 40 The procedure to determine randomness is as follows: sample of numbers can be drawn from different options. The One would be generating "random" numbers from a uniform distribution, utilizing the RND(o) function from the TRS-80, or using the additive subroutine. A second would be generating "random" numbers from a non-uniform distribution, utilizing the normal distribution, or using the exponential distribution. from all the distributions. Another would be a mix Finally, the last would be that the user provides his own sample to be tested. Once the numbers are in the program, the next step is to calculate the median. To calculate the median, first the pro- gram uses the subroutine sort to order the numbers in ascending order. Then it is relatively simple to calculate the median. At last the subroutine "values above and below the median" will find the values for those variables N1 and N2 ; N1 number of observations above or equal to the median and N2 number of observations below the median. Then the program uses the subroutine to calculate the number of runs. Now the program is ready to use the non-parametric test. The program asks if the total number of numbers or observations above or below the median is not greater than 20, if so, it proceeds with the test, Runs Above and Below the Median, using a normal approximation for large samples, based on the central limit theorem. 41 Let U denote the total number of runs in the sample N ,and 1 N2 , the sample observations above or equal and below the median, respectively. The test statistic, U, is asymptotically normally distributed, if the ratio of N1 and N2 remains constant while both approach infinity . Further, the mean and the variance of U is given by: Mean E(U) = Variance VAR(U) + 1 2*Nl*N2(2*Nl*N2 - Nl - N2) = .(N + N ) 2 *(Nl + N2 - 1) 2 1 The mean and variance are calculated in the program, and then a test of hypothesis is made (see Figure 6). The Null Hypothesis is: Ho: The observed sample is random A two-tailed test for the hypothesis of randomness is made at a 5% level of significance. This means that 5% of the time we are going to commit an error or reject the Null Hypothesis, given that the Null Hypothesis is true. The rejection rule for rejecting the Null Hypothesis is: !Observed value of U - E(U) I -> Za/2 VAR (U) ... where Za/2 is the value of the standard normal distribution, and its value can be obtained from the Table in Appendix C, and a means the significance level of 5%. 42 fig. 6. A two-tailed test of hypothesis 43 Z a/2 = Z.025 or Z.975 = 1 .96 so the rule stands as follows: !observed U - E(U)I~ 1 .96 VAR(U) If this happens, the sample is not random. Otherwise there is insufficient evidence to reject the Null Hypothesis and conclude that the sample is random. Wa 1d-Wo1 fowi tz Run Test Run theory can be used to test whether two random samples come from continuous and identically distributed populations. Now recall that the above test was used when the number of observations were greater than or". equal to 20, and the program assumes that the above asymptotic normal approximation is not valid for N1 or N2 less than 20. For the values of N1 and N2 less than 20, the test and the program uses tabulated values of the Wald-Wolfowitz total number of runs. The program stores in the memory the following quantities of W.025 and W.975 that are two different tables for different values of N and N2, and it varies from N1 equals 2 1 to 20 and N2 equals 2 to 20. A copy of these tables are in Appendix C. A two-tailed test for the Hypothesis of randomness at the 5~ level of significance, where the Null Hypothesis is: Ho: The observed sample is random. 44 The r ejection rule is given by rejecting the Null Hypothesis. If W.025 > observed value of U > W.975, the sample is not random. Otherwise, conclude that there is insufficient evidence to reject the Null Hypothesi~ or the sample is random where U is the number of runs. The test will reject the Null Hypothesis either due to too many runs (rapid fluctuations) or due to too few runs (slow undu1ations). Both of these forms of non-randomness should be in- vesti gated further for possible assignable causes. When the to- tal number of runs does not differ significantly from the expected number of runs of a random sequence, the run test fails to detect some types of non-randomness. Finally, the user has the option to select a hard copy of the number already tested, so the final printout will include: the sample is not random or there is insufficient evidence to suggest that the sample is not random, due to the test already done; the number of numbers that already have been tested; the number of runs; the values of N1 and N2; the value of the median; the value of W.025 and W.975 if N or N are less than 20 observa1 2 tions; and finally, as an option a list of all the numbers already tested. A copy of the computer printout is in Appendix B for reference. CHAPTER V SIMILAR METHODOLOGIES Much research has been done in generation and testing of random numbers. There are several authors that treat these subjects, such as Geoffrey Gordon, 5 Stanley Greenberg, 6 Joseph ·· Schmidt and Robert Taylor, 7 just to mention a few, that generate and test random numbers. Several different tests have been proposed by various mathematicians and statisticians which provide the tools to statistically validate the randomness of the set of numbers for a given set of conditions. Most of these tests are related to two general statistical tests: A Chi-square test or the Kolmorogov-Smirnov test. The effect of random number generators on applications gen- erates numbers from four different methods and uses seven different tests to test for randomness for an application system. 8 5Geoffrey Gordon, The Application of GPSS V to Discrete System Simulation (Englewood Cliffs, NJ: Prentice-Hall, 1975), pp. 333-336. 6stanley Greenberg, GPSS Primer (New York: John Wiley & Sons, 1972), pp.. 34-37. 7Joseph W. Schmidt and Robert E. Taylor, Simulation and Analysis of Industrial Systems (Homewood, IL: R. D. Irwin, 1970, pp . 215-254. 8Edwin G. Landauer, "The Effects of Random Numbers on Appl ications11 (Research report, University of Central Florida, 1980). 45 46 This research report presents first a test for a microcomputer random number generator using eight different tests via a computer program and then presents a different way to generate random numbers from different sources. numbe~ First, the user can select the from a uniform or non-uniform distribution, from a mix of those two distributions, or their own numbers. This research uses a different kind of test for randomness. A "non-parametric test" is used, no matter from which distribution they came; it can be uniform or non-uniform. These programs are very helpful, especially when the user wants to test a sequence of numbers from an undertermined distribution. CHAPTER VI CONCLUSIONS For the first computer program which is in Appendix A that tests the Radio Shack random number generator for randomness, it was found that this generator can be considered as acceptable and reliable based on the sequences of eight tests performed. The test runs of length for above and below the mean were found to fail 12.5% of the tirre the program was processed. The test for autocorrelation, the Gap test and the Poker test fail 5% of the time. The Yule's test was found to fail 2.5% of the time and for the goodness of fit test, the Kolmogorov-Smirnov test and the test runs above and below the mean, it was found that they had no failures. This Radio Shack random number generator is used to provide the seeds to generate uniform and non-uniform numbers in a reliable form. The second computer program, which is in Appendix B, provides uniform random numbers, non-uniform random numbers, a mix of random numbers from these two distributions, and the user's numbers to be tested for randomness using a non-parametric test with two approximations: for large numbers of observations, the test runs above and below the median and for small numbers of observations, the test Wald-Wolfowitz Runs test. 47 48 This non-parametric test is also highly reliable because it can test any sequence of random numbers. 11 11 Therefore, it really does not matter from which distribution the numbers came from, they can be tested for randomness. This can be very helpful because a lot of times the users do not know from which kind of distribution the numbers that are to be used came from, and these computer programs give them the possibility to test the number before drawing any conclusions, and makes their simulation experiments more reliable. APPENDIX A COMPUTER PROGRAM AND PRINTOUT FOR TESTING TRS-80 RANDOM NUMBERS I • PfiOG~AM WILL TEST THE FU~CTION RN~<O> FOR RAi~DGMNE35 USING B OIF (.2) 1 fLPRINT .05•:Lf'RINT FOf-( .oi·;o NJNBiRs·:(rRINT • FOH .os lm LEVC:l. OF SlGNIFICAr.CE FOR lHE TESl'S (1) TESTING-;N;• 51Gt-!Ir' ICAH1~ E.r LF'~INl • ·T~STING • l Lr·rGr. T. • THE FU~CTIO~ <' =. 799999 tHC> < =.~i9S999 A<C><=,69t;99~ THEN X7=X7+1S&OTG 2~0 290 NEXT C THE.N X8 =XU ·t-1! GOTO 29(i 270 IF tHC, > =.B f.ND AH'h=.f399?'T'l HIF.N X'l=X9+UG010 290 200 IF A<C> > =.9 AN.:> A<C><=.991f991 TllE" XlJ=X0+1 1)i.fJ tH C > AND ANO HIEN X6=X6+UGOTO 2.'10 290 ;.'.9(j X5=)(~dJGOTO AMO A(C><=,39999c; Xi=X~+1ft0f0 2~tt T~EN X2=~2+1SbOTO ~90 GOG~NE55 XJ=XJ+12GUTO ThE (\Nii A<C> < ==.'lc;9c;c;9 lHtt-4 A<C>-:..=,L9"'7'99 HIEN lHEH ThE~ USI~G 290 ANf1 210 IF A<C>>::1,2 220 IF A<C>>=.3 z::io IF A<C> >=.-'f 2'l0 IF A<C> >=.5 ~50 IF A<C> >=.6 2td1 IF A< C >>=. 7 A<C><=,19999~ RND X~=X3+1S&OHi AN~ IF A<C> > ~.1 ~~O tao FU~ C=1 TO N 190 IF A<C>>=O AN~ A<C><=,G99999 • 170 INT u~ Fil' TEsr·: l .f'RIN I' l:JO GO'J 0 1 "10 1::19 LF HINl • , 01 • :Lf'Rl.NT • • LEV£L. OF SIGtHrI1\CNCC: FOH THE TESTS : Lf'RINT • I 1qo FOR B=J 10 N 1::;11 XH == RNl> ( 0 > 1 ~; 1 A ( E: ) =XI~ 1t',O NEX I' E. 161 fRIHT 1 TESTING THE FUNCTION RNJ USING ThE GOOO~i~S OF FIT TfST'IP~INT • •:PR .i~U LF'Rli-11' • : LFfUNT • • 13'1 U1f'LT 'INeUT n~E: LEVEL OF 1~5 P~IhT • ":PRINT 130 IF 0=2 fHih 139 13~ LP~INT. ~(20) 1~0 IN?UT "HOW M~N¥ NUrilE~S VO YOU WANT TO TEST. F~EASC: USE HLiLTIPLE5 OF 1o•;N 132 &IM A(N+~O>rBiiN+2U),RCri>rS<N>rT<N>r~<N>,ALZ<H>rF3%<H>rF1<H>rB<N+20>rGJ<N>rI 12(j f'HHH FEHE::NT TEt>Ts• YO CLS 10fi DIM OD(JO> 110 PRINr ·THIS U1 0 LPRINT • 1 3~0 INTERV~L OES~"VEO FROM ,OTO .099999 EXPECTEO NUH~ER OF DATA•;E;• N0Ht£R OF DATA•JXllLPRI~T • • 301 LPRINT • 2 IHTERVAL FROM .1 TO .199979 EXPECTED NUMBER OF DATA•JEJ• OBSERVED NUM B E~ OF OATh•JX21L~RINT • • 302 LPRINJ • 3 INIE~VAL F~UM .2 TO .~9~99~ EX~ E ClEO ~UH8ER OF OATA•;E;• OESE~: VEiJ NLIM::£f\ OF OAT~\ . · c~ I U'RINT • • 303 L.F'RINT • .If INT ERV1·' L F"Orl .3 TO .:~.,,c;i•;99 EXF'f..CTEIJ NUl11:.n: OF CMl•'' a :1 • or::~ifi~VEi) NUMBER Or DATA.: >.-i: Lf.'JU~T • • 304 LPRINT • 5 INTERVAL FROM ,4 TG ,4999~9 EXPECTE~ NUM8ER OF DATA.#E;• OB5~~VEL NUHB~R GF OATA•;x~:L~RINT • • 305 LPRINT • 6 INTERVAL FROM ,5 TU ,599999 EXPECTEG NU~BE~ OF OATA•JE;• UB5iRVED NUHB~R OF OATA"1X61LPRihi • • 306 LPRI~T • 7 lNlER~AL FROH .6 TO .69i999 EXPECTED NLMBER OF DATA•JEJ• OBSERVE~ NUH0ER OF DATA•Jx7:LPRINT • • 307 LPRINT • 9 INTEkVAL FROM ,7 TO ,79~999 EXPECTE~ NUHB~" Of DATA'JE;• OES~RVE& NUHBER OF DATA";xa:LPRINT •• 309 LPRINT • 9 INTERV~L FROM .a TU .~99999 EXPECTED NUMBER OF OATA.IE;" OSS~RVED N~MLER OF OATA•;x~:LP~INT • • 309 LPRI~T •to I~TERVAL FROH ,9 TO ,99~999 EXPECTE~ NUM~ER OF OATA.#EJ" OE:SEf<V£t· NUlil::f.I' OF OAl H•; X0 I LPR.lt'4T • • l LF'h:It-t T • • 310 CS=(((X1-E>l2)/f.)+(((XZ-E>C2)/E)+(((X3-E>C2>1E>+<<<X1 - E>C2>JE>+<C<X5-E>C2>1E >+<<<X6-E>l2>1E>+<<<X7-E)[2)/E)•(((XU-E>C2)/E)+<<<X9-E)[2)/E)+(((XO-E>C2J/E) E=N/ 1 O 29~i U1 ........ ~10 W~LUE· JF!Lf'FUN • •oBS~RVED Sf'F<HH • • 501 LPRIHT ·TESTING •I Lf'RIIH • • ~90 THE FUNCTION RND USING THE KOLHOROGOV-5HIR~UV KOLHO~OGOV-SHIRNCV TEsr·:LP~IHT • TFsr•tPRINT •• CHI-SOUARE VALUE·;cs,•tHEORETICAL CHI-SGAURE VALUE·;r:LPRIN LPRINT • •:tP~INT • •:tPRINT • • 500 PRINT ·TESTING THE FUNCTION RND USING THE T • 160 LPRIHT '170 LF'RlNT Lf'~JNl •oeSERVED CHI-SQUARE VALUE·;cs,•THEORETICAL CHI-SOUARE VALUE•JF!LPRIN T • •:tPRINT • •JLF'RINT • •:LPRINT • • '151 GOTO 500 160 LPRINT •tHE FUHClIOh RND DID NOT PASS THE GOODHESS OF FIT TEST• '150 'Mo Lf·rntn • • '120 IF CS >F THEN '160 '130 LPRINT ·TH£ FUNCTION RNO PASS THE GOODNESS OF FIT TEsr·:co=C0+1 'HO F=Z 1•666 101 GGlO 500 _ T • •tlf'RINT • •JLPRihT • •:tPRINT • • 39'1 lf'RHtT • • 100 Lf'fUrH •CJf;St:RVECi CHI-SCWM,E VAUit:• ;cs, •ntEOt.:ETICAL CllI-SDUARE 3'10 IF CS >F THEN 380 35t LF·rat..T • THE FUNCTION RND f'A55 Tift GOOlJUES5 or FIT TEST. : CO=C0+ 1 360 l.F RINT • • 370 l.fRIHf ·oBSERVfD CHI-SOllA~E VALUE•Jcs.·rhEO~ETlCAL CHI-SOUAR£ VALUE·;FJLPRIN T • • J Lf·t;UH • • J LPRINT • • SLF'RlNT • • 371 GOTO 501i 3fJ\J LPRINT •THE FUNCTION ~NO 010 Hi.lT f'A5!J 'IHE GUOl>NES5 OF Fil TEST• 320 IF 0=2 THfN 330 F=16.919 U1 N ... )'3/N 6'5 0 ANO ~NO AM> ANO ANO AN~ AHO llN~) N AND AN 0 C >=: A<G>= A<G>= A<G>= A< G >= A<G>= A<G>= AC&>= A<G>= A< A<G>~ 66Ci Z'l=Z~:l+Y'l/N 670 Z5:::Z'f+Y5/N 60( Z6:::Z5 ·t-Y6/N ,t)'lO 1.7=l..6+Y7 /N 700 ZB=Z7+Y8/N 710 Z9=Zet+Y9/N 720 ZO:::Z9+YO/N 730 DO<l>=AbS(.1-ZJ> 7'10 00(~)=ABS<.2-Z2> 75fi DD<3>=AtS<.3-Z3> 760 D~(1>=AB5(.1-Z1) 770 0~(5)=ABS<.5-Z5> 70fi OD<6>=ABS(.6-Z6> 790 D~<7>=ABS(.7-Z7> BOO DD<B>=AES\,0-Z6> 916 00<9>=AL5C.9-Z9> 92[1 0u(111>=Af:5(1-ZO> z3,,.~z;: ZZ=L:l+Y~/N FO~ G=1 TO IF A<G> >=O IF A ( G >> • 1 IF A<G>>.2 IF A<G>>.3 IF A<G> > .1 IF A ( G) >. 5 IF A<G> > .6 IF A<G>>.7 IF A<G> > .8 IF A(G)).9 NEXT G Zl=Yl/N 610 6:30 600 610 620 590 SU~ 5SO 560 57 0 5·10 S :.;o 5~0 510 .1 .5 .6 .7 .B .9 1. 'f~~=Y3+UGD1C! 62U THEN Y'l = Y~+11GOTO 620 TllEh 'f5=Y5•·1SGOTO 6;: o THEN Y6=Y6+1:G~TO 620 HIEN Y7=Y7+1 tGOTO 62Ci THfN ¥8=YB+1:GOTO 620 THfN Y9=¥9+1lGCTO 62n TBi::N YO=Y0+1 .:3 lHEH • 1 n IEH Y1 = Y1 + 1 : GD T0 6 ~! 0 .2 THiH Y2~t2+11GOTO 6~0 w U1 l.H<INT CUM~LATlVE OIFFE~ENLE·;~~<2> ·rHEG~ETICnL OIFFEREHCE·~ooc1> DlFFiREN~t·;oo~q) OIFFERENc~·;oo(5) FRE~U~hcv·;z 1 DE:SERVEl> CUMULATIVE FREOUEUC't' •; Z CUMULATIVE FREOUENcf•;z OBS~RVEO FREO~Ewcv•;z CUHULATIVE UBS~~VED DIFFERENCE·;ooc7) Lf'RINT CUNULATIVE CUMULATIVE fHECWHICY .. FREO~ENCY OlFfERENCE.i00(10>1LPRINi •THC:Clr\t::llCAl .. OIFFERE~cE•;ooC9) •THEORElIC~L OIFFE~EHL[•;o~<B) OBSE~VEO CUMULATIVE F~EUUENcv·~z FRiOUE~t)•;z . .. 1 OBSERVED CUMULATIVE FREOUENcv•;z .9 GOf.JUE 501i0 93i; l.F'RliH • Ht-)X:lHdh OIFTERENCC: W\UJE •; 00 ( 10) t LPRHtl e:rn 0; • EJ:17 LPRINT 9;. U:36 9;. B35 L.f·RINT •THEORETICAL CUMULATIVE FRECUENCY .B OBSERVED CUMULATIVE 7;. 0:13 Lf"RINT • THEDj;f.TICAL. ClkttlU'HIVE FJ\El1EL IKY .6 OBSERVED CUM~LATI~E FREOUENcv·;z 6;• OIF• ' E~EN:E·;oo<b) 931 LPRINT •rHEORETIC~L CVM~LATI~E FREOUENCY ,7 OSSE~VEO C:UHULAflV[ FREOUENcv•;z .,..JI 932 l.F'RIN T • H1£'1F.E'I IlA1_ CUMULATIVE FRE::OUE::IH:Y , 5 .. 1; • C~HULATIVE FREQLENCY , 2 OBSERVED CUMULATIVE F. HECHJl::i~n •I 1. 930 Lf·RINT •JHEORETILAL CUMUL~TIVE FREQUENCY .3 3;. DIFrt:.;;:twcE:•;oocJ> 831 l.f'fUNT ·1HEQRETI~AL cu~~LATIVE FREQUENCY .1 .,a:., tJ;~9 .. 1; • 928 LF'RINT • TtlE:ORETICAL CUt.ULATIVC: FREOUENC Y .1 OBSERVED ~ U1 • • KOLHOROGQ~-ShlR~OV Lf'r.~IN f LPRI~T ·oBSERV~D • • • • ICOLMOROGOV-SM HIRNOV VALUE•;FFlLPRihT • •:LPRIHT 1010 Lf'1\IN1 • • SLF'f<INf • • FUNt"lIGr~ RHO DIO NtH f'AS9 1 UE ·~Od10ROt,OV-SMIRNOV TEST. 102 fi LF'"INl • • 1030 LPRJNT ·oBSERVEO KOLHOROGOV-SHIRhOV VAL~E·;oo<tU>i•tHEURETICAL ~OLHOROGLV-5 10 0 0 lf'f<IiH 1u10 LF'r\IIH • ·rnE: •:LP~I~T TEST ·:co=CG+l VALUE·:oo<tO>J•THEO~ETICAL KOLHORUGO~-SMIRNOV KOLHOROGOV-SHIR~OV IRNOV VALUE•tFFtLP~INT • 991 GOTO 1010 990 900 LF'RINT • KOLMO~OGOV-GH THE KOLMOROGOV-SHIRNOV TEST• UALUE·;~0<10>;•JHEORETICAL P~55 HOLHORGGOV-SMIR~OV ~OT IRNOV VALUE•iFF!LPRihT • •:LPRIHT 931 GOTO 10"10 916 FF=t.63/<Nt.5) 956 IF OD<tO> >FF THEN 1000 970 LPRINT ·THE FLiNCT~ON RNO PASS THE 920 Lf'Rif-.cT • • 930 LPRI~T ·o~SER~ED 910 LPRIHT •TH£ FUNCTION RHD DIO 9 O0 b91 GOTO 10"fti hUU-11..h~OGOV-SH TES1·:cD=co~1 •OE: SERVED f(OLHURot;OV-Sf'IIi(NOV W\llJE •JO() ( 10 >S • THEORl Tl CAL l:f.;NDV IJ,:•LUE • ; FF I LF't\INT • • : lf'fUNl • • OlJD LF'f<IiiT B 1iO LF'F\INT R10 IF 0=2 GGTQ 916 B12 FF=l.~6/(NC.5> B50 IF 00(10> >Fr ThE~ 900 970 LPRIWT ·r~i F~NCTION R~D PASS THE Ul Ul ·n:slING • •fLPRINT 1060 FOR C=1 TO N 1050 l.F'f<IrH ABOVE: HIE mm MEHU•;N1:•NlJi1?.EJ~ RUMs·11~!LPRINT HA~<<2•hi*h2)/CN1+h2>>+.l 1270 •• 1310 ZZ=•'E:~. <ZA> 1320 IF 0=2 ThEH 113t 1330 ZX=l.96 1292 LPRINT ·HEA~ VALUE•JttA;·sTANDARO DESVIATION VALUE·;s~:LP~IN1 13t0 ZA=<<IR - HH>/SO> 1290 XX=<<~•~1*N2>•<2•~1»N2-N1-N2))/((<N1+N2>[2>•<N1+N2-J>> 1290 SD=<XXH .5 1262 LrRIHf ·NUMBER OF IR=IR+1 1~60 NE:<T ..I 1=1 . GOTO 1260 IF A<J> > M~ THEN IR:::If<+.l J~2 TO N GOTO 1190r1230 IF A<.J><Ht: HIEN 1.260 IF A<J>=ME THEH 1260 1=2 FOR ON I 1170 1190 1190 1195 1200 1210 1220 1230 1210 1250 1260 1166 I=t:JF,:::1 OF DATA E:ELUl.f THE HEAN• USING THE TEST RUNS AHJVi. Alm f.ELCJW THE ME 1150 IF A<l> >ME THEN I=21 IR=1l GOTO 1170 1110 Nl=Nl-f-1 1120 GDlO 11'10 1130 N2 =N2+ 1 1 l'f •i NEXT H 11'12 LF·JUi'fl" •Nt.kffEI~ OF OATf\ ; NZ SLF·RHH • • 1090 1ti82. HE>=E.E/N FGR H=1 TO N 1100 IF A<H> > =HE THEN 1130 10£10 NE:<T C 1070 EE=EE+A<C> A~·:LPRINT THE FUNCTION •TESTING THE FUNCIQr.f F\NiJ USING THE TEST J\:Ul·!5 tiHlVE AIUi [:ELO~ THE HE.Al'4 •:FRINT • •JPRINT • • l 0"15 PRINT Ul (j) LPR~hT FU~CTIO~ RNO 11?0 1160 LPRINT ·THE FUNCTION RN0 PASS THE TEST RUNS A~GVE GCITU f'AS5 J;;t.Ji~S AlWV[ AND f.E:LOw THE: Ht.A • 'LHUt'tT NEAN•tcu~co z VAL Uc.; zx: Lf'Riifl • • : U:"Rltfl Tiff TEST zz'. HIEur&:TlCl\L RNO DIO NOT Lf'RINT u: l:.:Ii'IT • Oc:SLt;:V[[) L VALUE.: FUhCTHU 1530 LPRINT • •:LPRihT 1 ~i20 1~10 N• ·THE 153u 1 ·1~0 Lf'RH.fl" 1500 Lf'RTi-41" 1'101 • AMO BELOW THE 1'170 Lf'RINT • • HBO LF·,;nn • OE:SE.RIJED z VALUE.; Z7'. THEORC:~" ICAL. z VALLIE.; zx: LF'Rlf'.IT -t· 1 AN0 • !LF'RlNT MEA~·:to=CO BEL&W ThE MEA TH~ Z \J•kUt::• Vi'.XILF'RINT • BELOW DID NOT PASS THE TEST RUWS A8CVE Vi.: z, •THEORETICAL A~~ ·oPSERVEO z VALUE•;zz,•rHEORETICAL z VALUE·;zx:LfRINT • •tLPRIHl •rHE 1'12~ GOTO 1530 1-130 ZX=i. 57 1'l'I0 IF ZZ>ZX THEN 1120 1 '110 Lf'RitH N• 1 1&0 Lf'RINT 1390 LF'FdiH D70 LF'fUIH • • 1 380 LF'IU1H •(lf;5i:RVH1 Z VALUE• D02 GOTO 153t +1 1360 LPRihT ·THE FUNClION RND PASS THE fE3Y R0hS A8UVE 13"10 IF ZZ>L:X lHEt.. 1:;c;o U1 -.......) • TESTll~G THE FUNCTION Ri.fl) USING TUE TEST fhJNS OF l.EHGt-tl Ff,R Al::OJE ANri E1 = k~<LC1>•0 16~0 ON LH Garo 167Gr160~.1690r1700 . 1/ 3 0 P2=P2+1lLH=O:cu ·ro 1730 P1=P~+i:LH = O U3~G3+1tGM=O:GOT~ Hno CM==IM+l: Gri==O 1830 IF .J=N ntE:.N 17o0 1El'1 0 N f. >Cl J 1B10 1810 1700 GGTO 10"10 1790 01=01+1:GM = O:GOTU 1B10 11100 l12=1~2+1:GH::::OIGOTO 1810 1750 lF A< J >::t·r11E TlfEN Gti=Gt-1+1 I GOTO UJ:; (i 1760 ON GH GOTO 17?fir1UOOr191~r1620 1770 IF GH > -l HIEN .1.920 17JO IF J=N TH~M 16~~ 1730 NEXT ..J 1710 FCP J=1 TO N 1700 16YO P3=F'3+1iLH=OtGUTO 1730 l h~fi 1670 Pl=Pl+llLH=OtGOTO 1730 1 b /, 0 G Li T 0 1650 IF LH >1 TrlEN 1700 16~0 1630 IF A<.D <tit:: TH[N LH r-' LH+l tGOTO 1710 1620 FOR J=1 TO N E3~~•<LL3)~0 1590 1 515 E 1 ""'•~:.. u( o 15b0 E~=K•<LC2>*0 1560 lc,_.1/N 1 5 7 (j 0 = <N 2 /I~ >[ 2 E:ELOM HfC: MEi\N •I f'RHH • • : PRINT • • 15'10 LF'tUNT • TF.~TINC, HIE FUl4CT1lli>f f<1·m USING THE TEST F<UN9 Gf=" LENL;hl FOf< At:OVE AN D BELOW THE M~~N·:LPRINl • •tLf'~INT • • 1~'i50 f{=2lt.'H 15:;5 f'RINT (.]1 co OATA•Jc DATA.JC INT ' • I lf'RINT Z010 GOTO 210J 2000 LPRINT 'OBSERVEO 1990 LF·RINT • • CHI-SQU~RE TEST'lCO=C0+1 VALUE'IELJ'THEORETICAL CHI-SOUARE VALUE.IABtLPR 1960 IF EL >AB THEM 2020 199fi Lf'RINT •THE FUNCTIOH RHO PASS THE RUNS OF LENGHT . OATA•Jc OATA•Jc 1930 EL=<<<C1-E1>C2>1E1)+((([2-E2>C2>1E2>+<<<C3 - E3>C2>1E3>+<((C1-E1>t2>1E1> l.910 IF 0=2 TUEt.t 2070 1. 950 AE:=7. fH 1~~ 'lllf'RINT • • 1692 LPRINT • 1 IhTERVAL EXPECTED NUMBER OF OATA•JEtl•oeSERVEO NUHBER OF 1 1083 LP~INT • 2 INTERVAL EXPECTED NUMBER OF DATA•JE2;•0BS£~VEO NUMBE~ OF 2 1881 LPRINT • 3 INTERVAL EXPECTED NUMfER OF OATA•JE3;'0BSERVEO NUMBER OF 3 1805 LPRINT • ~INTERVAL EXPECTED NUHBE~ or O~TA'JE1S'OB5ERVEO NUMBER OF 1950 C1=P1+01 1060 C2=P2+02 1970 C3=P3+U3 1980 C~=f'1+01 ~ U1 LPRI~T ·o~BERVED DID NOT PASS THE fiUN5 OF LENGtlT TEST" IF £L >A8 THEN ztq( CHI-sgUARE VALUE•JELJ•THEORETICAL CHI-SOUARE VALUE"JAB:LPR RN~ LPRINT ·THE FUNCTIO~ ~NO PASS THE RUNS OF LENGHt TEST·sco=C0+1 Lf'RINT • • 2120 LPRlNT •OBSERVED CHI-SQUARE VALUE•;EL;"THEORETICAL CHI-SOUARE VALUE•;ABlLPR INT • • I Lf'FUiH • • 2130 GOTO 21811 21'10 LF'RINT 2150 LPRINT •THE FUHCTION RNO DID NOT PASS THE RUNS OF LENGHT TEST• 2160 LPIUNT • • 2170 Lf'RlNT ·oBSERVEO CHI-S~UARE VALUE·:ELJ"THEU~ETICAL CH1 - sgLJhRE VALUE"1ABILf'R INT • • : l.F'fUtH • • 2180 LPRINT • •tLPRINT • •tLPRINT • • 2070 2090 2100 2110 2li60 GOTO 21El0 AE:=11.3't-'19 INT • • : Lf'FUNT • • 2050 2 0 '10 lf'FUNT 2020 LF'RINT 2030 LPRINT •THE FUNCTION 0 CJ) VB=(((13•~>-C19•H))/(111•<CN-H)[2))) 2310 IF Zl>Z2 THEN Z3~0 IF 0=2 lHEN 2130 2330 Z2=1.96 23~0 2310 Zl=ABS<<Ph-EP>IVA) 2302 LPRIHT ·HEAN VALLJ[•;Ep;•s1ANDARD OESVIATIGN VALUE·;vAlLPRIHT 2290 VA=<VB[.5) 2300 EP=.25 228U A~ CH=CH+<A<J>•ACJ+H)) NEXT J PH=BM•CH LPRINT ·AUTOCORRELATIO~ FACToR•spH:LfRIMT 2250 2Z60 2270 2272 2220 AH=W-H 2230 ~H=<t/AH> 2210 FOR J=l TO 2212 LPRINT •INTERVAL SIZE TO CHECK FOR AUTOCORRELATioN•;tt:LPRIHT • • 2210 H=5 2190 PRINT •JESTING THE FUNCTION RMD USING THE TEST FOR AUTOCO~~El~TIO~·:~RINT • •tPRINT • • 2200 LPRIMT •TESTING THE FUNCTIOH ~ND U5IHG THE TEST FOR AUTOCOR~ELATION•:LPRINT • •tLPRINT .,_. °' z VALUE•;z1,•THEURETICAL z VALUE•JZ2t LPRINT • ·sLPRINT • GOTO 2510 LPRINT • • LPRINT •THE FUNCTION RHO DID NGT PASS THE TEST FOR AUTOCORRELATION•tLPRINT LPRIMT ·o8SERVED z VALUE·sz1,•THEORETICAL z VALUE·;z2:LPRINT • ·sLPRINT •• IF Z1 >Z2 THE~ 2180 LPRINT ·1HE FUMCTIOH RND PASS THE TEST FOR AUTOCORRELATioN•tLPRINT • ·:cO=C GOTO 2~1t Z2=2.S7 ·OBSERVE~ 2500 LPRI~T ·oBSERVEO z VALUE•;z1,•rHEORETICAL z VALUE•JZ21LPRINT • •1LPRINT •• 2510 LPRINT • •tLPRINT • • 2q20 Z130 21i0 2150 0+1 2160 2170 2180 2190 2110 LPRINT 2360 LPRINT •THE FUNCTION PASS RND PASS THE TEST FOR AUTOCO~RELATION•:LPRINT • • :co=co+1 2370 LPRINT ·oBS~RVEO z VALUE•JZJJ•THEORETICAL z VALUE•Jz2:LPRIHT • ·sLPRINT 2390 GOTO 2510 2390 LPRI~T • • 2100 LPRINT •THE FUNCTION RND DID NOT PASS THE TEST FOR AUTOCGRRELATioN•tLPRINT 0) N FUNtHOI~ K=H+5 m-m THE GAP TEsr•JPRI~T IF K> =N THEN ~670 T<K>=t-(,9[(~+1>> W<Z>=ABSCT(K)-S(~)) 272.0 NEXl' I{ 2725 GUbUE: 60fi0 ~710 2705 Z= <H+ 1 >/5 2690 2700 S<K>=~C/(N-10) GOTO 2t;10 2670 NEXT 1 2675 FOR tt=1 TO N STEP 5 26ci0 E:C=E:C-f·R <I<> 265~ 2660 • ·zrRINT • • USING THf. GAF' TEST· tLF'JUtiT • • :LF'RIIH, • • USI~G 2650 IF AA :.~· =·~-'I ()NO A•'=<H THEN ROD=Rrn1+J lGOTli 2670 2615 AA=J-I-1 ~.~'lO 263r, •{=-1 2":.i90 J::J+ 1 lIF ..J> =N+ 1 HIEN 2u7 0 2600 IF ~X<I>=ALX(J) THEH Z630 2610 IF J>=N THEh 2670 262.0 GCJTO 2590 2560 NEXl .J 2570 FOR I=1 TO N 25AU J=I BX<J>=~<~>•10 AL~<J>eB%<J> J=l TO N 2550 FO~ 25~5 2516 2530 Lf'RiiH ·TESTING THE 2520 PRIHT ·TESTING THE FUNClIOh RND w Q') 03~1.36/(Nl.5> ZBOG LPRINT • • 2810 LPRINT ·r•tE FUNCTIO~ ~ND DID NOT PASS THE GAP TEsr·tLPRINT 2020 LPRINT ·oe5ERVED FREQUENCY VALU[•;w<N>;'ThEOR~TICAL FREOUE~CY VALUE•JoJ:~rR INT • •:LPRIHT • • 2B30 GOTO 3020 2810 03=1.63/(Nl.5) 2050 IF W<N>>D3 THE~ 2900 2070 LPRINT ·rHE FUNCTIO~ RNO PASS THE GAP TEsr·:LPRINf • ·:co=C0+1 2800 LPRlhT ·oBSEVED FREQUENCY VALUE•Jw<N>;'THEGRETICAL FREOUENCY VALUE•JD3lLPRJ HT • •tLPRINT • • 2890 GOTO 3020 2900 LPRINT 2910 LPRIHT ·rHE FUNCTION ~ND OIO NOT PASS THE GAP TEsr•tLPRINT • •tLP~INT • • 3010 LPRINT 'OBSERVED FREGUENCY VALUE·;w<N>f •THEGRETICAL FREOUE~CY VALUE•Jo3:LPR INT • • 3020 LPRINT • •:LPRINT • • 2790 GOTO 3020 . 2770 lPRihT ·THE FU~CTION RNO PASS THE GAP TEST·:LP~INT • ·sco=CO+l 2790 LPRINT ·o~SERVED FkfUUENCY VALUE•JW<N)J•THEORETICAL FREOU£NCY VALUE'1031LPR INT• •:LPRINT • • 2750 IF W<N>>03 THEN 2BOU 27~fJ 2730 IF 0=2 THEN 2840 2728 LPRINT • •:LPRINT • ttAXIHUH DIFFERENCE PETWEEN THEO~ETICAL CUMULATIVE FREOUE HCY ANO OBSERVED CUMULATIVE FRE~UENCY'#W<h>:LPRINT • • O"I ,+::::. FRn~ ··· ·TESTING THE. FUt~CTION RND USING THE Pm:Et; TE51. lf't\INT • • t f'JHNT • • • rESHNC H.fE: FUHClI0i'4 RNiJ usn~G THE Pm(Ef< n :s T .: Lf JUNT • • : Lf'f\IiH • J~ t TO N lS<'l>=IS<~>+t:GOlO 3230 3~~00 NEXT J 329(; IS<S>=T5<5>+t:GOTO 3230 ~280 3250 IS<1>=IS<1>+1l GOTO 323G 3260 IS<2>=I5<2>+1 3270 XW=XW+l:IF XW=2 THEN IS<3>=IS<3>+1lGOTO 3Z30 3275 GOTO 323G ~n:~o Ht=o 323'1 N£Xl L :-t2'10 GCJTO 3300 3220 Hl""O 3250,3~60,3200,3290 nm t1=2 TO 5 IF G3<H>=L THEN H1=H1+1 3200 NEXT H 321G ON Ht GOTO 31~0 3HJO 3170 FOR L=O TO 9 3 ,l 60 NEXT h 3110 BCJ> ~ FJX(ACJ)•lOOOOO> 3 12 0 FOR K=l TO 5 313~ G1=B(J)/(10CK> :H '1 It G~!=: FIX < G 1 > 3150 G3<K>=FIXC<Gl-G2l•l0) 31112 XW=O 3100 FOR 3000 fir>=N~.fi~M :J090 flE=t'i:«. 001 307fi OC==tUc.O;] 3 0 5 0 l~ A·=N • • 51 306iJ OE:=N)I(. '1312 30'10 LF'IUHT 3G30 CJ) U1 EXF'ECTED NUME ER OF DATA• JOEJ • OE:SEHVEO NUtiE:ER NlJM~fR INT • • l LF·fUNT • • 3S50 IF 0=2 THEN 3'160 3:~60 T9=9. 'fB77 3 3370 IF LO>T9 THEN 3'120 3390 LPR1NT •r••E FUNCTIO~ RNO PASS THE PO~ER TEST':LPRIHT • •:tO=CO+t 3'I 00 Lf'fUNT •oE:BERVEO CHI-SOUARE VALUE• H .O J 'THEOF\l: l ICAL. CHI-5UlJAf\E VALUE• H9: LPR C2)/0E)+(((15(6)-~A>l2)/0A> 33.lf& . EXPECTED NUHE:ER OF OATA•JODJ'OBSERVED LO=<<<I5<2>-QB)l2)/0B>+<<<I5<3>-0C>l2)/0C>+<<<IS<'l>-OD>l2>/0D>+<<<IS<5>-UE> Lf'FUNT • nm PAIRS OF DA 1 A• ;rs< 3) 3335 LPRINT • THREE LIKE DIGITS OF OATA•JHi('I) 3336 LF'Hil'#T • FOl1R l.H{E DIGITS OF DATA';IS<S>tLPRINT • • 3:~3.lf EXPECTED NUHfER OF DATA•;oc:·oBSERVEO NUMBER I6<2>=ISC2>-IS<3>•2 l6(6)=N-<IS<2>+IS<J>+IS<'l>+I5(5)) 3:332 LF'F<It-.T • FOW< DIFFERt:tH DIGITS: EXF'ECTF.0 NllhE:f.R OF OATA' H1M • 085ERVED Nlltlt::t=.:R OF DAlA· nsc6> 3333 Lf'IUNT • EXF'ECTEO NUHE:C:R OF OATA •JOE: :• OE:SERV EO NlJHE:Ef~ ONE F'AIR OF DATA' iIS<2> 33~0 332U m m • • • · FU~CTION RNO DID NOT PASS THE POl{ER TEST• : Lf·JnNT ·oBSERVEO CHI-SaUARE VALUE•JLOJ•THEORETICAL CHI-SOUARE VALUE•JT911PR • ! LF'RINT Lf'RI~T '1010 LPRINT • •tLPRINT • • INT 3510 • Lf"RINT •THE FUNCTION RND PASS THE f'OHER TEST• l lf'RINT • • ICO=C0+1 LP~INT •oBSERVEO CHI-BOUAR~ VALUE•JLOJ•THEORETICAL CHI-SOUARE VALUE•JT9lLPR INT • •tLPRINT • 3510 GU-TO lf010 352 0 Lf'l:UNT • • 3530 LPJUNT •HIE 3500 ~M90 3'170 IF LU >T9 THEN 3520 3'16Ci T9=13.L767 3'f50 GOTO 'I 010 INT • •tLPRINT • • 3120 l.Pr.:IrH • • 3'130 LHUNl •THE FUNCTIOI" RND OIO NOT f'f\SS THE F'ot{Ef\ TEST• t Lf'r\INT " • 3110 LPRINT ·00GERVEO CHI-SQUARE VALUE.JLo:·rHEORETICAL CHI-SQUARE VALUE·~T9lLPR 3110 Gorn 'fo10 m -.......) PRINT •JESTING TH E FUhCTIGN RNO US~NG THE YULE'S TEsr· LPtUNl •TESTING THE FUNCTION RND US I NG THE YULE'S TE5T9 ILF·tUNT LPRINT ·usJNG 1 DEGR EE S OF FREEOoH·tLPRINT • • OATA•;vtfLPRINT • • TO 15 EXFECTED NUHE:ER OF OATA·rnz;· DAT A• I V2: Lf'RINT • • 10 20 EXPECTED NUMBER OF DATA•;o3;• OF OATA • i v::u LF'RiiH • • 21 TO 2.lf EXPECTED NUHE:ER UF DA ff'\• ;D.lf I• OF OATA• ;v'l:LF'JHNT • • 25 TO 3~ EXf'ECTEO NUMBER OF DATA•105;• OF OATA·;vs:LPRI NT • •tLP~INT • • OF 12 OF 16 0 TO 11 EXPECTED NUMBER OF onrA·1011· Dl=N•.134~102=N~.2027f03=N•.3256SO~=N•.2027:05=N•.13'15 '1193 LPRINT •1 INTERVAL FROM OBSERVED NUHBER '119.'I LPRIIH ·2 INTEf~Vf)l_ FROi1 OE:SERVEO NUHttER 1195 LPRINT •3 INTERVAL FROM Of.:SEHVi::D NlJl1E:Uo\ 'H 96 LPRINT • 'f INTERVAL FRUH OBSERVED NUl18 ER '1197 Lf'RIHT •5 I NTERVAL FROM OBSERVED NUHBE~ '1192 '1130 FOR J=1 TO N 'H'tO IF F'f<,.J> >=O AND F't<J>= <11 HIEN V1=Vl+J IGOTO 't190 '1150 IF F'f<J >> =12 ANO F't(J)c ( 15 THEN V2=V2+11GOTO 1190 '1160 Ir F'f<J >> =16 ANO F·1< ..J>= <2f1 THEN V3 =V3+UGD10 '1190 '1170 IF F 1 <J) > =21 Atm F 'I< ,J >= < ~!'f THEN V"f = V1t·1: GOTO 'H 90 '1190 IF F'f(J) > =25 ANO F'l<J>=<36 THEN V5=V~+1 ''190 NEXT J 1120 NEXT J FOR J ~ t TO N BCJ>=FIX<A<J>*100060> FOR J 2 =1 TO 5 F1=B< J )/(10CJ2> 'tOBO F2=FIX<F1 > '1090 F3<J2> ~ FIX<<F1-F2>*10) '1100 IF J2 >= 2 THEN F't<J> =F'f <J>+F3(J2) '1110 NEXT JZ '1020 '1031i '1032 '1010 '1050 '1060 '1070 CX> CJ) A£=<<<V1-<N*.1315>>C2)/(N•.13~5>>+(((V2-<N•.2027>>C2>1<N•.2027))+(((V3-<N•. 3256>>C2)/(N•.3256))+<<<V1-<N•.2027)>C2>1<N•.2027))+(((V5-<N•.131~>>C2>1<N~.1315 )) IF AE>Tl THEN 4260 T1=9. 'Hl773 'M'IU NEXT J 'f'f5 0 ENO '1380 lf'RINT • •:Lf'RINT • • 1390 Lf'RINT ·THE FU1~cnoN rd•m 010 NOT f'Ass TUE vuLr. • s lTST • t Lr-ra;n • • '1100 lf'RINT ·oBSERVED tHI-SOUARE VALUE•;AE;·TH£GRETICAL CHI-SQUARE VALUE•JTtlLPR INT • •tLPRINT • • '1110 LPRINT • •tLf'RINT • ·:LPRlhT ·rHE FUNCTION RNO PAss·•co~·TESTs•tLPRINT • ·: l.f'RIN1 • • I LF'RIHT N; • RAW>DM NUHE.F.f.:5 • I LF'RH1T '1120 FOR J=t TO N STEP ~ 'M30 LPRINT A(J)rA(J+l>rA(,J+2>rA(J+3) INT • •tLPRI~T • • 'l310 GOTO 'M 10 '1320 TJ=t3.2767 'l330 IF AE > Tl THEN '1330 'l3'10 LPRINT • •:LPRlNT • • '1350 lf'fUtH • lHE FUNCTION RNO F'A!.~S HIE YULE'S TE"5 T • f Lf'r\INT • •I C:O=f:O+ 1 'l:Jbo Lf'fUrH •ot::SH:V f. D CHI-SOlJAf<E VALut:• JAE; ·THEORETICAL CHI-SOllARE VAUJE:9 HI ll.f'F'. INT • • : LPRiiH • • '1370 GOlO 'M10 '1280 LF'fUrH • • lLF'RJNT • • 1290 LF'fUNT •THE FUNC rION RNO DID NOT t'ASS THE YULE' 9 TEST• 1Lf·FUNT '1300 LF'RINT •oBSERVEO CHI-SOUARE VAL.u~·:AEl.THEORETICAL CHI-SOUARE VALUE•JT1flf'R Lf'FUNT • • I Lf'IUNT • • Lf'J\INT ·THE Fll1..,CTION RND F'A55 THE YULE'S TEST•tl.F'fUNT. ·1co=CU+t U·'RHH • OE:Sl~ r<VED C:HI-SlllJARE VALUE: . ' AEi • THECH<ETTCAL CHI-SOAUf\E VL.AUF.. n 1 H..PR INT • •:LPRINT • • 1~!70 GOTIJ 41t0 '12.20 1230 12 4 0 '1250 126 0 1210 IF 0=2 THEH 4320 '1200 l..O 0) RiH SORT NUH~ER S If H=L1-J2 TO H 5130 NEXT J2 51'10 NEXT U 5150 RETURN 5120 OO<J2.)=SA !HOO l.9:::L9-1 5110 NEXT Hl OO<L9>=D~<L9-1> ~1=1 FO~ 509~ 5090 5070 L9=l1 ~060 I N ASCENDING ORDER OD<U ><OD<JZ> THEN 5050 SO'fO GO'IO 5130 51150 SA=Oldl1) ~'iU30 5010 FOR l1=2 TO 10 SOZO FOR J2~1 TO Ll so~o -....J 0 FO~ L1 = 2 TON 611 O NEXT J{l 6120 IH.J2>=SA 6130 NEXT J2 6HO NEXT l1 6150 RETURN 60~0 FOR JZ = 1 TO Lt 6030 IF W<L1> <M<J2) THEN 6050 6040 GOTO 6130 6050 6A=W'( L1 > 6060 H= L1-J2 6070 L9=l1 6090 FOR t'1=1 TO H 6090 W<L9)=W<L9-1> 6100 L9 =L9-1 . 6010 60fif; REH SORT NUMt:ERS IN ASCENDING ORDER -.....J I--' FR~~~OH .19999~ EXFECTED NU~BE~ F~OH ,3 TG NUH5ER OF OF OATA 10 1O 15 • 49~·'999 EXf'ECTEu NUME.:Et:: OF r:t."ll Ii 1 Ci O~TA 5 INTERVAL FRDi1 .1 TO UB5E~VEt 0 ,3999~9 EXP~CTED NLHE~R D~TA NUHBfR OF DATA 12 INTERVAL OES~RVED 1 OBSERVED NUHBE R OF 0f'Tf.°~ OF DATA 10 3 INTE:R Vf'\L F' J\O r1 , 2 TO • 217 999.Y E:Xr"ECTEC- NUMJH. OF OF DATA B FRO M .1 TO NUM E:E:~ r< INTE R ~Al OF FROM ,O TO .0999~9 EXfECTED NUH&ER OF DATA 10 OF DATA 6 NUH BE ~ INT E~ VAL 9 DtG~EES OBhERv'E::D 2 1 HI E: FUNC TI ON RNu USIUG TH E GOOOfllF:SS OF FIT TEST OBSER )£ 0 1 USING TESTI M~ NUl'lbt:f<S LEVEL OF SIGNIFICAHCE FOJ; THE TESTS :::: • 01 TESTil'.G 1.00 N ........... NUMBE~ OF DATA 10 F~OH E~PECTED NUHBE~ or OArA 10 .B TO .9~9999 EXPECTED NUh8ER OF DATA 10 OF OATA 9 .7 TO .799999 OF DATA 12 O~SERVED CHI-S00A~E OF FIT _TEST THEORtTICAL Cl4I-6QUARE VALUE 21.666 GO~O~ESS VALLE 6 THE FUNC710N RND PASS THE 10 INTER~Al F~OH .9 TO ,99999~ EXFECTED NUHBEr OF DATA 10 OBSERVEG NUM~ER OF OATA 1V NUH~ER 9 INTERVAL OBSERVE~ FRO~ ~UMBER I~TERVAL O~SE~VED a 7 INTER~AL FROH .6 TO .6?9999 EXPECTED NUHEER OF OATA 10 OBSERVED NUMBER OF DATA 9 6 INTE~VAL FROM .5 TG ,599999 EXPECTED OBSERVEJ N~rl~ER OF ~ATA 11 TESTING 100 NUMBERS (Continued) t.v -.....J • tJi1 OBSE~VlD tUHUL~TIVE 9.99~9iE-03 FRF~~ENC¥ .~ OSSER~EO CW1ULMTIVE .19 9.~99~3E-C3 .010&~01 .08 OE:SE~~EO O~SER~EO OBSE:RVfl> hOLt-i '. )c;:OGDV-ShIR~UV VALUE. FRE~UEHCY .9 CUMULATIVE FRFQUENCY 1 CUMULATIVE • 08 THEOr:E. TICAL J<OLi1GRU~OV-SHIRNliV V'°'LUL TllE FUf.cCTIOi" RHCi f'AS5 1 UE JWUiOROGOV-SrtIRUOv TE:s1· HM<IHUl1 C>IFFEREiKE: VALUE OIFFERENCE 1.1920YE-07 OlfFERE~CE 1 CUHIJLtHIVE FREi:WErfC'f .9 t.1920Sl-07 n1t::ORElIC:Al CUl1JU1TlVE FREm.JEHC y THE ORE TIC:;k OIFFE~ENC~ HIEDRt:TICt'.\L CUMUL.ATlVt:: FREl1t.JENCY • 8 OE:SERVE:O CUMULATIVE:: FREi.luErh:Y .a1 OIFFERE~CE lHEORC:TICAi. CUMUU\TIVE FREUUc:t-.CY • 6 OE:SERvEO CUHL:L1HIVE FRECWENC y .6 OlFFERE:rH.: E 0 THEORiTlCAL CUHULATIVf FREQUENCY .7 OBSERVED CUHJLATIVE FREaUtNC¥ .69 DIFFERENCE • 3.lf FREQUENCY .22 FREGUi~CY .3 THEORETICAL CUHilLATIVE F~£QUEhCY FREUUE.i~CY .08 CUH~LArlVE HIEut\El JCAL CIJMLLAl IVE FRE!lU.::NC"( .1 Ot:St:.FNECi CUMl.ILATivE DIFFERENCE .06 DlTFE::REl-ICl:: THiURETICAL OIFFEf<Er-ICE THEORETICAL CUM~LAfIV~ FREQUfNCY .1 OE.5C:f\VEiJ CUhULAl:LVE:: FREOdE.HC) .06 OIFFEF:Et..t;t: • o..q THEORE1ICAL CUHJLATIV~ FRE~UEhCY .z OESE~vEO CUHLLATIVE FR~~~EhCY • l 'f TE: STING THE FUNCTIO;., RNJJ U!:.; n~:; THE •{GLHt.r,tJGiJV ··-Shlr<NC.V 1 ES r TESTING 100 NUMBERS (Continuedl • 163 '-J +::> OF ~UH5 STANO~~D 52 OESVIATIOh VALUE ~.97~68 ABOVE THE HEAN 50 NUMfER OF DATA ~ELO~ THE ttEAN OBSERVED Z VALUE ,201019 THEORETICAL Z V~LUE 2.57 THE FUNCTIGt-. RM) F·ASS THE TEST r<Ul-19 AE:CVE At-.0 BELOI-. TUE. Hia,N HEAN VALUE 51 NUH8i~ NUMBER OF DATA 5~ TESTING THE FUNCTIOf.t RN[• USING TUC: TEST RLt-.5 AE:uvE ANO E:ELUw TUE HE.f1N TESTJ NG 100 . NUMBERS (Con ti nued) U1 -.......J INTE~VAL E~PECTED UBS£R~E~ CHI-SUUARt VALUE Z.795 CHI-SQUARE VALUE 11.3119 TEST THEU~ETICAL LE:N~l-IT OF DAU\ 25 ut::SH:.JE:D t-.LHt:E:R OF DATA 2'l NUHBiR OF OAl1' 12.5 UBSERV~D NUhBE~ OF ~ATA 17 EXPECTED hUM~ER OF DATA 6.25 OBSERVED N~HEE~ OF DATA 6 EXPEClED NUMBE~ OF DATA 3.12~ 06SERVED NUHB~R OF OAlA 5 Numa~ THE TEST RUNS OF LENGHT FOR ABtJ\11:. f'\M.J BELO"' TUE THE FUNCTION HHD f'ASS THE RLN9 OF INTE~VAL 'l IhTER~AL 2 3 USI~G FREE~OH 1 INTERVHL EXPECTED USING 3 DEGREES OF lESllNG HIE FUt-..CTIOi.f F:NO MEAN TESTING 100 NUMBERS (Continued) ()) ......... FUNCTIC~ RND USING THE TEST FOR VALUE ,25 SfA~JA~O OES~IATIGN VAL~~ .03G~501 A~TOCCRkELATIO~ OBSERVEu Z VALUE 1.05309 THEOKE.TICAL Z VALUE 2.57 TUE FUNCTION RNO f'AS!.i THE TE:Sl FOR liUTGCDRJ"..ELA'l ION HE~N AUTOCOr..RELATIUH FACTOR .ZHZfi67 INTERVAL SILE TO CHECH FOF\ AUTOCORRELATION 5 TESTING THE TESHNG 100 NUMBERS (Con ti nued) '-.I '-.I FUNCTIC~ ~ .01b0~6 THEORETI~AL NUHB~R Nt~6ER EXPECTE~ I I EXPECTED I EXPECTED 11.8~51 ~3.2 OBSLRVED hUMBER OF THEGf~ElICAL CHI-SOUA~E hUM2CR OF VALUE 13.2767 OB5[R~ED D~TA DATA 2 OF OAfA 3.6 OB5E~VE~ NUMBER OF DATA 8 OF D~rA .1 O~SER~EO f'.IUHLER OF DATA 1 OF DATA OF DATA 2.7 NOT f'ASS HIE: Plh<ER TEBT NUM~ER NUM6E~ I EXPECTE0 UBSCRVEO CHI-SQUARE VALU[ THF FUINCTIOi-4 RND 010 FOUR LIKE DIGITS Of'.IE Fi•If< TW(j f'(1lRS THREE LrnF DIGITS 0~5FRVEO EXPECTED HUl"'IBi::f\ or L>ATA 5'f OE:5t::fl.Vt:Co NllMl::Ei\: OF DATA 'f6 f~EEDOH ANO FREfiUENCY VALUE .163 TICU "i'!I.) USifltG ThE F (U(E~ TE:BT DEGREES OF ru~c FOtJ" OIFFH<E.in CHGITS I USING TESTING .THE VALUE G~P fEST THELRETIC~L C~HULAlIVE FREU0~~CY USihG THE GAP TE9T .016016 RNO PASS THE F~E~UE~CY OBSERVEDFREUUE~CY THE RN~ BETWEEN FilhLTIO~ ~IFFE~EWCE tUMULATIVE HhXIMUH TESTING THE TES TI NG 100 NU~40£RS (Continued) ~3 -.....J 00 q ~~D USIN~ NU~BERS THE or NUM~ER OBSERVED r;:~o NUME::E,; OF DATA 20 •.27 ~6 OF DATA 20.27 VALUE .5~~207 HIE YULE· s THEORETICAL tHI-SUUARE VALUE 13.2707 TES r TO 36 EXPECTED NUMBlR OF DATA 13.15 OATA 15 F· ;~ss CHI-S~LiARl THE FUNCTiotJ 5 INTERVAL FROM 25 OBSERVED NUMBER OF OE:St:RvEli NUiit::Et< OF DATA 20 lf INTEHVAL Fro:Oit 21 TO 2.lf EXf-·ECTE:D OBSE~VEO NUM~ER FiWi1 16 TO 20 EXf'ECTEu Ni.JMBL.F,; OF OA .I A :;L. OF DATA 3~ Z INTE~VAL FRJh 12 TO 15 EXPECTEO UaSERVED NUMBER OF DATA 22 3 lNTEF<VAL YULE'S TEST (Continued) 0 TO 11 EXI" lCTlD NlJME:ER CIF DATA 13. 'i5 0,:\ i I\ 1:: DEGREES OF FREEDOM 1 INTEf~JAL FROM OE:SE::RVEO NUl1t:-E::R USING TESTING THE FLNCTION TESTING 100 .......... \..0 • 2:n2.96 .1Y996 .'H01~'i7 .772'126 .65'130 .·H019t; • 72.9627 • t3·Ei~57 • 39:;:_15·1 • :t 6 061 ~' • ~.i7 6:-:~.'i.2 , 07 Hi~!S .731259 • 9369·16 .2.376'f5 .206.it92 .1366911 .1'15YJ6 .57~936 .B7B57 .A09CJ29 1.52731E-03 • 3't:.1:; 37 .109612 .32.1318 .53fitJ't • 7Bff 66;:. • li979;·.57 1 88 • 65•115 , '1930'M .6Btd/ .1 .3302[fj • ';•87666 .92.IJl•H .~!61/09 .5f:Jb0b3 .55'f~S:5 ,3:JM73 .186007 • O~i26:i2.1 .'169323 .156097 • c;.·0'.56/ • 77":i722 • 372951 .'f769Ei9 .33FJ785 .29..J596 .87li56U .'f6003 • 5~) /' 0 EiU .9~7213 • '163.19~ .'f6506 • 93;·~ .736211 ."1622.93 .588;:2 • 72:'..:J06 ,t,5 ;:. 2-1 • '13.25'+2 .'IH11 • 55~j~97 ."'117031 .68;.jOO:i ."1200;.3 .674155 .'111239 .099603~ • 7!.;'l'lo 1 • 2~H12.65 .51&~69 • 7 1'i56 .152652 ,39276 • 96~~2:; • 92Z61H o7tt'fO~iH • 737£)-1'; • 0'.15572 .6'1'1393 • 96c.o 86 .8~042 .0636968 • 53::J~j62 .989862 .352079 ,3:.;3371.i .EJ516t3 • O'l6E.263 • 89:.!5:/'l .319222 .333A53 .20922f, .1101147 .538136 .79b'i06 • 660~.7"1 NUM~~~S .92767'1 RAN~OH .260567 100 THE FUNCTION RND PASS 7 TESTS 0 00 lNTE~~AL U~ING .c9~99; OJ'.el A 13 TO FROM .1 TG .199799 or: .o 1ti0 FRGh .3 TO 5 IIHtt(.VAL FROr1 .Jt Tll ,·11'S'99S"· GBE.Ef\VE:l.J NU110:: E1i: or Df-IT ..... 11 EXf'E1~ T£J EX~ECTED IhTER~A~ .39~9?~ ~ EXPECJEO ~XP~tl[G O~T~ OAT~ 10 10 10 OF DATA 10 CF or D~TA M .t11i:(r1 OF fifffA 10 NUHBE~ NUri~ER ~Uh0ER or OF FIT TEST hU~~E~ GOGU~~ss :; It..TEtWi•L FRCii • 2 TO .299999 OE:5t:EVEl> tluri&:;;; Of" fJATH 12 OE.SERVE£} NUHE:t:R DF (;frfA 8 M Jt'it:.:::F·.S FOR THE TEYf5 = .01 [XflCTt~ T~E 9IG~IFICANCl Dl::f:it.RVEO NJr;l::H\ OF OAT1\ 5 2 F~Ori N•Jrh::.::t~ INlf~V~L ~NC OF OF Ff\Et:IAJii FU~CTIO~ Dt:Gf~1 ::.:: s 0E;5ERvlO 1 USING 9 TESTIHG TH[ LE~EL T£~jTJflcG co ...... NUM~ERS (Continued) INTE~VAL ~' . 119 1)"}9~> o,:· li.:tTA ''J Fr\oJI", 085EJiJE0 EXH~ CTEu E~F'E.C'fED C~I - ~a~ARE V~LL E THI ~ NIJHEEI~ THECR~TICAL VALUE OF Di1Ti'\ 10 Chl-S~UARE GOOuNl:SS OF FIT TE5T 7.2 OF DATA 10 NLii1 Z: E.f\ OF DATt". .\0 ~UM.::E.H f.XFi.::CTl'::D NIJi1C:.U< OF 01t T 1:\ :!. 0 .c; TD .i;999c;c;; E:Xt=·ECTEU D1H fl 13 G~ THE FUt.. CTiih~ Jirh) f'ASS NG~L~~ IN fH. vAL OB&ER~ED 10 9 lNIEt~tJAI .. Fl\'.01~1 .6 Tu .89'i' 1.'9'7 Ot:·SERVlD NUiibC.R m Dl-\IA 7 [;tlTF' FROh .7 TO ,7999c;r; NUl"lt·c~ i< l'iE:SEfl:'.'ElJ NLMr::Er\ OF B OBSERVC.u 7 l .NTERvAL n-::rn·; • 6 TU 6 ItHEI-\" J1k FRLi1 • 5 TO • ~- 9·-;·•;99 f.Xf'l..::1 t D NJti1:.1::r, Ot=' Df'.fl A 1 t IJE:SE::M.VED NUi1 0::l:.I( Cf' tH i' A 13 TESTING 100 ~1.666 N CX> F~EUJEhCY l ~ ~EOLlENCi FR~;w E ~CY .3 .2 .1 IJ5J.U:; THE OBSER~EO G~~~RV~D O ~ H~~~EJ CUhULAlIVE CU~U .... Al1VE tUrlGLAT~Vf FR£QU~~C( FREOJi~CY r1~~GUfHLY UtdllJld:: GnV ··-Si·GR"riJl) TEo 1 3 .3 .18 •J 5.96U~6E-08 .029999~ W1Lt..IE • o:; F~EaJEWCY 1 OBSERV~D 08SERV~O ~OLHO;tGG~-5MJ~~l~ VAL~~ .03 [~tlULhTI~[ LUHULAlIVE FfiEQUENCY FREGLE~CY .a .71 TEs ·r CUMUL~TIVE FREOUE~CY l TliEO~ ~ TICAL KJLhO~OtUV - 5HIRNJV V~lU E HK: Fut le r:;:rn., f<ND F 1)55 Tt-iE .,[iLHOf..GGOV -- GHlR1"0 ·. ttAXUkJM Oln t::r\Ei"iLE TH~OR ~ TICAL CUHU~ATI~E OlFFER ~ ~CE 1.192 L 1~-Q7 OIFFl~ENCE 085[RJf~ GB~~~~~D • 62. ,9 OBSERVEO CUM0LATIVE: FREQUENCY .87 CUH wLATIVE FREOUENCY .E FREUUEhCY .7 FREOUENCY • 6 DE !3t1(\.. EL> Clli1i.JU\'Tl VE FJ;EC.UEilCY 1 Ht:1mETlC1'\i... Clli1JU.1 fl(.•,:: F f\lL1LIEr4C) OIFFERrHCl lH[O~L1IC~L (•J:FFERENCE ,OHitlOOl CUMLL~TIVE THEGREJ~CAL fHFFt::l~ENCE CUikrlfH lVE • ti~ 9.~Y9~9E-t3 . THl:.l~f~l.TICt\L DIFFEREhC~ rnc.Gr~:E:l lCuL CUi'IUU.lT.IVE:. FRt::UUEi'ICY • " OE::it?_J;.\;Et• CUMl.JLATIVE r . ~ElhJt:t-fC( .38 O.i:FFERf.NCE: 0 ...., m..::OF·: tl:[at._ CliM.JLATIV t. f"EtWi:Jh:Y • ~:; (i£:;5E.R'JE.u CUhLILA'l IVE FREldC:rK ., • '19 CU0ULATIVE z.~BJ23i-ta THEOR~lICHL OIFFERE~Li 0·1 . ... CIJHLLATI~i THEORETICAL O~i-. FErki~CE CLHUL~TlV£ • (i3 F:i~.J OifFEf\t:l'cCE TH~JfiETICAL TES TJr,.t.; THE FLNc ·1 ION TESTING 100 NUMOERS (Continued) ,163 w co Z ~A~UE RNJ 50.93 FUhCTIO~ V~LUE 085ER~EO THE ME~N NUHt::t:I\ OF f\lH6 49 THE .398176 PAES 5TA~OARO OVi:: Ti-fE 4 1.; 0 l t::l.OI-' lht:: HUH" HIEu"CTIC•K Z VALllE ~, 51· MEAN E:ELOl"I THE riEAt-t 51 Ar~o TEST RU~S ~BO~E A~~ Bll~~ THE VALUE 1.97267 NUM::t1=\ OF [JHH1 THE TEST f\l!liS AHl-JE 0~5VIAT~ON ME/11~ f~E Dill/~ NUHt::ER GF U3It~ ..:; TEST:rNG lril: FUNCTIOi-1 RNO TESTING 100 NUMBERS (Continued) +::::- 00 OBSE~VED ~ND NUMLE~ TH~ ur LF~GHl Fil~ ABG~E ~MD UF DATA 2.99&B5 6.~~751 BELO~ 25.1898 OBSERVED NUhBER OF DATA 21 THEORifICA~ OF DA·;A 7 VALUE 11.3149 NUM~£~ C~I-SOU~~E OB5E~V~0 RUNS OF LEhGHr TEST ~UH~ER VALUE PASS EXPECTED Crll - 5~UARE THE FUNCTIJN INTE~VAL 1 E~PECTED EXPECT~O RLl~S NUl18ER Of DAiA 12.~9 OBSE~VED NUrlEER OF DATA 13 3 INlERVAL EXPECTED NUrlEER o~ DATA 6.12011 OBEE~~E0 NU~~ER OF DATA e INTEfi~AL INTER~~L THF TEST OF D~TA UbI~~ 3 OEGt=.EEE OF Fli.EEOCrl 2 1 lJSU~G TESTING THE FUNLT!GN RND MEAN TESTING 100 NUMBERS (Continued) T~IE U1 co FU~C rI011t f\i·W • 2%06:~ O~SE~VED Z VALJl .2606ql W~LUE AUTCCCR~EL~TIO~ • 0Jli'l501 ~~. ~:;;- AUTUCLF:Rt:UWH•i't THEl1t\.::lICf1L Z FO~ • ~. 5 STAN[·ArW DE5VIATION \.'ALUE F1\CTG;; THE FUNCTJGM RhO PASS ThE TEST t'1EAU V!-'LUE A~nu ;:, Or.i;U_ATIGlt Ff11~ Hui-I 5 1 HE: TE.51 HiC:fJRl~Elf-\ U!:iJ~G INTLl\vAL SllE TO CHE: Cf( FOR AU TES .I I.i-tl, 1 HE TESTlt'G 100 Nm4BERS {Continued) co 0) FU1'tCllGi-4 Ri·UJ US :.l. 1"4G TH C:: Ci·1F· TE 3 l FREQ u ~hCY .04b~lEB 'I C:,L; RE:t:S or U3IhG TUE FREE:JC1'1 •<:"u POt~fJ~ TEST • 0·1EiC:7EE THl::Dii r:- ·,-n:;t.L FREi.1UU.iCY VALi.i.:: .16:J ONC:: OIFFERC~i r-.u,;: OE:SERVEO CHI-·Sm.n\fif:.. Vf.LUC:: 9. Tl-iE:Jl\E:, E ;l•L TE~, l :·F,~53/' THE FUNC TJ: CI" RN[) h•.5!:i H1 E F'CifCER FOU~ c1-1:r - souM;:i: 'hkUE 13. 2.7 l 7 OIG115J £:.ff ;.:: c ·1Eli Mli'lt'.:[I( [F Df-1Tt\ 5Lt 01.::~El~ ·)E[J Nllht:C:f\ o;:· DATA ~:= 1 EXt'Ef~. TEO NL1r-1E::EA' OF r.,;r., '1:5,2 li L::~;E..i:~•Jt:u Nl.1hf: EF~: OF DATA '11 nm F·.:.1.; ~; t EXf EC l'ECJ NlJi'i;~: tJ\ OF CM I~ Z. 7 Ot:SEHIJt:CJ Hl1rt t::t:R IJF OA I H 1 THf\EE Lrn;:: t·IG I TS t t:J\F·E:: ITO ~tl 1 1.:: E t( OF Ofd1·' J.6 Ot'::5E::f.:VEli NUHC:;ER OF OtHr\ 'I FOUR LIKE DIGITS t E:·:;::·::c ·1F.:[J NW1t:::r:R o:=- DAJ r. • t Ot:.SE.; vt::O NUi1E lR OF Or'tTA 1 U5li~G Tl-It. FUt-cCTlON Tl5Tii~G WtLUE rn.:::n:Jcr1C't GC: SEVECJ THE FLi"CTitii-f RNCi f-1133 TU ;:: GM· TEST CUMJLATIUE tii\XIMUM [JJ:FFERc:l"CE E:.::ntC:E.N THEiJ,:&11c..,;L Cl.Ji1JLATI•)E Fr<.::Gllt:Nt::Y Aflll.> [.[:S C: RVED TESTING Hit=~ TESTINR 100 HUMBERS (Continued) -......J co J~rm l FR : rl 16 le 20 EXPEL: TED Nl.Ji'IE-Ef\ or (JM'A 32.. OF (JATA 32 ~6 FROM TO 36 ~~IA 2~ OF ~UH3ER GF DAT~ 13.'15 UE:SE.tiVEu LIH-·· 5iJL1"th:E w~LUE .q. 9US7 "1 l d£0i\E:. T ICi-:L Cfl.f ·-5UUARE WtLUE: 13.2767 Is TES' E~FECT£D 10 THC.: FLi-t,:TILi'f F:i-tO F'1-)SS TUC: YULE NUhlE~ JNlEFV~L 085E~VEG 5 lC z.q EXt'EC"TE.O "'Uh1.:: E.f\ OF OATH 20. 27 OE:SE:f\VEli NtJf1E:E,;; Of l.JAin 17 'f INTE1W~L H :Gt1 21 NUMli~ 3 INTEf.:Wk 085E2V£D lB n1i:H1 12 TO 1 ~ f.)(PEC-;Eo NU1"'IK:r; ur lHHA 2 0. 27 DA~ - ~ 0 lO 11 E:J!.f'ECTEO N\JhbER OF NUMBCR OF DAlA 15 INTEt~VllL ObSE~V~D 2 Nu~B E ~ :i.NTE.'.i:VAL FRGl·i UBSERVLD OF C:11iA 13.'15 lJ5 l tlG Tf IE: 'HJLE' 5 TEST US .HIG 'l DE.Gh:t:i::S OF Fri.E::EC·:t1 TES Tl NI.; THE. FtJNt.: T:J.ur~ TESTING 100 HUMBERS (Continued) co co .21J~:.i-1'7 .625ti94 ,::; .qs· 1i.l • fj /- ~! ~-~. ~·.: 7 , 91if1U:.3<T .t97'T1.l , 5~;~.i.B'f , 27/:HH • 3H'940 4EiB.~.'.i .31tl'TJ. 7 .::itd.50:1 .8~77i)~, • 206ll9"i .671'HJ!) ."176'137 .Sl·1106 • 2 ,' lb~'j • 6 i 6c.'1 't6 • 7u.t,·; 1J ..:. .~)6.lf.:.17 .~916~~ ,790~j.1.l .'l916'l6 • 17:1. (J,?. :'i • i'!':d 97 9 • !"j «;J~~ 66 • 0 ::;::;c; 7 8 .62. 'i~; 1.n • EVi7t:n • ~ii'.J7 (j C'fl .~!Ell'ti.1'7 ,9o·;c;;;;3 1 • 0;~361:191 .~i10'L:.:; , 5:'.H H. 05 • 379C-6li • 'Hi :1:·:;a;· .17;::610 • 0 7. ~'.d 'lE .If • 9923;~ 2 • ;_;_ ~ 'iti9;:) • ~tFc;~;:i • ll ;;_ ·? :'.i •• ;~ (j • 2~;7 J :.1:~ • .If w; 9 110 .:3969:i5 , • 66•37 ::,6 • s- !) 33;~0 :=.; :; ,91~ r::;;.,H ~:. 9 B ~-: , .:J/'lld•'f • 69·"t 7$5 , BL tt7:.:. ~:) .130~0·t • 56 'ilfo9 , 6'.;F«~H6 , 6~.i3o 7.2 • i!:=1S. <. 1-t7 . • 001fo7 .t)7:3 '. 57 • 7'19907 .0313;:; 'l~fJO -:H ,::;:J~:'ii~fi • 7'1~. :;·1 .981~-:iO.::i , • 0;'..;;.t)J<; .~_ 7;:.c,;,7 • o 1r1 ;: 2 :.::s; .9.:i::>~ ~ s .MhlJ~.·t! ,'fO:iS.l .75Ci2&o • 2. ~~ 12J1:::i .7/'19t.7 ,·U7.lf'l8 • 5~1J (j(l"f .712147 .926 1112. .BOLlf.it.-1 , (:374iu 1 .l t "flj Cl 1 :: u .;:. lf93 ·l~ • 9 'P.i' 6 '.''i :: • 1'I ::, i:d !'.'.· • 0 2i.: 8 I) :J ;;, .Ei019~: 1 .14JYJ/ • 522<79.~ .90'il71 .9or:~n_, ,36L.d:; ,9o9lc:. 1 .fi-1r, ::;o.J , 06U1LL :L .9:30171 rs • 26~1 ·15 ~Jh B~~U F'f1G:; 6 TES • 'i6~:Ei't .l ~AHDG~ l\~i:.. • OZ2.~:.~'. L.t:1 100 THE FUi-.Cl :rn.-. l..D 00 OF ~1 • 0 1.fS' !J';<; OAT~ TU Ff\E.EL:Cil llS~.lrfG .~ TU .299~99 F~~H NUih:.c:.i: 2'.:1 .1~999} o.= o•.-·;·A .3 TO .399~99 OF DAlA ~O FRCN .1 TO NL~0E~ l~T~RVAL OE.!;u~vEO 5 08S~RVl0 INTE~VAL DE:S1:.RVl.D Nl..•r,[:C.R UF Of.1TA ZO 3 lhlERVAL FROM 1 NJM.L:J~S EXPEfTE0 EXPECTE~ EXP~lTfC 15 :-: • 01 OF FIT TEST lT~i ~~~~ER hUHRER NJM8i~ ~UH~ER OAf~ OF O~ 20 ~O 20 UATA 20 DAT~ OF DATA OF Nt.lrtE:Ef\ OF C:.ATA 2.0 GCOOH~ S3 D:t=·U~TE. O TtlE FRCrl .1 TO .19~~99 EXfECTLO O~ OAlA 21 NUMG~~ 1NT£~V~L 0~5t~~E~ 2 NUM8E~ 1 INTC.i\.11ll. FH:·I • 0 us=NG 9 rEGRETE PF TESTH'G THE:: FUfKTIGi'f RM.1 0~6E~~E~ ~.OC. LE'vt.L OF Slb1"1FICt 1u ::E FOt\ 1 Hl: TC:ST:l:i'~G 0 \.0 E FRO~ OlSER~ED .699}~9 1~ VALUE TH~ C' .... J ... D~~~ hU~f ~A7H CHI-SGUA~E OF FIT TEST Th[U~ETIChL 2~ V~LUE 20 ER OF DATA 20 EXFlCTEU NUMB[R CF EXP~CTED ~o OF DAlH 2G ER Cf NLlM~iR NU~f EX;ECfED NLM8E.h OF OATA E~P£C7EO EXP~CTED GOOO~ES5 2G .9~~99~ D~TA P~55 Of .9 TO Gf OHTA CHI-SGJ~RE ~Na NUM3£~ THE FLNCTION O~SE~VLD FRO~ hLM;E~ 10 INTERVAL O~SEfiVED Z5 .79~99~ DAl~ .7 TO OF c; J.r·f:Er.:•:AL n: =,1·, • 6 Tr NUM~~~ !~TE~VAL OESiRV~~ .69;;99 T~ OF OHTA ti' .6 INT~R~AL FR(H GE:SE.~\tl:li Nu~ ; t;(f\ 7 l~ .s~ ~ 9;9 D1-~Tf.t OE:5t:i\VC:u NU1ilU< 017 6 INlE1,VAL Ff.:01 . ., .5 TO 21.6~6 ~ I-' USii,,; TU1:: Fr~t: ~H.,Ei" L: Y CJL::.:3ERtJ£L: t::UHULA ·~- IVE Ff~El!IJEt...CY • 3·1::: L...J Ol.:SC:~VEi:> •7 FREO~EhC( FFH:":UUE~CY FRE~lENCY FR ~ ~Ut:hCf .025 •7 .615 .54 CU~lLAlI~~ O!rFERENlE VHLJE .oq 5.S60~b~-oo tUriLLATIVE H<EUUENC« S. 'i6t1'fc',E::-li1:1 1 OtUERVE~ CU~ULATIVE lJl: :SE RlvE() 50 HGLriG1i.~. CLl\,,.'-GH J. l~Nll'-. VAL.UL::.: FREOUENC) 1 • O'f n1a:r:ETiLt\l.. JWUiCmL-Jt.UJ - SHTRNOV Vf•L.lJE THE FUrtC TH·1~ RNu f'MiD Hll: HCd1UJ\OGGV-ShIRNCV TEST HAXIH~M OIFFE~ENCE THEO~£TI~AL 01.FFEREM~E FREUU£1'-tCY • 9 CE su,vG> CUHlJLATIV£ FJiECWENC) .9 C~MULATIVE CUrll 1LA fl VE CUHUL~lIVE CUh~LATIVf T~EO~~fICAL OBSE~J~O oes~~UE~ .~ ,9 OB~iRViO ,5 • 't Ut::sE,;VE.D c:lihduHIVE FRElR[N;: ·..· • ·1;:.~ • ::i ~,.;r ..........., .12. FREQUE~CY 5.960~6L-O& Clli1l.:LHTIVE TESl • 2 ut:.5Et~ ./El.> t:l IMlJLA TJVI:: FJ~E.UUEUc..- 01:.St.:l~JEO ~WLn[' R1Jt,[,V ·-· 5MlKt, U!) HlEOHt.TICi\L ClJl·illu!t ·11vE:: OIFFF.f<t:UCO:: , 0 ;~ 'l'i c;: S' 1il DIFFERENCE C)IFFt:f\El ... CE • fJ ~. 5 THEO~Ef l CAL C:UhLLATIVE FRt:UJEM~'t' O::iTFEi;ENC.f. • oz:;-, THE \jf~t~Tll:~L C:UHULf'.°irJVf: FF~ElllJEN:Y DIFFEh:f..1-.lC: • li ~:'.!) ru.::DEETIClll CUl'lt.llt'i-:"IV[ rREUJE.NCY D .L FF E F: C: 14 Ct:: • 0 :1 lhEDRl:TlU•l.. (Uli.JLAl IV.:: FREllllt:NCY DIFFEF.a'fCE • 0 l '1 1/S·'.' 9 T1ffm-.:El 1;:,.,L c:u.·.LLA.lll.'£ FRt: tlUEi-.CY HtEDF·:ETICAL C:llhl.Ji. .ATl\/E FRE:: ~~ dli-IL 1 FRE.: GuE::NC't' .1 '"~u ClJ~iULATIVE CiIFn::r,.::t-tcE: • oz THt:UM:ETH.A- TESTING THC: FLJNC I lOi" TESTING 200 f-!UMBEP.S (Continued) '11~;2 l..O N L£Ii~G ,J(~9}2 08SE~VEC 1()<1 O~jy\i;: THEURElICAL Z V~LUE ThE HEfi1~ 2.~i tlE~t., E:E:LOh THE HE1'lil C,o TEST JWi.f ·::, ;\E:J'-. E At-40 f:.1:.LOW THC:. 7. OF (uHA '-~klJE. i.flll·tL{i:'.~ f~ E.:£_01~ n.fEl;,l)f)l.. J.iHf.f;vAL. 1.NlFR1.· ~, .... INl E1W~L OE::;t:.r'<V[O CHI --S(H.Ji-.HE "1nl Ut:. 2. 70'f'f1 o,:.S E::RVE.lJ NlJhE:.::f\ OF OE:::JF..r:tJF.:L.1 NUHt:.ER m:m.:~iF..i:Vc::Ci N ....·hE..ff\ OF Gf::t=:iE:.IWHi NuMi::C:f\ OF f)Aff'.t 311 [if\1'14 :rn [)ul'1'.\ 13 01\ 1 f\ 10 THE01:\£TI ~: ~.L :~ H.I-Sl.uM\t. Vf'ILUf. .l 1 • 3 H 9 lE:ST · i=~H·r~;::Tt::O NlfriEH~ OF r1Alf\ "17 ,.,2.n EH'ECTEO NIJ.'1l:[1'.i. OF li1HA ;~1.r,;;, ot EXi='EC:TEu tLfr.t. Lf\ 1.W DATi:i 1~!.C::~id~ EH·£[i'c() N!.i ~l[f..,, OF Do rA ('J. 73B:n Fr<t=~ E::l)Ji1 lHE. FUt-1CT.J.GM Rrlli f'A!i~; 'TllE:: f\LIN5 lF LUIGH I 1 2 3 'I l!51NLY 3 OEGf\tE:S OF MEAr~ l ESTJi-IG 1'1-1£ F Ji'fCTH1U RrtO LbT."C. THI: TEST F:lJ1rn [•F LENGdT ru;: Af.QIJE. ltN1) E::El.. 01·: THE Z VALUE p,,:;s nu: (C~ntinued) THE. l'EoT R:_.;-.:; M . O•JE 1\l'E> I 00. EM Sl'f.1im,:u:·:O LESV:L•\TIUU .!. 0 3 l\L::cvi:: THE l'lt'.:.-H·'f THE FUNCTIOr' f\tW HEAN Vi-tdJE NUMl:::EI\ OF f\1;1,!E NUHf::[R OF ()1\U\ IESTlNG THE FlfrlC;llOi'-1 RNIJ TESTING 200 NUMBERS '° w .zs U~SERVEO Z FACTOR A~lOCGfif . ELAllO~ .21C69~ FO~ 5 VALU~ Th~ : .i3~0~3 f'A5!~ THLL~~TlC~L Z V~LUE TE!iT FOR AUl ocor~RE:LATION 2.5; nUTOCORRELATIG~ STf\tWllf-W 0£5\r<rnTIDN \rflLLE .li213GE9 TUE FUUC: TIC;N f\NO HEt\N VALUE ~UTUCORhELATIC~ INTERVAL SIZE TO CHECK TESTING THE FUNLTION RNU USING THE TEST FOR TE STir!G 200 MUMBEP.S (Con ti nued) ob -~.£) RN~ p~;s THE GAP TEST ~ FU~CTIOH VALUE .0961665 RND PASS THE POKER TEST OBSERVED CHI-SDL#tr\E VALUE 1. 72770 TJIE:Gr.:ETICAL CllI-SOUARE Wt LUE 13. 27 o7 THE FOU~ FREQU~~CY EXPECTED HUHB~R OF DATA 108 OBSERVED NUrl8ER OF DATA 1fi7 EXPECTED ~UM~ER OF O~TA 96.~ OB~ERVED NUt~~R OF OAT~ B~ EXPECTED HUHtER OF O~TA 5.1 OBSERVED NUHBER OF D~Th 5 EXPECTED NU~EE~ OF DATA 7.2 OBSEf'VED NUH~ER OF DATA 1 EXPECTE~ NUHBER OF O~TA .2 005£R~EO NUH~ER OF DATA 0 OEEREES OF FREEDOH OIFFER£NT DIGITS: ON~ PAIR S ThO PAIRS I THREE LIM£ DIGITS t FOUR LI~E OI~ITS I USING TESTING THE FUNCTION RND USING THE f'DHrn TEST OBS£RV£D FR£0U£NCY VALUE .021qz16 THEORETICAL THE FUNCTIOh HAXIHUH OIF~EREHCE BETWEEN THEORETICAL CUMULATIVE FREQUENCY AND 085ERVEO CUMULATIVE FREOUENCY .oz11~16 TESTING THE FUi'4CTIOh RND USING TUE GM=· TE8T TESTING 200 NUMBERS (Continued) l..O <.Tl (Continued) OF DATA ~0.51 OF DATA 26.9 OBSERVED INTERVA~ OBSERVED hUM~ER OF DATA qo.51 VALUE ~.67913 THEO~ETICnL PASS THE YULE'S TEST CHI-SQUA~E ~NO ChI-5QUARE VALUE 13.2767 FROH 25 TO 36 EXPECTED NUhBER OF OATA 26.9 N~HBER OF DATA 27 THE FUNCTIOh 5 q INlERVAL FROh 21 TG 21 EXPECTED OBSERVED NUMBER OF DATA 36 3 INTERVAL F~OM 16 TO 20 EXPECTED NUMBER OF DATA 65.12 m::sE"VED NUl1r:;ER Gr DATA 63 NUMB~~ 2 INTERVAL FRUM 12 TO 15 EXPECTED 08SE~VEO NUM~ER HF DATA 37 OF FREEOOH NUH~ER OECRE~S THE FUNLTJ:Oli r\NO USlt.iG HtE YULE'S TEST NU~RERS 1 INTERW1L FRDh 0 TO 11 EXfECTED 086ERVEO NU~SE~ OF DATA 37 USING q TESTlt~G TESTING 200 ~ O'I RN~ P~SS .915395 .3'17111 .619012 .99797-1 .180162 • 236311 ,'f1B2'f7 • 1EJ'Y72.7 .83319'1 .58078"1 .662.217 .9517 .521681 .9'f6606 .068012 .976367 .0100125 .3'10676 .002679 • 1fJB9:=J5 ."16B56"i .5'11Z9Z .795fi92. • O"f 2o'l79 .1:;550; .260969 B TESTS .62.2682 .0125'i3B .986]69 .51158Z .898181 .1583.l .1156'11 .26'11·1 .3BO.lf'l9 .B77257 .58355~ • 5:;5 .J /9 • 66·1357 . • 57767~ • 170:194 .'1302;: .2185·1 .956622 .9561EJ .5!'11752 .797076 • 'f33·161 .981365 • 53'f77 l .239.lfl~ .119~17 20li RANDOM NUMBERS THE FUNCTION .7767'f2 .636J.7 .99066'1 .3'10'12.~ .981337 .729356 .167936 7 • 71!-:i6"iE-0 3 .102.876 .123035 • 975116 .975217 .770'197 .0110367 .771731 .72'f152 • 058U75 .155085 7.01207E-03 .391239 .790-856 .066Ei916 .86C169 .863196 .5'12035 9 .1786~'iE-C.3 .5-1632'i .96097 .0516b75 .17392.5 .'f2.lf062. .37'l5B1 .20915Ei .'M"i:H6 • 399:121 .889021 .66:;355 .0259721 .568609 .b55'162. .657563 .937158 .5B2Ct7'1 .090103 .6t337i .G92715 • 09205'-1'6 .162.786 .026121 .357'1U9 .5li091 .813362 ~ -......J .185'i9-1 .695927 .639095 • 719911 .103322 .958135 .3225'16 • 36'f 79"1 .120:;72 .7'f2B7'f .995179 .007157 .se;;:;a .973BIH .19133 .206609 .63'1625 .120'J93 ,'f(;366 • 892755 .901683 9.99613£-fJJ • 9333:.:'.3 .os109c;2 .90673'1 .0'10379'1 • 5813~15 , '151i5UB .01c;o1C17 .290'133 .560956 ,53001:; ,3oc;121 .t7~2LB .730833 .200271 .1'f1~79 .'l7796 .916679 .276625 .9'+0781 • O'f"lli617 .67«;952 .'fBG769 • 962.U,'f .29'1256 .966'159 • .qz.q511 .0972352 • 6EJ.7 6.lfB .059313 .9070(;2 ."f31231 .81697 .170665 .753'i7Z • os;eH-157 • 831197 .1766'17 .552302. .20678.lf .'f66~99 .7B11t6 .985'i51 .OU699£ .518377 .1'f7't79 .776fJ6B .569096 e2L5179 ,91J01U3, .976107 ,912(197 .927953 ,995122 , 'M9317 .688719 .'f159'f ,665673 .370927 • 861 ·12.IJ .903706 .2096'19 ,6Bli·bEM .lt61'H'I .293li'l7 .fJB91359 .610166 ,313 ·! f26 • 05~i6.2'i .-121&35 .9808~ .39'1Ci90 .705~'17 .699~o7 .5575'i9 '°00 = .01 9 · DEG~EE6 OF F~tEDOh OF DATA 30 NUHB~fi OF DATA 30 .19999~ OE:SERVECi NIJt·lf;ER OF DATA 30 5 INTERVAL FROM ,q TO EXFECTED NUHa[R OF DATA 30 INTERVAL FROM .3 TO .399999 EXPECTED NUHBER GF DATA 30 OE:5ERVED tiUi1BEt< OF DATA 3.q ~ 3 INTE~VAL r~u~ .z TO .299999 EXPECTED OBSERVED NUhBER OF OATA 26 2 INTER~AL F~OM .1 TO .199S9~ EXPECTED NUMBER OF DATA 30 dBSERVEC HUHB~R OF DATA 23 ~UM6ER THE FUNCTION RNO UBING THE GOODNESS OF FIT TEST 1 IHT£~VAL FRO~ ,O TO .09997~ EXPECTED OBSERVED NU~BER OF DATA 31 USING TESTI~G NUHE;ER5 LEVEL OF SIGhIFICHNCE FOR THE TESTS TESTING 300 \.0 \.0 CHI-SQUARE VALUE 12.2 FUNCTJO~ O~SERVEO THE .9 TO .999999 EXPECTED OF OAT~ ~O EXPE~TED NUHBE~ THEORETICAL CHI-SQUARE VALUE 21.666 OF OATA 30 NUHBER OF OATA 30 RND PASS THE GOODNESS OF FIT TEST INTERV~l FROH NUM~ER OBSERVEO 10 O~BERVEO 9 IWTERVAL F~OM .e TO .999999 NUMf E~ OF DATA 39 B INTER~AL FROM .7 TO .799999 EXPECTE0 NUMBER OF DATA 30 OBSERVED NUNBER OF DATA 21 7 INTERVAL FRGH .6 Tt .6999~9 EXPECTED NUMBER OF DATA 30 OBSERVED NUMBER OF PATA 26 NUHBER OF DATA 36 (Continued) E~PECTED ~U~BEnS F~OM .5 TO .399999 NUMBER OF OATA 21 INfE~VAL O~GERVEO 6 TESTIHG 300 C> C> 1-1 R~O USIN~ THE ~ULHOROGOV-6Hlfi~OV TEST 9.99999£-03 • DIFFERENC~ VALUE .0911001 D09Ef:VC.D CUMULATIVE FRct:m:::NCJ' • '19 CUHUdHIVE FREQUi.NCY • 57 CUMULATIVE FREQUENCY .656667 DB5Et~Vt.C; oesERV~D •5 •6 .7 1 OBSE~VEO .063333~ THEOR~TICAL TEST CUMULAlIVE 1 KOLHOROGO~-SHIRNOV FREQ~[NCY .9 OB3[RVED CUMULATIVE FREQUENCY .G66667 .9 OBSERVED CUMULATIVE FREUUENCY .736667 • 3'1' CUHJLATI~E OfSERVEO .~ FRE~UENC) CUHULATIVE FREQUENCY .276667 OtSE~VEO .J J((Jdi0ROGOV·-5~1rnt-tov .0633~31 O&GERVEO KOLMOROGQV-SMIRWCU VALUE THE FUNCTION RNC:• f'A55 TUE HAXIMUH F~EUUEHCY 0:~33334 THECRETICAL CUhULATI~E DIFFERENCE 5.960~6E-OB OIFFERDfCE ThEORETICAl CUH~LATIV~ FREQUENCY DIFFERENCE .023333S THEORETICAL CUMJLAT~VE FREQUENCY DIFFERENCE ~.9'1999E-03 THEGRETICAL CL1i-1Ui_ATI\.i[ FHEOUENCY DIFFERENCc 9.99Y9~E-03 TUEORETICAL CUt-iiJLAHVE Ff':EllUENCY OIF FE:RENCE • C3 T•tEOR£TICAL CUHULATIVE FREQUENCY DIFFERENCE .043333q THEORETICAL CUMULATIVE F~EGUENCY DIFFERENCE .0633331 Tl~EORETICAL CUHULAflVt FREQLEHCY DIFFE~ENCE THEORiTIC~L CUMULATIVE FREUUENCY .1 OBSERVED CUMULATIVE FREOUENCY .113333 DIFFlRENCE .0133~33 THEORETICAL CUhULATI~E FREQUENCY .2 OBSER~EO CUHULATIVE FREOUE~~i .19 TESTING THE FUNCTIOh TESTING 300 NUMBERS (Continued) VALUE ~ 0 ~ STANO~~D ABOVE Af~O 2.~7 BELOW THE HEAN THEQRETICAL Z VALUE ~UNS THE HEAi~ 113 FU~CTION RND DID ~OT Of' OF OF OF DATA DATA oA·;·A DATA 71.31-13 m::Sc:FWEO NUME:ER 37.3369 UB5ER~EO NUMBER 19, 5 :196 CJE:SH<Vf.D NtJf-iE.:E:R 10.2257 OBS~~VEO NUhEER PASS THE RUNS OF LENGHT TEST t...Ulh:"::J::n NUMBER NUt'il::ER HUMBER OF OF OF UF DATA 67 DATA 31 OltlA 28 DATA ~~ OBSERVED CHI-SUUAl<E VALUE 1q,346 THEORETICAL CHI - SQUARE VALUE 11,3119 THE 1 IHTt:t:;V,,L EXFE:cn:o 2 INTERVAL EXPECTED 3 INTERVAL EXF'£CT E O 1 INTERVAL EXPECTED USING 3 DEGREES OF FREEDUl1 TESTING THE FUNCTION RND USING THE TEST RUNS OF LENGHT FOR ABOVE ANO BELOW THE HEAN Z VALUE .540653 I BELG~ VALUE 6.61069 157 NUHaER OF DATA 0~5VIATICN HEA~ USli'ft; THE ltST r.:Ui"S ABOVE At-ID E:E.LOi-1 THC: hEAN RHO PASS ThE TEST 150.673 FUNCTIO~ ~ALLE OBSE~VED THE HEAN fo-1[; ABOVE THE NUMBER OF RUMS 116 NUHBER OF DATA TESTING THE: FUNCTION TESTlflG 300 NUMBERS (Continued) 0 N 1-1 STAND~RD HEAN VALUE .25 AUTOCO~RELATION 5 DESVIATIGN VALUE .017125 .Z711~3 FO~ OBSERVEO Z VALUE t.~03~9 THEO~ETICAL Z VALUE 2.57 THE FUNCHON RNO f'ASH THE TEST FOR AUTCCO;<RELAlIOH FAClOR AUTGCO~R£LATICN INTERVAL 5IZ£ TO CHECK TESTING THE FUNCT!OM RHa USING THE TEST FOR AUTOCORRELATION TESTI MG 300 NUMBERS (Continued) w 0 ~ ONE PAIR VALUE .0785196 OD9ER'Vt:Ci CIU - SOUARE VALLE 2 • 2092 TUE.UH£TICAL 0-II-Sl~Ut'~l'~E VALUE 13. 27 67 EXrECTEa NUhB~R OF OAT~ B.1 OfSERV~O NUtmER OF DATA 11 EXPECTED ~LiMfER OF DATA 10.8 OEBEfVEO NUHBE~ OF DAT~ 10 EXPECTED hUMBt:R OF OAl~ .3 OBSERVED NUM~ E I~ OF DATA 0 THE FUi'fCTIOi~ f<1'4C f'AS9 THt. Pm~ Ei~ TEST Ttli~t:E FRE~GO~ FRE~UENCY O~SERVED OIGITSI EXPtCTEO NUMBER OF DATA 162 OB5ERJED NUH0ER OF OAl~ 150 l EXPEClEO NUnbE~ OF OATA 129.6 OBSEk~E~ NUMBER OF o~rA 129 OEEREES OF ~IFFE~ENT ~ THEORETICAL CUHULATIVE FREQUEhCY AHO RNCi USING THE Fm{EJ;; TEbl .0~03712 THE GAP TEST VALU~ FUt-tCTIOi~ nm f'AH,S LJJ{E Oll;ITS FOUR ll1<£ Olt;Il S FOUR USING lEBTING HIE: OBSERVED FREQUENCY P~SS .Oi037~2 BET~EEN THEO~ETICAL FRE~UENCY THE FUNCTIOH RND CUMULATIVE HhXIHUM DIFFERENCE TESTING THE FUNCTION RNO USING TH£ GnP TEST TESTING 300 NUMBERS (Continued) ~ 0 ....... OE:5Ef\Vc:L• OF nAl A "f2 E~FECIED FREEDOH N!Ji1i:l::tl 0 F C••l ff:., 5'1 hUMfE~ OF OAT~ 60,61 OF DAlA 10,35 INTE:F<Vt'\L Fr..Oi1 21 TO 2'l EXFECTE:D NUNE:Er";; 08S~~VE:D NUMBER OF O~TA 65 OF DAlt\ 60,61 OBSE~VEO C~l-50UARE VALUE .5~0746 THEO~lllCAL THE FUNCTION RN& PAS5 THE YULE'S lEST CHI-SGUA~E 5 INTEHVol FROM 25 TO 36 f.XPECTE:D NuME:C:li OF DAT-' 'I0.35 OBSERVED NUH~ER OF OHTA 39 ~ OBSERVEO NUHBEI' CF DATA 95 3 ItHH:'JAL FROI 16 TO LO E:<FE:CTED NUi-lt: c::F~ OF 01-HA 97, 66 OF..:SE~VC:c; ~UMEER RND USING THE YULE'S TEST 0 TO 11 O~ NUf'if.. I:".~ F~OM D~G~~ES IHJE~VA~ ~ FL~CT10N 2 INTERVAL FROM 12 TU 15 EXPECTED 1 USING TESTING THi TESTING 300 NUMBERS (Continued) VALUE 13.2767 (Jl 0 ' 1-1 ~A~~OM • (1631150 .'fSt"1(3/ • '11}6;!8;.". .1833J'i .'160972 .u:rn5EJ1 .617873 .7915t.1f3 .170017 .9?6202 .995783 .9li'T08L • "'1159 ,(i'123603 , 63.!f 'YS"f • 158( "f ,9'H·25J • 2'f92.92. • 06599~. 'f .739698 .215175 • 7;!606 ,B339li2 ,6:i~-1GS: • .IJ87713 • 2 9•13 ::> .9n.12q .395~62 63-l~:iB3 , .3~oBE9 .027117 • 97;::121 .Br2011 .37?639 .61151EJ .'T7967 .19l:lU.l • 5•rn O"r2 .9'T2.396 • 9 1 '• 1•1111 • .IJ68'i26 • 705•137 .599!':.ilEJ • 5Eio 1;: • 8;.'.1:1713 • :356~1U J ,7.q9935 .033;.572 .'177308 .632'133 .357163 .1120;;.G ,9B7J31 • 61-lS·'TB • 5619~52 • 731jo6~ • 9682-'l :i .3L!J6o .Oi/l.q6 .1962~'2 .5Hl7o O~lo7''f:J7 • ~75~.'i-12 .es3;;15 • 27 :; 2 ,f;035Eio • B6·lJt"19 • 3"Vi16~ .OB96313 .12~'ilt86 , .3611'1 .73163(, .78'1231 .'13B'l22 , O..'fm..ii)6/ .1'1760;:. .:;61377 , 5t>~J06S • 0113'16(,3 .33;!.922 .8Ei9Cfi'i .658715 • (1665/ ...t • 97·1670 • 6179'1~ .01967lil .GfJo'lcr& ,O'l00:.i06 • r:· ~- 13 5 ., 7 5 • .1Jofi;·45 .868116 .17~16 .96070 • 2..l 07i7 .t."15G3i.l .fl~91(i2 • 93669-1 .8U30"f9 • 3·13~75 .30J.3:l 'T • 0·1111~7'7 • u:u,;~07 .1o2.'H3 ,9i;ic;·95 • 297'7~ld • 210~;77 , 'Ft~!8:n .7'151~i3 7 T~ETS • .;:."17t'.J2 • '16) f10L .5EJ'1125 • .IJlH1~~~ 8 NUrl~ERS FASS .379316 .962350 .966:5 12. .098678;!. .10189':"' • 5'1/..167 .65ti29't • 77 6311 .5G7017 .71t1G3-l .501513 • 52.416L. JliO THE FUHCTIGH RNO m 0 ......... • 26'13Bl1 .63B1a .86-l:a.27 .993761 .295867 .091'H6'f .99BE06 .355396 • 73::u,o • 0902'163 • 9730 ;~-1 .170:.:.~M • 915l:J29 .B11i?75 .72£562 .601311 .34171il .302911 .7681<J? .'1:;823B • 9'l'12rJ2 .1BLJitfiU • 717'191'1 .62922. .5671'19 .7172JS' .37.qo:::;1 .'10590·1 • 932123 • il5~i:Jo;· .50 iJ&:..5 • 23EM '' • 695·171 .B178U .1o10B6 ;~ :~ • ~iH tB•; .1Zt6.;:6 • 6/ 63:.<J .63-1 7 1'1 .'1'10971 .'1326!.i ,695121 .910011 • 8312•17 .92.0'TB'l ,530 11;:,9 • :l 'T ~;5~ 'i • e oo,;1li • ~16.ZO;!rl .:n2003 .9J!5£:S:3 .77'l6:il • 06 'I J.lfS 9 .9l916LJ .132.106 • 996'.f..t'I .0177116 • 36 175'19 ."J67'T3.2 .:;05617 • IJi,li!'::!i5 .ZV7152. .1997(18 .9stJ:::i,a .'105 5 6 .86061/J .793176 , 0 l: .q 9 6 'I 2. .238391f • 2/' 17 6 • 3 ;:_ 79'f 3 • 8~~2352 .1697'1-'i .677595 • 3~;25;;. 9 .2orn26 .29El9!.i2 .63U1E/ .0110509 • 9'fc.!:i.25 .9072()3 • 320~ ; 95 .51.l.L .d • "1:;:: 15 .023952 .418351 .6119'1.7 .q,5EJ~uJE-03 .916338 • 839.lf .ifo • b'i96J7 • 52998•i .0197785 .3'i0107 .76BG11 .367~28 .OOii5702 .S.tBJU6 • 99JEn.:; •'M57«;f.J • "122;:.s .2:3~:1015 .167 961 .fl(,0()97 0 f.: .67-tE."12 • EJ7521:l7 . .q" • t'168:: 8 .87E1Eic • ~·~-)25r.>2 • 3~~a. t"10 .'f6fl032 .69'l.ttf:l .80-!0.3 • S't:H: .177976 -.....J 0 1-1 .'110136 • 2 i( i397 • :r75'f3'1 .113057 .728789 .51797'7· .5157Ei5 .76'176 • 205;-.61 .6776~°1. • 960 :2-'f 3 • 32.56:-:il .ZZ0713 .0801729 .0221609 .36075 .1Z131Z .87912 .90201 .731717 • 9EHJ253 .290362 • 9 :;· 61( H • 7.B2lf9il • 9~i l'601 • 822 q~;~ .717696 .0257056 , 'H•1!j~7 .271397 .190b15 .175'825 .06168 • 03BiJ•,99 03~.'i8/"'E-03 .996867 .9211~ .1Z'i'l~i6 • 7735~15 1. .:.:3 ~B9~ • 8 't ~JI} 11'1 .Jf773G7 • 23·162~5 .177777 .959665 1" ,962131:: .211fi97 .991765 .5flJZ3'1 ,9(. ljl(] .30~'i06 • 9'13 115 ~ .238173 .66:.;176 .862"'1:; .010.lf"t39 • 6~5 ·1'J ~'i .93 3 725 .50286 5 .0810086 0 00 I-' USihG THE OF FREEDOM ~NO GJOD~ESS NUhBER NUH~ER ~O or DATA 1t OF DATA 1ij OAT~ 5 INTERV~L FROM .1 TO .199999 EXPECTED NUMBER OF DATA OBSERVED NUH8ER OF OATA 39 ~O 1 INTERVAL FROH .3 TO .399999 EXPECTED NUhBER OF DATA 10 OBSERVED N~HBEk OF OATA 11 3 INTER~AL FROM .2 TO .2999~9 OBSERVED NUM8iR OF O~IA 3~ EX~ECTED 2 INTERVAL FROM .1 TO .199999 EXPECTED NGHBER OF DATA 32 O~SE~VED 01~ OF FIT TEST FROH .O TO .Oi99i9 EXFECTED NUMBER NJMBER OF DATA 13 INTER~~L OBSE~VED 1 DEG~EES TESTING THE FUNCTION USING 9 ~U~BiRB LEVEL OF SlGt-tIFICAHCE FOR TdE TE5TS :::: .01 TESTIHG 100 0 "-0 1--' N~M8ER OBSERV£0 F\Nli EXPECTi~ NUHEER VALU~ 10.B or ~AT~ ~o THEG'"'ETICAL CHi-SQUARE VALUE 21.666 PASS THE GOOOt&SS OF FIT TEST CHI-SO~ARE THE Fl.'NCTIGN 10 INTERVAL F~Orl .9 TU .999999 OBSERVECJ NUMBC:H CF OnTA 46 0~5ERVEO 'f 0 OF DATA 40 OF 9 ItlH::RVAL FROH , B lO , Blf 99'79 EXF E:CTEO NUME.:1::'°' OF DATf\ NUM8~R OF OAT~ 29 9 INTE~VAL FROH ,7 TG ,799999 EXPEClLD OBSERVED NUMEE~ OF O~TA 41 NUMEE~ DATA 10 OB&~R~EO 6 INTERVAL FR J H .5 TO .5~~999 O~SE~VEO NUH8ER OF DAlA 51 7 INTERVAL FRClt ,6 10 .699999 EXFECTED NUHBER O~ OATA 'f2 (Continued) NUMBER CF DATA 10 HU~BERS EX~ECTEO TESTING 400 0 .._. 1--' .~275 OESER~[D CJHULATl~E CUhULATI~E FR~QUENCY .6 FREGUENCY ,q7z5 • S75 • 272!5 .187!5 DlFFE~EHCE FREQUENCY 1 O~SER~E~ GBSiRV~C OB5£~V~D .oz;5 TEST FREUUEN:Y 1 FREOUENCY .8&5 KOLHORG&UV-SMlRNGV VALUE .OB CUHULATIV£ CUHUL~TlVE CUMULATIVE FREOUENCY .615 TH~~fiElICAL NOLHO~OCOV-SHIRNOV OBSE~VED KOLH[~QGO~-SHlRNGV V~LUE 15 .e FREQUENCY .9 VALUi .0275 CLM~LATiVE .C119999 CUM0Ln1IV~ THE FUhCTION RhD FASS THE ttAXIhUM DIFFE:t<ENCE 0 THEORETICAL DIFFE~E~C~ THEORETICAL DIFFEr<E.iKE • O15 OIFFER£NC~ 5.00COoE-0~ THEO~ETICAL CUtlULATIVE FREOUENCY THEOF<ETICOL CUMLU•TIVE FRl:::llUEr.lt y • 7 OE::SERVEO CUr1UUHIVE FREuUE.:NC'l • 70~i DIFFERENCE 0 THEORETICAL CUMULATIVE FREQUENCY .6 OBSERVED D~FFER~NCf THEORETllAL CUHJLATIVE .s Ff\E:l1dENCY THEGRE TIC AL CUl":ULATIVE H<H4Llt::t-.CY , 'l GE SEF\Vtu CUMIJLAlIVE FnEQUE~CY Ff\E~WE:1"CY FRLOuENCl • :J OE:SC.RVt::D Clli1ul1HIVE THlGhETIC~L CUMU~~TIVE OIFFE~£~CE .0~75 DIF"FEf'Ei'4CE • 025 Ff\E:-:L1JE:NCY FREl'WENCY • Z OE:Si::R'Jf.li CUi1ULATIVC: CUHLLATIVE FREaUEhCY .1075 TEST HIEORC:TlCAL CUrlULATI\.'t DlFFEEHiCE • 012.5 OBGE~VED U~ING ThE J(()u10 .~GG:JV--StiIRt-f0v FRiOUENCY .1 f<NC CUMU~ATIVE DIFFERENCE 7.5E-03 TH~O~ETICAL TESTING THE FU1'1CTIOi" TESTING 400 NUMBERS (Continued) .......... .......... .......... EXPECT~t HLH~~~ OF FREEDOM OF RNO USING ~~TA AU~5 103.931 TEST EXFECTE~ NJhB~~ OF DATA DID NOT PASS THE RUNS OF LENGHT TE6T 11. '1832 OBStRVE() t-fUi'iE ET\ 23.~233 or A~OVE AhO BEl_OW THE DATA 28 OE :nEnvE:li CHI-Si.lL·Af<E \/t\Ll.JE 27. 6978 HIEDKE rICnL CHI-9l4U.,.;E Vf)l ..lJE: 11. 3'1 "19 Rh~ l~TEfNAL EXf'ECTEO NUtlB.:.R OF 01HA THE FUNCTION " 3 INTERVAL FGR NUMGER OF DATA 66 NUiiE:E.H IJF DATA 5 0 GBSERVED NUHEER UF O~TA 29 LENLHT OBSER~ED 0£:.G=:f~ VC:D OF THEl.lfi.ETICAL Z V1\LUt 2. 57 T~E THE HE Ml 2. Ii 8 E:ELGH THE HEAN 9.~0418 AND VALU~ 2 INTERVAL E>:PECTEO NUt'1E.1Et< OF l>Alf\ '19. B"f 01 l INTERVAL DEGRE~S USING 3 DE5~~ATIO~ THE TEST RUMi AE:OVE .7691~3 f'r~SS STANDA~D FUNCTIO~ THE Z VALUE TESTING HEAN OBSERVE~ THE FUNCTICN Ri'J HEAH VALUE 200.6U NUHBER OF RUHS 193 BEU1.,; F:ND USI~t; THE TEST RUMi AE.OVE M•l> E:ELGw THE Mt::Att AE:O JE 'THE HEAN 1'n t-.Ur1f.:FI( UF OAT ;1 FUNCTION NtJMt:.ER OF DATA TESTING THE TF.~TING 400 NUMBERS (Continued) Iv .......... .......... FUNCTIO~ STA~DA~D DESVI~TION .257613 VALUE .01~0737 5 AUTOCO~~ELATIGN VAL~E .63776~ THEGR~TICAL Z OBSERVED FREQU£NCY VALUE .015q5~5 THE FUNCTION F\N.:> f'ASS THE Gt\f' TEST THEO~ETICAL F~EOUENCY OBSE~~ED .0609~1 AND UALU~ FREO~ENCY VALUi 2.57 HAXIHUM DIFFE~EhCE BEThEEH TJ~aRETitAL CUMULATIVE CUMULATIVE F~EU0ENCY .U15~515 TESTING THE FUNCTIGN RNO USING THE GAP TEST OB9ERV£0 Z TH£ FUNCTION RNO PAS3 THE TE5T FOR AUTOCORRELATION .25 VALU~ HEAN FACTO~ AUTOCO~RfLATIO~ AUTOCOR~fLATION RND U5IWG THE TEST FOR INTERVAL SIZE TO CHECH FOR TESTING THE TESTING 400 NUMBERS (Continued) w f--1 ....... OF FREEDOM ThO PAIRS OBSERVED CHI-SQUARE VALLE 2.5713 POKE~ I EXPECTiD t EXPECTED I EXPECTED THE FUNCTION RND PASS THE FOUR LIKE DIGITS LIKE DiGITS NUH~ER NUMBER OF DATA 1 VALLE 13.2767 OBSER~ED C~I-SaUARE OF DATA ,1 OF OAT~ 10.E 086ERV£G NUH8ER UF DATA 9 OF DAlA 11.4 OE5iFVi~ NUMBER OF ~~TA 11 THEORETIC~L TEST HUM~E~ hUH~E~ NUMBER OF OATA 205 OBSE~~EO NilMBE~ or O~TA 171 OBSERVE~ 17~.e o~ NUhEE~ OAT~ OF OATA 216 NUHGE~ ENl:i U5:Li4; ThE f'Ol{i:.f:: TE5l OIGITSt EXP~CTE~ ONE PAIR ' EXPECTED D~EREE5 FLl~C'IIGr~ ~IFFERENT THRE~ FOUR USING 1 TESTING THC: TESTING 400 NUMBERS (Cont1nued) .+::> ........ 1--1 usn~ G NUMB~R 0 TO 11 EXPECTED OF DnTA 5~ NUM~ E R OF OAlA 53.E THC: YULE. 5 TEST FROM 21 TO 21 EXPECTED hU~~E~ U~ DATA 09 NUHB~~ OF OAT~ Bl.OB OF VATA 46 2.397~9 THiO~~TICAL Rt-.D f'J.\55 HIE YULE' B TEST NUMB ~ ~ ChI-5UUARE VALLE FU~CTIOt-4 06SERVE~ THE OBSERVED CHl-SOuARi VALUE 13.2767 5 INTERVAL FF:Oh Z5 TO 36 EXF'ECTE.D NUt.li::C:R OF 01HA 53. B OBSERV~~ ~NTE~~~L q FROM 16 TO 20 EXPECTED NUt-iE:Er;; OF OATA 130 .2'f OBSER~lD NUH8ER OF D~TA 135 INTH~VAL lNJ"ER~,' nl FRDli 12 10 i5 EJff'ECTED Nt.Ji1E·H\ OF Cif'HA 61.08 0£:SER\ll::v NUtc:ll\ OF CMTH 76 UBSER~EO INTERVAL Fr\ JM 3 Z l USING 'f OEGF<EC:S OF FREEOOM TESTING THE FUtlCllOt-1 Rtil) TESTIHG 400 NUMBERS {Continued) CJ1 .......... ,__. r~i"D f·,; :;s 7 1 E:= i !I .~n~~i ~ .19 7 32 .oa ~ 7J1~ .;: <TOH 9 • ~S ::11 <j ··t E ·-· 0 :1 .638061 • 51 c;: :n:; • l ~:; ;,:, :,:;1 • 7" ~! 35[; • 2.5/"f :il:i • 'l~i<.i i::d • 26 ·16 (:: • .l 63[17<_; • 6J.2.:3 <3 .6~86 ~~ • ::lt.J5 0 ul':l • 562 :15 • 102 223 • c;3;~ 7 J. .~?701~:i:3 .?oit79 .70~696 .3f.1G t.: <; · ~ .118'77"'111 ,98L891 .366l 75 .~ 2 19 ~~ .96~127 • 6 ~1'1~.:i i};;, • 9 .L 71_, : ,9 .·11768b • <7 ;~ ~j :; ti 7 • :;;~ ~-~- 'F.ir .616 5~ 1 .600 5 16 .238i1 .66f> +.:l~ , 13EI 0Ei1 ;>706::'. • 1 • ~~ ~;. -1tJ61 .11.i!.' i:::·l6 • Bl '157 .6~8(9<! • 7::u o;::-1 .675017 .16 94 QG .671 753 ,9q ; s1 .66Bt24 • 21'1 ·:., ::i 2 • 'i ·175..'.12 2'd1 uz ,q/9/28 .5~6119 . ~11 971 .S~7374 .67 ~ ~8 .9~~6 ~ o .50 ~76~ .16 ~57~ • 2 (.. ~)() :i 6 • 7 t.>1 ~. 5] • 277J5;_ • ~~:; (j .16 / • fi~":: ? ;;_c:d • & :I 0 (ii. 6 • :-Hl J 3 :.?. .~: G~·:d.1.l • ::;:.;6 11:?. l • i1'l.L..:..:i3 • 79 ., ·1 :I. • .q 2 1,; ~?.1 :.=; • 'l~·· :l Lil:; • 0 :~ ,. , b :_;,~; :1 .Bi't.> L.Ci5 , 5:'i06'r9 • 'lll 1.71' c 2 • t2:HO.l • Lli99Ci2 • 0 372. :JI' • /''+i' 3«"/ .71<j91.Z .f.1110:=..; a • 3·1'1 17'1 ::i • 'l~?.7701 .7i ..lf1"16 • Ei5rj3'1 J .3::it",G::i ? • bB<; .;:.u'I .23193t.J , :I ;:.J71 , Ei'J-170 . 19·H Ct , 0691: ~1 .lE • 0 li'F:i .I. "f i • 3<; ~~ :.;27 • ~-:; ? ~i r•:5 • ~.'i 'd i'9:~ .76<;:3 7 3 • l.i ·1 ::: •t u:J • ::i .to ~;;· J • 3 ~j .... ::; ~=: ~~ • ~?. ~ ~ ii 7 1 ~:i • ::J b 1? t; 15 _;9 :_. {:4 , {,;_:JJ ::: :"i .615.!J<t 'j> .'f'7"1112 .603~5 52 .:; z ~1 52 • ; :. 1 , 9,:,3e:..-1E F~ •~ N l: lkl i·IL. h [: H. t1 FUM:T.ro.~ • 4-=tt:i8t.J•1 ·10 1; THE 0'1 1--' 1--' ~ .90~1'i .0El'f"i59 .96iHf9 • 5'1:3/ 92 • 78'!9~! 1 .600::!06 .1~3 ~j 9 ·"~~ 6111 .60CT'f1'f .15;>2.112 .2'f8B58 .701318 • 65"19'f9 .985-123 • 9627'S'7 • 0531H72 .502011 .2fJ65(i5 • 63;~·1-16 ,5:;17(j97 .30653 • itis::..13 O'f7Ci~56 .219153 ,'f02.G61 ,93141'1 .77;!,982 • 866672 .260105 .'16176 .62'17'f9 .670~:; .210'l57 .519232 .111'19.29 .715046 .7556~9 .178596 7, ~:H 7 oE ·-03 • 7 63,,12 • 6~i·1667 .11695CT • 711655 .572322 .1UOtJ:U3 • B62'1Co.it • 01EM.lf~!Ll • 6~H93 .1:;0356 .7ti15'79 .'109085 .67-1912 • 313b~i6 • 0172.956 • 60799"1 .375513 • 9758'1.L .86(i907 • 6BBJ'11 .2016(5 .753108 • 03Ei66i9 • 2'1 '1856 • '1796 ..16 • .50996 .930677 .'127165 .B21tJ'f .'17759 .7'f7357 .9135!.iB .019B3'1£. .7034:.ie> .91395E .190012 .ea:t766 .65c5!12. .7(i608l • 1'11'133 .9:;1859 • 03:; ..tts .550658 .6261;~3 • 52~.)58 .7tJ523.lf .B"l195'1 .99(1;:17 • 63'1773 .G55·183 • ()'i"l7 b • OB3:J0 1.?7 • 71721'1 • 0 tflj 7963 • 793 1 198 .50675:;: .579517 • 10 •107" .19~066 .'407735 .6(i5J16 .86(69 .605L 1JB • 'f75'7 ~· • Z21B86 .'f97to:..; .3:11790 .669263 .850265 .E1'f739Z • 6:;5'7 27 .3t_;O 1~b • :n;Jf06"i .6B7'fS"9 • 1'fu573 • 'fl'lS1 2·;; .01Z'11B5 .013'f902 .UM.t11 .B2ti7b5 .750363 .B3L951 .1111:n .3'H003 .5060'f2 • 1131: 23 • 3t.1 39'f7 .167576 • ~;o 2:'.d.J • 201B5"1 .851380 .673:.!91 .'1:;100~ .3?3'13i .0503671 • 709;:.;:: 3 .629603 • 36;~672 • 973;· Ii 'f • B~:i-135;:j • 52 (•'J 3't • 'f ::J'f 2 • 5736:j6 .'f666.l6 .9.!f9B'i9 ........... 1--' 1--' • ·1EU53o ~. 2.25~.tfi:-0:-i .7!H'i6.l .0996035 • 'f:l~?.5'i~ , 3H~::'.22 .333576 .051603 .0'16Ci2.o3 .89257'1 .333653 .2oc;· ~26 • 9;~26Ei'f .Ei65523 • 6602.7"1 .1'10947 • 553~)62 .020·12 ,737B·W • 035::1·2 98,~CIBo • lc';-10:;6 .5~G5S'7 , ·U7B3J. • .lf2GOZ3 • 67"1155 • .20~~30'1 .152652 ,39;;.76 • 71'1~~6 • 51056 11 • o129·1.;9 .0767792. .650363 .269'113 ,95369 • 5862-2 .325~17 • 9506':19 .1,;;;.~93 • "1'1.l1 .259~65 7.'127'15E-03 • 3198·16 .615997 • 355'H "1 .50915 .'f827'17 • 3't8J7"1 .590077 .922628 .986137 .36163'5 .260567 .92767/f .989862 .352079 .6'1'13CT3 .53866 • 79t1'I06 .06369&8 ,5593:;;3 .1962·19 • 298'11 'I • 055J~,.tZ .32.'f'f :1~ .17'1259 .3~5853 .1297blf • ::1557~:;3 .1235'73 .115273 .~H'799o .2'f0(,'J2 .219285 .29b'i-1 .616.tf53 .25•1.36~ .157653 .'111871 .967716 .'l912.7 • "IJ0:;:~~5 .7625'18 .105;:27 .809J82 ,988708 .861002 • 16917.6 .5675L5 .16632."-l .09l.0092 • 3.lf 6:.'.. 9 .'1800L;6 .987195 .03965176 ,UO:J05 ,6'112.3 , 38C. 1; tH • 7'f 1:rn1 .267111 • 07'7 83:='? .816'715 .61'16'1-1 .6as1i.q5 , O'lfi•lc1ij.9 .309'155 .297679 .312861 .5EJ3931 • 95 111;· 1 .6'fOOo:3 .06'117'75 .78"r~77 .'17376'1 .108:372 .322.()95 120;~ 1 , :H , !'.Ji>.31 Oo • 3:j6Ci:rn .720760 .0117196 ,30655S , 'IH71 • 336,"67 • 71EMu6 • '17732.Z .lf61iiMZ .152051 .0~25761 .61'i··1UL. .511537 .'157~.16 .8322o'i' .51112.9 .2t9:H-t .9600'1? • 3~~-•o M .3611~i'?'f • 5•72~'.93 o339L~ .39H3 ,6J6T57 .66290 ~ ~ CX> APPENDIX B COMPUTER PROGRAM AND PRINTOUT FOR GENERATION AND A NON-PARAMETRIC TEST I""" nrM l'lJ"H 111: 11 f>I M Hll''" r1111 Of H llll'llf I'• 7 ,,,,. lft'1 f'.)111 1-..11 l.,'7 11,\1 ,,.,, ,,,.., .. "U"\11 0 •Jt1IOl\'ll I lhf ,.,,, , , , .. ,, I\ CNI ,·,r tllr 111\IJO"~I 121 llttllf'I llfi yf.<;fyf, "llMl•rn•;·1.1 Rl\NO•'•H NUHrrnr-;• ''" '•OlllTIVf' I tr.T ,,, 1111 "" 11<•11\llllr(•llM 1 '1111 Yooll I 7QI IPlf'llT ·11utt· .. utt I ,_VI tr I •• •t1• r;l')l ·~ ,,,., 11rH 11? llF11 llr11 I I 7 1 tn "77 ""'" 1t1rur •1tn\.I Hl\NY R/IMO<•H tllJHrr n!l '"·' Vc.•U I.I/INT. !ti ' ".' 11r11 n.r. .;- .11r1 11111 · 1111 ""'"'''11 tt•1Hllf·. n9 11111 IHH r. 1110; · ~1,n:;>tll•~01oNtHN•7Vll I I., 111 11 I I 1, 0Ft1 II .• MttfNI • 11\& "'"" "7'1 nr-11 '7~, 77 7A '1VI RI R7 71, 11;. 7 t 1:: ,,., '77 Tl-IF '1fo IN •un111.n v•:•ll L ll<E THE RANDl'.•11 NUtmr:ns rA•)H /IN tlNIFtlRH on N(IN · llNJr(lnl1 Ol~TRIPVT IONI r,~1 HIFN am1 Cln IN l"\J T ·wi:•UI 0 Y(IV lll<E I\ HIX (IF HIE rwn Ol!:;llltr.llll•.>tl9 F('R TllE RllU()•'•H UUHJ~ERSt tNrUT 1r ttt•I 111r:N .;:•1nn CLS INrllT • WnllLO ynl} Lii<£ TO Tf.:!H Vt•UR OWN NUl'1~r· A5t INPUT CI I IF VE~• I 21 IF" NOT• t tt2 IF r;,7.al TllEN .1100 flFH G•H•> 70 flrH nFH "'., nrM 6.-, nEt1 67 nrH 1,9 nrtt 4',"1 RFH 7n 1Nru1 ' ' l•l.q"' 4ft "f.:11 xxx ·~Tl~ 1.10no nil~ (IF Tl~ C(ll1rU1EA UTLl7EO IN TI~ /\OOITIV~ nu~noUllNE 'll XX'l.cJ27(1.7 4R J1r11 1 IS THE VlllllF. or Tlll"'. STllNOARD N(•Al1Al. AT ~'l. L£VF.L OF !'ilGNIFl/\CPJCF.• UTILIZED ( 11 IF INrUt TEST 1r vfr,, (I' ,~, (.?I tr U<'ll" I(; IF N•.•T" tfil vrc;, RUNS Af-IUVE AN[) ~f.:LC•" lllE tlF.OIAN N ~ 0 t. l REM 162 nF.H l 70 IF ,1=2 GOTO nFH nr-11 G• J<;Un llrM 2f1QI flfH G•)•;un.~ :;: n ~ .·n-" :' RI '"VI 2 3CWI r;1mr,,·,u1 JtJF. R F. H HE:t1 RFH :;: ?rl 279 ;·77 :-ue.nr:1ur nF.H nt M 279) 2 76 70! INF. r.osun ~ ~'10171 r'EH RFH REH SUP.. P•:•UllrJf' 263 26'• 2f.~ OF THE (2) 27111171 7.:-\00 ;:·'°'~l'I (.l\l.C\11\l _TE Cf\LCULATE' Cl\LCUALlF.: NEOll\N TIU·: NlJMf".r:n (•r Vl\LVE5 AP.•)VF THE Yf.:S<V>• NC:•<N>"tl<• nuNS l\N[) r'·ELc)W ·rHE ME:OIAN RANO(IH NUHf\ERS OEVJf\TEs· 1 I Rl:M SUJ~Hl)UT I NE l "100 USF.: FVNCT I ( •N RND < 0 > G•.1!1Vf3 l 0t'l0 REM ~<JI) AND NN<JI> ARE THE RANDOM NUMBERS B<Jl>,,.XN NN < J t ) ,. XN NF X r J l RF.M :;• ,c,t 2 ">.·: RF.11 21,0 2 '.1~ .2::1 0 ~4~ 2'1"f ;:·:i~ ~ : 11. m: H RF.H nEH ~ -J."? :;:: :.D REM 231 47~ TO N GOTO ,.•Sli'I A l.IST OR EXP(lNENTif\L "WOULD YOU Lll\E ( t) r. :w1 ·NoRMf\L 230 FOR Jl-l IF Gt)T(1 ;' ?0 1=2 RFH 2rl2 21171 1'70 IMf'UT l '7 t REH 192 RF.M ::171Q) INr'UT .:: ~ l REH t f18 10'7 18f71 GOT(I 230 l ....... N ....... ;'86 nrM :J~l 2'•11!"' 2'•00 CALCULATE REH . " .. CALCULATE AN l\~SOLUTF. fffH BI Cl\L I.VAL TE THE Vl\LUE QF 310 IF A~~BI GOTO 33~ :J l '3 REH Ff'•R IM T Fl-,H 1,riq r,1·1' () HFM fir 11 '• ~" '•21 '• 7 2 f~ Tn 6 ]0 5Tf"I" '• ) •0 ( .. • ·t·I :~ · • B ( w• I N t 1E~>T w • :~ ) t n { "" '" ' ) IN;>. ·r-if- .. • lf1F Tl) l\Bl)VE nvtis-· I fH SUGGEST fU\NOOH• RUNS .. ••JR JS N(•T f\Tf'f' '• I) .n(W• ~ ) .nn~• .JI ·r~•·. INI • '• I '" I '. n J "' T l' ( w ) '•I I Mr:. )( T W l-1-l t.PRINr I_ I" fl '•"7 r. t'!fl '•t.-i1, I . PU f ti I or 51\HPLE F.:VJOr:NCE - 11 rn 1 r1' "'' •pf\flO(•H N•H11'. f.: OS". ·NllHOL:R ()F • t PRINT L PR I NT ,,., nnn olHW• '•""'• '• t'I r, lHF. RUNS /\ND P..F..:L(ll-J THE MF.DIAN l\Nr> EGllJU\ 10 THE H EO ll\N THE HEOIAN TlfAT Tiff: SAMf'>LF. IS NOT RANDl°•H• Vl\LUE F()R THE DlrFF.:RNCF P~TWEFN NUMBER OF nvNS AND THr MEAN 91\ T l\NOl\RO DEV I A f I •:'IN l I H F.: 9 Z VAUJF..: I\ T ~ 'l. I. EVF.L t) F 5 I GN ir· I C/\NCE nu:: •Nt-· tNl, "N/•" tN./,t "HF.-" tME" • IJ •) f• ) 6:Jlt, Lf'JIJlll '•"' ~, t. : IQ! " t'1"tlUMr.r:n:,•,•NuHPr-n • "''2 401 i.1 .. 1 l.l'HINT f.JF. )( T W ~1?'1' '•"'n 1_ r :i r:i '• n r ,., l ' 370 l.PRINT :int't 1. POJNT :, q I LP II INT 307 LPRIMT · 1n:i l.f'fUNT <J(lf'I) LPRINT •THERE IS INSUF"'F'TCJ F..: Nl Ir t{._,. .. N. G•)TI) 630 GrJT ( 1 '•'1!3 :J : ~VI l.r'HJNT • 3 1•17.1 IF ., ..... ,_,. 3:-,0 LNllNr • 31~0 LPlllNl 370 3.7'1 :L : A 316 RF.:H :J l 7 REl1 :JIB REH :119 REM :l06 :J~:l :rn2 nr-H Ci•)S\JA REM sve.n ( •\JTINE nEH Nt NVMe.r:n or ()P.sr::nVATJONS l\e.0vr: HF. f1 N2 NUM~Fn OF QOS E RVl\TIONS BELOW r F N l < 20 •.•n N2 <·7 0 THF.:N '5"10 :11/tQ! : ·96 2R7 :;: 9(1) N N ......... '•'•0 REH JMPUT 1Nrur 447 '~ '•fJ "• '•9 "•~17) '• 5 1 HFH RE M flEH 4A7 Jl'Jrur n1.: 11 RFH HFH • '7 '• I_ • Cl 1;1 ,1f 1t CALCUAL n :: CALCULl\TF.: 11u:: VALUE.5 r ( •ff I Vlf)f - N<T J!; N•IT NtJHl'.FRS OISTRIP.UTION" mir' !"'"·'·f''tT Hiid lf_ST 111r :.AHr't_r IS 11 - ! ; I NUt1P. E. ns Htf. WAL() - Wt,>l_Ft)W Ir l nu1-1 rtl\ND•.IM NUHl:?.EHS nAtrPf"IH• 1(• 'so Rl\NO• ) H OISTRJf'.UTJ(IN" ,, P.I\ RANO(lH E)(P(•NF.:NTJl\L !"il\Hf 1tr- 1t1 :, u17r1c1r111 l11in Jr; <;•)T•) 1>:J0 "Hlf ,,,- id 1 h• ~ "N" P ll f ti I IF {llll ._,..,,,,.,, ':)"H'I '1 ~. l-i r 1r t..•~·t,. (, •• .,,, ':'Ill "' t J ' fl I ti "orJI ~:l"' ~:;·(, ·, _:j ., _-.,, ~ 71110 ; ·6"'"' l6V.10 N(JRHAL F <:•n F.Xr •)NFNTIAL Cl\LCVLAl E N•)Rt11\L nrH ~JI l\llO w i Vl_AlJES (IF nu::: WAI 1) - Wt.1111r11WJTZ Jr lfl >u Wt 1111 Jn .. 1.J_· lllf : N 1 -llfi 11Ft1 ~HU •Hvt c;n! ; \JB •Hi_~ f1Ef1 ~lH:\fl• . •U I I NI; Gt l':)IJB ;:1,m,'t ni-r1 rir H ..,01 )CllQI '•'~5 1 '•? J •75 1 14017) • 1Nrur Ll\HP..01\ Vl\LUE REM n E H SUE'fl(1\.JflNF. '•fl~ <;1):.1J1J I A'110 1o'7VJ GC:tl (1 2 7111 '•'7 t nr-:11 '• '7 :.: 11r-11 "•7'• '•717) '• 7 I 1172 ,, 7.J '•A? nrM '• ..,o nr11 6 'th ~ 111, ;(:7 QI Gt )T t) 453 '•~Ill DEVll\Tlt) N r-c :i n C<:•NGlJIH: NTJl\L n1srn1e.UTJ(IN• ,u l\flDJTJVE F(IR N(1RHl\L Cl\LCUl\LTE STl\NOARO I '•t'l0 REM SUP.H(•UT I NE "•S2 G•:isue. "INPUT • 1 Nrur REH n r-: M rt F. M ,, '•b '•'·~ l21ZWI HEAN VAL\Jf: RFH 5 UP.RC:lVTINr: GOSUB 1 2 00 GOTO 270 4 -;·5 43r! REH REH RFH 4 :''• '• 2.3 N•.>J Rl\Nl>11r-t• ........ w N LrnrNr LPRINT ~?~ FOR W•t LPRINT NEXT W ~9~ 6~0 61~ • TO N STEP 4 "N;:~" RVNS•"llR F (1 R W~ RF.. M REH 99:1 RE M REf1 REM fl F M f! E l1 991-, ?97 ??0 999 9'7~ 994 nrM nrr1 992 P:MO ?71 f, 3(1) 11-.I~> "NI .,. . tNl. • "N2 ..· • 1N 2 , "HF.-." IM E . ·w1-· "-11··w :: -··11-1 2 " 1 T fl N STEP 4 " 62Ci'J LPRtNT n<W> dHWH) oBIWt- 2 ).fqWt- : n t.,;: I MF. X T W 6 I 9 617 LPRll'H 610 LPRUH 616 LPRINT RVf"S .. " 1 IR IN .2 • "HEc-" tME, "WlE"" lWl, "l.J.·, ,. .. or B<W>1BCW+l),~CW+2),0CWt-~) • "NI.-," INl, Ni"NUMPERS" •• NUMBER " " b 11 61 .2 GC:tl•) 63~ 613 LrRJNT • •1 LPRINT" 6l4 LPRINf Mi"R/\l'll)(1H NVMPERS", "MVf1BER •)f7 615 LPRJNT • LPRINT LPRINT 5'72 591 LPRINf LPRHIT ~70 ~0111 +:=- N ._. R~TURN 1090 :-:'•C'I ~~50 nrM r. ( ·' ~ ) nf\N()nH NUMPT ns B<J:J>-..XN Nr:XT JJ F•)ll C -= l 7 l •) N,. lb PE1'1 l\Ol>ITJVE C(1NCiRVENTJf\l . IF B<C> < l GOTO 1:90 I ?91i'J NN < C > = P.· < C > 12?'j NFXT C J 3vili'J HF TURN 1 -~ R0 B ( C > ae. < C > - 1 l ~·fl~> NN < (' ) "'~ < C > l.c-08 G••TO l.?:it'I 1 77 171 1:':60 B<C>-=lf~<C-1 >+Btl. - 16> >IXX% 1;: ~;:_--, I I 1~3~ I ;_· .:·'.] RNl)(l7J) F(if!MttLI\ I .-: li'ltll nEM SlJr. n(1tJT I NE 1\01) I l I VL I.~ It.) Ft)ff .J :Jr t Tc) ti, 121:; m : H SUf'.Rl'llllNE lli'lt'IVI USE rUNCTJt'tN I 22t'I G•)SVB 1 ~00 XN ~ HN0<0> 1010 SVH•JllT 1 NF UT IL 1Z1 N(1 F\JNC I I (1N f-U·JI.) < 0 > RNO<l1!> Cl\l _CIJl\LTE UN(r1) 1H1 fll\Nf)IJM NVMP.('n<; ~E'T\..JfTN 171 Mm REl1 HEl1 1000 11710'3 l '. N Ul ....... REM svr..ni:1VT JNE N(IHMAL REH CALCUALTE N RANDOM NUHUEns 1410 FOR J•l TO N 1420 5VHa0 1~30 FQR 1~1 TO 12 l '•00 REM SVF!-R<:•UT I NE I t.'mt'I USE RNO < 0 > r\.JNC TI ON G•)SUB 1 ~017.1 REM B2 <F) RAtJ()(•M NUMP.F. RS P.. ~ f F > "'1- X N NEXT F Fnn A-1 TQ N ron 167VI NFXT A l 680 m= : TUHN 16~4 nrH F•)RMVLI\ T(I FV/\l.UATE lHE EXP•)NF:NTJ/\I_ RAN00H NVMP.F.RS 1655 REH LBA l..At1P..OA V/\L\JF.: F•)R EXPONFNTIAL OISTRIDlJTION lAAIZI P.fi\) "" ( - 1/I P.A>•LOG<f?.2(/\) > lf,/,"j NN(l\)eB(/\) 1 6 .20 l 625 1 6 :Jli'! l 6'•17.1 1650! I A I., lh~VI REH SUBROUTINF EXPONENTIAL 160'.l RF.H Cl\LCV/\L TE N H/\NO•)H NUMBEnS 1610 F=l TO N 1463 REM V HEAN VAL\.JE FOR THE Nl)RMAL OISTRIP.VTJ1)N l 1t66 nr:H so STl\NOl\RO DEVIATION F•)n THE N•)RHAL OISflllBVTl• '•N 1470 ~<J>•V+SD•<SUH-6> I'• 7~ NN < J > oA ( J > 1480 NEXT J 1-,30 RETURN l't40 Xl,.,.RNO<li'I> l '•SIZI SVH..,,X 1-+SVH l 1t60 NEXT I 140~ CJ) N ~ S\JP.-R•)l.H(NE GOSUP. 21'1>0 RF.H 2101.1 SORT NUMP.F.ns IS l\SCF.l'WING H l 'l. "' N/ 2 ME>• B < f-12% I Vl ~ l\VE S•)r~r N JN /\SCEf-10 I NG c·•Rl>F R NVMl?EHS NFX r .,....."' > ... :. "' 27'•<71 NFXT 1. 1 ~2 '"10 nF.T•JnN ';',:>,~ ;· ~· ;·"" e <, ' 2 211QI F""(lR l tm ;: TO N 2121ft F•)R J _:::.,. 1 Tl) l_ I 2 1.~· ~ REN e < L 1 > ANO e. <,J /. > R/\NOt)11 NUMI '. F II S 21 :-10 lF P, < L I > ' P. <,J ..... > THF:N 215<71 ~ 140 G(•f"r") 2.:: ::m /?I '1~ S/\,,,R.<L 1 > 21t<.lll H-:Ll-J2 .21 70 L9 == Lt /. IA!71 F(•n I\ I~ I T(1 N 2170 e < L 9 > ,_. !?. < L 9 - 1 > 2~' 0'1\ L 9,.,.1 9 t 221<71 rwxr Kl RE H REM SORT NUl1['.FRS AN 2 I Cll,, 21 ~·j HF.DI RE TURN 1 HF:: 7~il1<71 HF. HF..-<P.<Ht'l.>•~<H2Z+l))/2 RF.H 2._,-'>5 ? 1711<71 2Plf>li't GOTO 20Bt'I 2<71~10 20'•0 2030 H2'l.n(N+I 1/2 IF Nl'l....,M2'l. lllEN ."2 070 21rVt'.3 RF.:H ME lHE MFDIAN VAUJE ~7'020 lt~E t)Rl)E:R 7015 REH NIX AND M2 Z AUXILIAR V/\RIAP.t ES lO CALCU/\LTE 2~10 .20QI~ ?0t'10 REM Cl\LCVLl\TE THE MEDIAN MEDIAN ........ -......) N Tl) N IF B<J5> ~ -ME THFN NORMAL APPROXIMATION SD r..: SSl • .". ~ VALVE REH P- 1 24~0 RETURN 2 '• '•0 RI =SD• Z 2435 CALCUl\LlE THE THE THE VLAUE BETWEEN DEVIATION TIMES AP.-Sc)LUlE STl\NOl\RD CALCUAL TE 2429 nF.H IR NUNBER l)F RUNS 24~0 A•ABS<IR-EN> 2'•28 REH 2421 Z VALVE THE AT ~'l. NUMBER or HEOll\N REH THE TllE ss-<<2•Nl•N2>•<2~Nl•N2 - Nl - N2))/(((Nt•N2>l2>•<Ml•N2 - 1)) DEVIATION roR APPROXIMATION Tc) 2420 STANDARD r:c;iUl\L 2415 so OR THJ:: 11UHl\l'-I N ;: > THF.: MFll I l\N Tl If_ MF.O I l\N l\Pc)VE NORMAL REH nur~s TEST /\BOVE /\NO BELOW REH Nl)lll1AL ArPRl)XIHATION TESf l~ETURN (1eSERl\VT IONS 2350 24Ql6 REH EN MEl\N VLAUE FC>R lHE 2410 ENM(( 2 •Nl•N2)/(Nl+M2))+l 240QJ 2'•Ql'5 ;·: ~Mll 2:3"i0 N l =N ·- N2 23:3QI (1\..J< e. < 15 > Rl\NDc)H N\JMRFRS RF. 11 M2 NUt18ER c)F l)F3SERVl\Tl0NC) f'.EL'"'l-1 l~i"'l N2~1'C+ 1 23'•0 t.JEXT 15 2 34'5 rlEM Nt NUMP.EH (IF 2:3 ~ 1 2 .1 ;:: QJ 2310 FOR 231 S REM 231710 REM FI ND V/\1..UES ABOVE ( tH > l\NO f '. Fl. LEVEL HUNS OF ANU HEAN SIGNIFICANCE THE ........ co N flE:M Wl /\NO TF.:ST Vl\UJl::S FOR JR =- JR . . NEX f .:' OH'J 2 fJJr,, z n1.0 nF.nmN J I "' l ~n(1"1 MN<J> > ME lF 279171 272~ THEN 203 (11 Gt)f•) THE rz .?7:Jli'I Nl..IHP.r- R (•F lHE WALO - l-#l)f:"t)WI nEM SlJCROUT J NE Tt) CALCUAL TE R E M IR NUMBER c)f:" nUNS REM NN Hf\MOt)M N\JMP. E.l~S IF tlNl I >>MF.: THEN 1=2: IR•I • 1., 1 t 1 R ,,. J REl\JRN W.? m::M IR rtlr-: l'llJ11P.ER or- RUM<) ?7 : W1 F(•R J ... :,· 10 N .27'•0 l)N I Gl)T• ) 27 ')(7!, ·.;: 79Q! 27~0 117 NNl,J><HE THEN ;>e :JQ\ 2760 t ~.7: :'.. 7 7 fll I R = t f·H · t 27lHi'I r;1~ I 1) ;:- q :10 27Cl!6 271°' 27 .:t·Q) 27~3 27Ci'!0 2630 261171 Wt=-D<N21NI> 2f";:QI w_;: ,,HlNl oN2> 2605 ::?h00 RFH 1-11\L[) - W(•l_FOWI TZ mJNS RIJN T G >r ~ N ....... 29~~ B <,JI > ARE RE11 3~08 3J7~ REH SVE\ROVTJNE :1 t FJ0 Gt)SlJB .2 7 Qlr;:i, 319(1) GOT(• ~: 90 REM s venOVTINE G•)SUf3 2 :rnlft 316~ :-• l 7Cit 2700 2300 201l''H21 31~~ nF.H S\llHl•)\JfitlE Gt) f-1Vfl 2000 THEN ., 1'35 31 60 J ~~ N IF 31~0 31~0 ENTER TELL THE CALCUU\lE sonT CALCULATE fNPlJr ,J ... J+I NN<J>•XN ·w•)ULO YOU PLEASE XN rrHNT 3110 3120 BC~)aXN: INPUT • Wc:tULf) YOU rLEASE OIM B<N+2Ci'l>tNN<N~20> 312~ REM TESTING USER NUMBERS 2 9QI TllE MEl>ll\N TtlE NUMf?.ER NUMBERS TllE: RUNS OF RUNS NUMBERS /\RE OF NUHP.ERs· MANY NlJHe.ER HEDl/\N t-WW YOUR ME TllF.: NUMor::nr, CALCULATE 317199 G• I ' 0 2700 DEVI AT I •)N DF.:V If\ TES CALCUU\TE 23Ci'l0 SORT 2000 1 'tl'J0 NOR HAL STANOl\RD Rl\NDOM NUMCERS :1100 3102 :1'1) 1•0 r,n~;un SUROUT INE 2 70L'l REH ::n't:-· ~ rn :.m ;· Q! :10 Rt:.:11 SVC HOUT I NC G•)SIJB 2300 : mt~ 2111QIQ'I flEH SUP.f-WUTINE N•<HN'l. - 1>•2 31710~ :Jfi" I Q'I G<)SUB REM SUP.R(•llT I NE <it)')IJP. I '•'1lfl7 ~'7?~ 301110 FUNCTION RANOt)H NUMBERS 50 TllE THE 101210 USE 2970 NFXT J 29 7':') REM U MEl\N VALUE 2'1A0 U-.'31 S0=-.12~ 2990 NrMN'l. ARE SIJJ3ROUTINE 1 000 REH G(15UP. P<J>•XN 295~ REM NN<Jl) 2760 NN<,J>ef:>.<J> ·291,") 2'7'.'0 2? .l'l :;_:<;u ,Q! RN0<0> TO DISTRJBUTl0NS YOU GO I NG REH HIX OF RANDOM NUHP~RS FORM UNIFORM AND NON - UNIFORM INrur ·Hl)W Nl\NY NUMBERS DO YOU Wl\NT·1 N 2915 DIM P.<N+20),NN<N+20> 2970 MtJ'l.aN/2+1 2?30 FOR JaHN% TO N 2910 ENTER.lN 0 ........ w JS .?0~"'-'2 .'77 . l~:Jl '?'.'.'.>:176~ • • h~ I '•9b • 7 .•'•0lh I .71.070'7 .01.2.-.1-, • ""•Oll'>?O . I 2:11lJ"14 • 2~"1'/1.1 1•0 •.-: 4500'• • '•71 ,~ 0 ... • ~:l'10?2 .61flh67 2'5 EVIDENCE . 1~· ·,nqb . OW??.;1 .9 :HJ., :H3 . 7" l " I'• . ,,,, :22'• • ')924'.'l : J • s~c..isw1 . ,,;-,run • ~ 1 1:17(,110 • Ci'J4 76lb I I n.:-·h:l • l '•.]?I N.21.: NU11Bt.ns INSUF"f'71CIENT nANOc)H H l ... 2 '5 50 THFRE ~ • 9b I 300 0 0 • '7bR:J :11. .90~.C.76 . ,,.,3·s 11 • '•rlt7'1 l .OfJ0076 79 • ~hq:J11~ .6 1•17';',l • 7 I l.0'70 • 74:1 U12 • 70771,2 :~50'• 1 : '7~~· . ?'·~ 17 l .4760".i? • '..i~ I'• l • 1-;.2 7633 .671?47 • 7 'l~ .Z f.1'\ . 1n1Yn • •.~.::·.;0?'.3 . SAMPU? • li't .lb Hlli't l 1>0~)S6 20 THE • I 2 ·n,1t I • nut1~;... THAT .OhY)l~2 ME"" tjf7 f;VGGESl NVf-ll'-t::R T(I TESTING RND(O) FUNCTION IS NOl nl\NOt)t-1 w .914019 .6EJ7 :rn~ -~b~llllh • 3 I '• t> '• I .49:?J'3A • h2:J0'j2 • AR21.::! I N2r t::VIJ>F.NCE • 1991:;5 .34600 • '306396 • ~73h 1t~ 12 I I INSUFFICIENT Rl\NOC:•M N\Jl10ERS 15 .02:19719 NI" 2] THERE . ~30'11~ • 76',922 .967'527 -~7.,~~., • 2 1 " '• , ,, • '•3A0:11 • '3 I '• 'i' 3 HF. ,,., (1f !;UGGF5T NIJl1UE R T(I lllJNS,... "fHA 'l TESTING RND(O) FUNCTION 0 Sl\Hf'LF. " • '•.">11»~>73 • ~ : H'U11~ ."'\00?1b .n.-,9:;1t:J • 2. ."'.97 ::11 Win ·~ lHF- 15 Nor w;:... 0 Ul\NO(•M N w l 2:i 7 1 1 • E - l '• l)F IUJNS:w • 752'•61 .9~0007 3. I 2 110F.:- .617704 .R'7~72b • I~ • 10'79 l ~ • :-.:;~914 9C1_'~07b 2 •. 834?.:':E-0~ 3. 1t9 11"LIF.:-ll'l'i • ;·9~~20 l. 02349E- 10 3. 0 I 7 3 RE - I lr'I 7 .1{)086.lE- I 0 R. ,.,r,2471'.:'F. ·- l li't .1 • . l'J.-::41..E - '11, q. 0062:1'£-06 2. 2?6 116E - 0'3 N2• 24 NUMBER fL 3'•3 l'•E- t 0 l. 2092:1E-QI? q. 019~'•E-· 06 t. on:> l 7F. - 0~ 2. 7:1:.171£.-(;lt~ •:;. 75:1..J:JF.- 10 2.7~j:7RF.-l0 1 • :;-:5 N l"" '•9 NVMOF.RS l. AO~ I 7E:- · 0~ I A .0 11RltU • 9'• I b0'• 2 • ~ I 6 J '• E - l '• Qt~ 70171£-- 0~ • .OIJ~ '196? ..71.6 • 91 /.02:1 I .ut".l76?F.. -·l4 .]'10~WI~ ~I • 2.9707hE-'1t~ 2. I • ':1 7 I f, 11 E - a. rJ6~?7E-l.H1 ~E-06 I. I ~ ,~,,~E-0~ 2.1'70'• JE-0".> 2. R/ :H .l.E-05 • I ~:II 0 7 . 3 l ;: 0::~ 1 • 0. 770rl7E- H'I 791.~~UE-10 '•.I. 7 3 4. ~. 70~Rl.f::: - 0. 2 '• "'J 71, C - I 0 9. 09'1'19 'TE-l A I. 426~::u=--· t"' :J. 46~'•7E- I (;II 7. 90'if-t2F.:- l0 HE• 9 THE SAMPLE IS NOT RANOOH TESTING ADDITIVE CONGRUENTIAL METHOD __, w w 9 • ?f.19121~6 .A07~67 -~09Q)07 .Zli'>ll~:l 9 F.:VIDENCE 4. (IU'S 7"lf:-lil~ • 2:5 7 .2'> l • b:l l '70'• • 8I'•1 El? .91B26R N2= NUt1µF_H5 IN~\JrFICJE"NT RAN()1)f1 IS 6 • I '• 171 l :JE - 06 NI ... l A Tflrnr:: •6 l HUNS- THAT 0~U6 ~ !-1\HrLr • 7~ .... ~)9.] 08~,.,97 • 7. 241'•£. - i,,6 2. 7742.:lE-Cll'.) IS NOT .039626 • 4' 1 ~9"• • I 7 1e6 :J 1.!l • l TtlF . ·rc.n1, . l 1121 • ::-· A.2"• .?7 t1F "' N\Jl10EH IJF T(• SV<iGF.:ST TESTING ADDITIVE CONGRUENTIAL METHOD ' W::?.., I4 Rf\N()t)t1 +::> w __, JS • ., l ei 1.~ .~lCllQl"t~ • 51on.-. .5721'\9 . 1'>30701 .~:J03RI • ~ ;· 1 ~ ;· f, • snh .2 7h • 6611':}97 l. (118607 Vlt.i '504 03 ~H,,,c, I. .9:1971-.1 t. 0 .9710?2 • .0~'•11.ft • 7 '• '•Qt:l . ? I All 19 .6927~~ '.:1~ : • .0.:?;'7 • 910121 7'-'6~2'.'\ .617100'.l,C, .679367 12"l3 .~I . • '•I qq1,, 1 . L l8'75? • :J :J 709'• .497 22 2 • :lmi', :H? - • l 2 1• 3 <°: 6 • (11 :37 I 703 .21736 1 .~IQJ9UB - . 0 1• 5 3 4 I b .lC)"J79l HE:- 1? • 4 7901 l N7,... SlJGGF: S T tlUHOER c)F T (l .:176£161 1 • • : • I 077 • 4r-,9 .z ,<,2 • 1,9,c, ; ·oe ~1 F:VIOF-NCE -.1'°'7".HH .140724 • 22"')"J :m • :J :lr1n I h • : rn".:>~.l'l • 1, : J1• 7 3 • '•67b·b'.l NI,.. 31 INSUFrICIENT /-, 7. Rf\NO•)H NVMBr: ns Tt ·IF.. HE 7 RUNS ~ THA T ~M·trLE 2 '·~ 150 • 6 .l '• I'• I • 7 '• :J :• I~ • f3.2A:19 .9fllA'•7'1 I. 0~0.27 0 .~7~217 • '-' I 7 I Ul'.l -~100~? • 34'•663 • 4.Zh3fl/, • 4 't">?etb • 1te .:.:n 1 • -- .01107/,') .1'9hlFl'1 3 I nu:. TES TI NG NORMAL DISTRIBUTION 15 NOT nl\NDOM U1 w --' 2?~'1'•4 fHIN~i.,. ltll\T .607947 • "79819'• • 8M'l?l'l.2 • 97M11lt4, • 759AHI .fl:JOI • 8?677 -~ • '•~ ::? I 06 • ~I H 11'.Hl .ld701l .3 2 2 f-12"} MF:.r A :' I :;:- 1, 7 • bVl791t7 .~00'\ 2 3 . :m;-:-.:-ri •2 N:<: ., Nlll1[ff U t) I- TtJ SUGG[Sf '.)9"/'>''•" 1-,')8h67 l 5 ."J2?1~ :l5b9 I'• '•r~97 t t. I '• 13 INSVP:-FICJFNT EVJOF.:NCE Rl\f'H>t)M NIJ11P..ER5 I~ .874~3f> • . • • • . Nlr- 27 TllERF.: 0 Sf,Ml'l.E ~ .nb3 ~7 ~ .R~0H~2 .64~712 .~n~41n .46~719 .~24721 \.oil-= l '• lltf"" TESTING NORMAL DISTRIBUTION 15 N(1T W2m Qi Rl\l'H>(1H O'I w . 1"1 :•96 • • . • • : \71.·1,o 1t/.'9 1 tf;l.~ • • :J(,~h .1? " 0 .1. l 't7!c'l:l • 9<7'?/t>O 1~n? ·101• ~.77".">.i>~ • .'.') 2~314 .6 1tl607 • "•Qlh?'•fJ • ~1VIH2q6 • • '•'17 262 • 21 :111 : \r> • I M 11HQl7 • Vt70'.:.i9:l7 10.?0'• 7 I 324'1'4 .ll lh4 l :L?l• I ·1 q . "'"" n 2 s2 • lt't'•O I ..?li'Jlt • ~"'II, ·7 1, A I '• • VI 7 I " I :Vt • I H'l?~I • t t.1.21, • 2:.JI 7'.')0 • '11'• .'' B712 m11-1r,.., .. Q13 bt, ~· I+ ~. 'rn~1·;1,r:_ • I • (l],:17'.\7 I 2 l'lf. ,., 4.51~"iF - ~ll ;.:~ NUMUr::n or· 2. 69:J l :JE - 1.'U .l?U::Jh.i' h • 04 79:. : 6~ N2 .. R:\NIK1M MUl1"'F ll'i NI,.., ·7 3 '•'3 TESTING EXPONENTIAL DISTRIBUTION ,2(,f)~9b " • "1'+0'11?2 • H'•fJ.:>(,,4 .'J\i00? . ~n 1 ·. : .J'• • • 1 9 I'• I b • vi•1-.:•t+76 . I .?Id•'\ :1 • "''· I •• 9EJh • 0.7?bOln .t'l'•'•61<1(, 17 w -......J 15 1NSUrFICIENr EVIDENCE .5'•1872 • ~'· 1091 • 1021 ?? • =1'•9 .10f, .171"H73? .t9bl97 .372116 N2• A .0t::J06~7 NI• R lb RANO•)H NUt1BF.. ns THERE RUN~· THAT • 3;-:i I I~ .~7610? • 21> I I • Tl~7 2 ll'I'• • 11mn ·1 f"tf:""' NUMBER OF TO !)lJGGEST '• SAMPLE • I 7".>'• 7".') • 3""'117.L:J • :109l·H 9 I. 1./17116 WI .., 9 THE TESTING EXPONENTIAL DISTRIBUTION 15 NOT w2- t :J Rf\Nl)•.1M 00 w 1;n:lT1 ~ 4 • '• 2? 113 l • '• 71i•)l, 00 .'537 7 6"1 • ~R9:1'•6 • 6'1'.i .;: I :J • 7967Yl l 7 l 4£H1 • 2 1:t'l?7 • 34 . H,'• 7 • .. 20 . '•b 77<7 !>l\Hl'l.E .~1744 :l • A9lt''.HJ • l.rl ' • 17' =~ • l>'ilOVlt'IU 71, l .'.;7/l?t. ~ .: 'l • • b3l• • 761ii·1.;:~ • q :1qb7'• . "'•'•0? .1 .~17'1)7:J • :1 ~ 11 l ~ '} • 424'.'"1l7!fJ • ;'f.9 ;'II'• • I '•'•::18.7 ...~.~ l I IE .40:3677 • ~~ .:""90 2 • "597 '"73 • blt905'7 • A4.142 HIJN!I·: n "' T . J ~1 I '• 'l :J . ,, ; ·J??'t • '•A .2 3 11 .:' • I Vlllll I . .-·--, ; ·via7 t1f " ., •) F f ) \JGGI : !:; r N\H1l' E 0 T(I • .2 fl:J:l99 • 1,;;_· 1 fJn3 • 4 ,, l ::; : 1.~ • ;;.· 1 3</'t 1 • a0 .'1nn N~ 20 Nlr. I NfjUFF I c I E NT E V I DE.NC£ Hl\NOOH NUf1l'Cnr, Is '•li't 11 If-. nE 19 N• q f1Af-ll)f1H TESTING A MIX OF UNI FORM AND NON-UNI FORM DISTRIBUTIONS ~ w 1"1' • '• '· 'J l 5:} • ~'•9470 • b7'30'1A - 17U SUGGEST RiJNS-e 1111\T .~171.b?. .~7J44:l .0i1a~7 .49'JQl0J ~~Cl2:Jl • • 6A 711\'18 ~,,63 :1:1 .~~~~73 - .00~~j~2 t1F..-: NUNBF:R c)F T11 .31931> EVJOFNCE .£'1391006 N~"" 1171 INSUFFICJF.NT RAND•"•H NlJl1Rl': RS IS '7. J93~l'•F: • l347171~ Nie 20 Tltf"RF: b Sl\MF'LE • • 9q~1, I 1 626H : ~4 • l ~61 l .7:. • '·~::'81 • ~:J l W7:l WI " I l TllF. IS NOl •~ Rl\l-AU1)t1 w;:- TESTING A MIX OF UNIFORM AND NON-UNIFORM DISTRIBUTIONS +::CJ • , , , 7 : ~'1 .777no .???'1? 193/,~ • 2'lFJ96 • ~:Jn~··9 . h71iT1 .7 ~ 019 • 9')1~") "' SAMPLE • ?'1'1'1'1 Ci'I . nnrmn -~r11 • ':\','1<]'1 • ~Fl -, ..,'.:. -~60?4 • 7 ·'•771i0 • 37 1•6? . lifUb:l .AJ0 .19 • .;.'It .01~<}7 .llJI 2 .T l WI., .2 l THF • 2 .::· ·190 nlJNS "' ltll\T • I I l ti • 2~n~18 ·'•70'11 :f"! . ..., ''• .0 ..:' l 'Jb .01111 . 01'170 • Ci'l I fflh 2~:1 ~F.-Ci'14 • 37'• ,,~: • t'I I Mr-= Nlll1['.J:: R t)F T(I SUGGEST l. N2!9 EVIDENCE IE -Ci'I:; 19 17 IM~.;uFFIClFNr ru\N0•.1f1 NUHBF.: RS IS .(lll7:16 N1.,.., 3'3 THFRF TESTING USER NUMBERS IS N•.11 \.12- ,., FU\tJDOH +::- •2 •2 Nl,.. lei " ' NUt10ER5 . 2 0 • '2 .2 HE"• • 2 '1t l • 2 N2a NUl10En IJF RUNS,... .2 THE SAMPLE IS NOT RANOOH TESTING USER NUMBERS 0 • .c. •2 ..., ... 0 WL .. l7t N .+:::> APPENDIX C NORMAL AND WALD~WOLFOWITZ TABLES 144 TABLE 2 WALD-WOLFOWITZ TABLES lio . 0 ~ 5 2 3 4 5 2 2 6 7 8 9 I0 I I 12 13 14 8 9 9 9 9 15 16 I 7 18 19 20 2 3 4 5 6 7 2 2 3 3 2 2 3 3 3 23 2 3 3 3 3 4 4 4 4 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 12 13 2 2 2 6 6 2 2 3 5 2 2 3 6 6 6 14 4 4 5 5 5 6 6 7 7 7 7 15 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 n 7 5 5 5 6 6 6 6 6 6 6 6 2 3 4 5 6 7 9 9 10 lo JI 8 9 10 11 2 16 17 I~ 19 20 5 s 5 s 6 7 7 8 7 7 8 7 7 7 8 8 8 8 8 9 8 9 I0 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 9 JO li e 11 ; n 2 3 4 1 : I I s 6 7 8 5 7 9 11 12 13 14 15 16 17 18 19 20 ,I 1. 12 12 13 13 11 12 JO JO II 11 12 !2 13 13 13 14 13 I.+ 15 16 17 18 19 20 19 19 20 20 21 21 22 22 20 21 21 22 22 13 23 21 22 23 2:! 23 23 24 23 24 24 24 s 12 8 6 7 9 10 q- 10 10 11 11 11 11 11 II 12 4 I s Is 1 s ! s -: s I5 7 9 5 11 9 10 10 JO 10 10 12 10 II 12 13 s 1 9 11 12 13 13 5 7 9 11 12 13 14 5 7 9 I 1 12 13' 14 5 7 9 11 12 13 15 5 7 9 II 13 14 15 5 7 9 11 I 3 14 15 5 7 9 11 13 14 IS 5 7 9 II 13 15 16 5 7 9 11 I 3 15 16 5 7 9 JI 13 15 16 5 7 9 II 13 15 16 5 7 9 11 13 15 16 14 15 15 15 16 15 16 16 17 16 17 17 17 17 18 17 18 17 18 17 19 17 19 16 17 18 18 18 18 19 I9 19 20 20 18 19 19 20 20 20 21 21 2.+ 24 25 25 25 26 25 26 26 27 SOURCE: Isaac N. Gibra, Probability and Statistical Inference for Scientists and Engineers (Englewood Cliffs, NJ: PrenticeHall, 1973), pp. 299-300. ar P \Z . Y ~6U33 .91 /6'/J .9 10305 .f. 1 017 I . 9~ .04 .05 = .990650) .!F9l50 . 9 ~ A /J6 . ~r·ue 11 .!P8 :!59 } 1t1;~18 .9 7 1144' . 9~5R5!:1 . 91~4!;7 .9 ~ 2Ci!J6 .!l:'o:!53 . ~07itr, .CJ"19J2 .!J81l\2 .93812 .!.M950 .9590'1 .!l67f2 .91 J81 .~n.01 .8500 .072!J .l1n5 .9tJ'.JR8 .7703 .79!.I!> .8i64 .7JR9 . 70!)4 .5160 .!>!i!:-7 .5!J-lf' .En! .f70l) .eon . 9 ~' 8!.i7 .9 15975 .9 -' 70J(l .9 1 .1 814 . 9"1M1f .9'UR5fi .9~4fit4 1 .97982 .98412 .S8778 .9 :'0613 .!.16784 .97441 .9!J~94 .93943 .95l)5J .8511 .tl749 ,(1944 .91149 .926"7 .8289 .1422 .77Jit .1oee .fHJG .6368 .5~87 .!'•!>'t6 .5199 .. ,· ·:·:. .. , . I-~ \ 166 .918893 .9 7 fM6Z .9'7111) .9!7U82 9 ~ 6093 .9~.i .970JO · .98461 .98009 .9 "0RGJ .9'3U53 . 97~00 .94062 .95154 .9G080 .968!.i6 .P.!iM .8770 .0962 .91309 .92785 .7454 .7'164 .R0!>1 .8315 .7123 .!l6JO .6016 .6'106 .6772 .5239 .01 l) I - . ~r7!M8 . 9 ~ 1'511 .9 1 0930 . 9 ~ 7197 .9'4915 .9'6207 .91!077 .!JB500 .91J840 .9 1 11ee 9 1 3244 .97558 . ~6926 .94179 .95254 .96164 .8577 .8790 .8980 .91466 .92!J22 .1Hi1 .7486 .7794 .0078 .8:140 .5279 .5676 .6064 .t144J .6000 .'J7 l ci .01 .9 ~ 860~ .!FR9C:5 . 9~8C'12 .9!0999 . 9 ~ 85!i9 .9172112 .9'5201 _915417 .917:.t65 .9 7 UOH .9~3ft13 .9 .. 1576 . 9U09~ .98169 .9fl574 .94408 .95'149 .!'6327 .970fi2 .91610 .8661 .0810 .90l "7 .91774 .9Jl09 .7R':>2 .A133 .8J09 .7~it9 .7224 .5359 .6753 .6141 .6517 .6819 .09 .9 25060 .!' 26)19 _9113o1-1 .9 7 3431 .98124 .9%31 .98870 .94295 .95352 .9ti216 .9699:> .97615 .8599 .8810 .8997 .91 fi21 .93056 .71!JO .7511 .7823 .9106 .8J65 .5319 .5714 .6103 .6480 .68"4 ~_ii.~;. ·._ .r;~>· - - Aren SOURCE: Isaac N. Gibra, Prob ab i1 i ty and Statistical Inference for Scientists and Engineers_ (Englewood Cliffs, rtJ: Prentice-Hall, 1973), p. 561. . ~.FOli50 . 9 ~81:J4 .9 ~ 7"115 f!>•l9 .!;:r; 13fi 1.1 J .8 2.9 3 .0 _!1''6liJfi .9:'7523 .9:'H193 9:· n1;o4 . :l ~ 54'1J 9 7 5 :J:i!I . !.l ~ IJr.J:t .9~5fl•)4 . ~J.':.!014 .!J'Jt'63 . 9!] '/~0 l.I 2.e .9'4297 .91!;731 .91if1J: . !lf!'J!>(J . 9 1 1802 .983'11 .91J713 .!J!0097 . 9~2 "51 .978~2 .97J~O .9J6!J!J .94845 .!J5818 .9fifi38 .!'8~21) .9/U31 .98 '.JllO .~urn 19 .9!!!.183 .91?240 .9:1!17-t .9"73(? .!l5n.J .96!Jlil 97257 .!:ln:Z•J .P4'85 . U7UR .890'/ .90824 .913fi4 .82JO .796 '1 .70t9 .7357 .767J .6bt;4 .6nJ • )911) .6110 .5517 2.J J.4 .977711 .!1'1257 • 1 t;J6it5 . 977~5 .9 7 HlJ . C)lj4'J!j . '.JR21·1 .90610 2.0 J.1 1.:t. 1.1 1.9 . 9 ~l631 .934"8 .!M6 .!0 .8iiCi!J . ~0·1!.10 .92073 .~1914 .8-t61 .7M1 .7939 8212 .7J:1" .6985 .OJ . 918650 -----------·- - ---- - -·- - UfltJ6 .'11319 .9452() .9554) .:Jfl-107 .971:l'.J t.I 1.1 .oz .5080 .5478 .5R71 .6:1!>5 .tW2il - .fltlUR . 90658 .6Y50 .71Yl . 7fi" 7!.JH: .IJlffli .6591 .5040 .5":10 .su:1 2 .fP17 --- .l>1 1 - « .04'1tl .86b5 1.1 1.3 1.4 1.0 1.1 1.l ·' .8 z: .8413 .8fi43 .8049 .90310 .n51 . /!>IJO .7001 .Ul59 .I .1 6915 .I ....1 .z 5398 .5793 61H .6!)!14 5~ .. < z, -• l ~- Entry (Note: rABLE D-l'm•t. NORMAL TABLE TABLE 3 ..t::a ...... (.11 LIST OF REFERENCES Chacko, George K. Computer-Aided Decision-Making. American Elsevier Publishing Co., 1978. Daniel, Wayne W. Applied Non-Parametric Statistics. Houghton Mifflin Co., 1978. New York: Boston: Emshoff, James R., and Sisson, Roger L. Designing and Use of Computer Simulation Models. New York: MacMillan Co., 1970. Federer, Walter T. Co., 1955. Experimental Design. New York: MacMillan Gibbons, Jane D. Non-Parametric Statistical Inference. York: McGraw-Hill Book Co., 1971. New Gibra, Isaac N. Probability and Statistical Inference for Scientists and Engineers... Englewood Cliffs, NJ: PrenticeHa 11, 1973. Gordon, Geoffrey. The Applications of GPSS V to Discrete System Simulation. Englewood Cliffs, NJ: Prent1ce-1"lall, 1975. Graybeal, Wayne J., and Pooch, Udo w•. Simulation: Princ itJ es and Methods. Carnbri dge, MA: t~1 nthrop 'Pub I 1 she rs, 1 0 . GPSS Primer. Greenberg, Stanley. Sons, 1972. New York: John Wiley & Hajek, Jarsolav. A Course in Non-Parametric Statistics. Francisco: Holden-Day, 1969. San International Business Machine Corporation. "Random Number Generation and Testing," In Reference Manual C20-8011. New York: 1959. Kunth, Donald E. The Art of Computer Programming. Vol , 2; Seminumerical Algorithms. New Yor~i Addison-Wesley Publishing Co., 1969. Landauer, Edwin G. The Effects of Random Numbers on Appl i cations." Research Report, University of Central Florida, 1980. 11 147 Lewis, Theodore G. Distribution Sampling for Computer Simulation. Cambridge, MA: Lexington Books, 1972. Phillips, Don T.; Ravindran, A.; and Solberg, James J. Research. New York: John Wiley &Sons, 1976. Reitman, Julian. Computer Simulation Applications. Wiley-Interscience, 1971. Operations New York: Schmidt, Joseph W., and Taylor, Robert E. Simulation and Analysis of Industrial Systems. Homewood, IL: R. D. Irwin, 1970. Shannon, R. E. Systems Simulation: ·The Art and Science. wood Cliffs, NJ: Prentice-Hal1, 1975. Snedecor, G. W. Statistical Methods. versity Press, 1963. Ames, IA: Tocher, K. D. The Art of Simulation. sities Press, 1963. London: Engle- Iowa State UniEnglish Univer- Wald, A., and Wolfowitz, J. "On a Test Whether Two Samples Are from the Same Population. 11 Annals of Mathematical Statistics, Vol. 11 (May 1940): 68-84.
© Copyright 2026 Paperzz