Steady-State Error for State-Space Models

Outline
Steady-State Error
for State-Space Models



M. Sami Fadali
Professor of Electrical Engineering
University of Nevada, Reno


Steady-state error for state-space
equations.
Error due to step.
Error due to disturbance.
Output tracking.
Perturbation model.
1
State-Space Equations

2
Block Diagram
State-space model
•
•

Feedback control

Closed-loop dynamics

Square system:
,
Closed-loop system with state feedback.
Preamplifier with gain .
square matrix.
3
4
Steady-State Error


Error due to Step
(square)
Assume stable closed-loop dynamics
Final Value Theorem (limit exists)

All inputs step functions:

Internally stable system implies nonsingular
.
→
→
→
(square)
(square)
→
→
5
Gain
Zero Steady-State Error: Step
Assume a square system (includes scalar)
→


Assume stable closed-loop system.
For
(square: recall matrix is full rank)

For

→

6
, can use a (right) pseudoinverse
for
For
: zero error by
adding a preamplifier with gain to make
7
8
Transmission Zero
SISO Example



Closed-loop transfer function (zero at 0)
Closed-loop transfer function (without preamp.)
Step Input:

Step Response:
If the matrix is singular, there exists
→
i.e. the system has a transmission zero at zero.


→
Cannot follow a step.
Cannot track a step input.
9
10
Evaluate Error Due to Step
Example: Step Input
1
0
0   x1 (t )  0
 x1 (t )   0
 x (t )   0
0
1
0   x 2 (t )   0 
 2 
    r (t )

0
0
1   x3 (t )  0
 x3 (t )   0
 x (t )    156  139  53  11  x (t )  1 
 4   
 4  
→
→
 x1 (t ) 
 x (t ) 
y (t )  100 0 4 2 2 
 x3 (t ) 
 x (t ) 
 4 
Can make steady-state error zero by adding a
preamplifier of gain
2
11
4
53
100
139
156
11
12
Example: Error Due to Step

State-space Model

For zero steady-state error
Effect of Disturbance

Linear system: use superposition.

Transfer functions
13
Example: Error Due to Step Disturbance
& Step Input
Total Steady-State Error
_
1
0
0   x1 (t )  0
 x1 (t )   0
 x (t )  0
0
1
0   x2 (t ) 0
 2 

 x3 (t )   0
0
0
1   x3 (t )  0
 
 


 x 4 (t )  156  139  53  11  x4 (t ) 1
 x1 (t ) 
 x (t )
y (t )  100 0 4 2 2 
 x3 (t ) 


 x4 (t )
4 s 3  62 s 2  178s  788
Td ( s )  4
s  11s 3  53s 2  139 s  156
Assume a square system
→
→
14
→
0
0  r (t ) 
1 d (t )

0
→
15
16
Steady-state Error
Output Regulation

→

Design a regulator for
∗
Equilibrium:
∗
∗
∗
∗
→
in the steady state.
∗
∗
∗
∗
∗
∗
∗
∗
→
17
Example
Solve for the Reference Input

Equilibrium:
∗
∗
18
∗
∗

∗
∗
Find the equilibrium state and reference input
for a steady state output
∗
or

∗
For
, the solution exists if the matrix is
invertible (full rank)
∗
∗
∗
∗
∗
∗
∗
∗
∗
or
∗
Reference input
19
∗
20
Perturbations from Equilibrium
Perturbation Block Diagram
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
21
Error Convergence to Zero
∗
∗
∗
∗
∗
Error converges to zero if the closed-loop
dynamics are stable.
23
∗
22