overview on water electrolysis for hydrogen production and storage

OVERVIEW ON WATER ELECTROLYSIS FOR HYDROGEN
PRODUCTION AND STORAGE
Results of the NOW study » Stand und Entwicklungspotenzial der Wasserelektrolyse
zur Herstellung von H2 aus regenerativen Energien“
Tom Smolinka1, Jürgen Garche2 , Christopher
Hebling1, Oliver Ehret3
1Fraunhofer-Institut
für Solare Energiesysteme ISE
2FCBAT - Fuel Cell and Battery Consulting
3NOW GmbH
SYMPOSIUM - Water electrolysis and hydrogen as
part of the future Renewable Energy System
Copenhagen/Denmark, May 10, 2012
© Fraunhofer ISE
FCBAT
Agenda
 Introduction to water electrolysis
 Technology (stack and system)
 Alkaline electrolysis - AEL
 PEM electrolysis - PEMEL
 High temperature electrolysis - HTEL
 Large water electrolysis plants of the last century
 Today’s commercial systems
 Manufactures of electrolysers
 Technology outlook and R&D demand
2
© Fraunhofer ISE
FCBAT
Electrolytical Water Splitting – for more than 200 years!
 Invention of voltaic pile (1799) enabled
investigations of electrolytic approaches
 Main principle demonstrated around 1800 by J. W.
Ritter, William Nicholson and Anthony Carlise
 Today 3 technologies demonstrated:
 Alkaline electrolysis (AEL)
Test set-up of Ritter
 Electrolysis in acid environment
(PEM electrolysis - PEMEL)
(SPE water electrolysis)
 Steam electrolysis
(High temperature electrolysis HTEL or SOEL)
2 H2O  2 H2 + O2
Alkaline electrolyser around 1900
3
© Fraunhofer ISE
Johann Wilhelm Ritter (1776-1810)
Picture credits: all www.wikipedia.org
FCBAT
1890s: Hydrogen Production by Wind Power!
 Danish inventor, wind
mill pioneer and teacher
at Askov folk high school
Poul la Cour (1846 - 1908)
 First wind mill in 1891
for rural electrification
 Hydrogen storage system
 Alkaline tubular
electrolysis cells
 H2 / O2 tanks
 Gas lamps for
school building
(1895-1902)
 (autogenous gas
welding)
4
© Fraunhofer ISE
Source and picture credits:
en.wikipedia.org/wiki/Poul_la_Cou
http://www.poullacour.dk/engelsk/menu.htm
FCBAT
The Self-sufficient Solar House in Freiburg …
 … begin of R&D activities in PEM
electrolysis at Fraunhofer ISE
 First developments in the Eighties
 Field test: 1992-1995
 Complete hydrogen storage
system consisting of:
5
© Fraunhofer ISE

PEM electrolyser

(30 bar / 2 kWel)

H2 and O2 pressure tanks

PEM fuel cell
FCBAT
The Self-sufficient Solar House in Freiburg …
 PEM electrolysis unit
PV
panel
Electrolyser
Battery
Fuel
Cell
DC Load
Inverte AC load
r
(30 bar / 2 kWel)
 H2/O2 storage tanks
 PEM fuel cell
Electrical usage
Regenerative fuel cell:
 No mech. compressor!
Electricity
Storage
Gas
tanks
Heat
Cooking
Heating
6
© Fraunhofer ISE
FCBAT
Thermal usage
Warm
water
Electrolytical Water Splitting: Partial Reactions
Technology
Temperature range
Cathodic Reaction
(HER)
Charge
Carrier
AEL
40 - 90 °C
2H2O  2e   H2  2OH 
OH-
2OH  
PEMEL
20 - 100 °C
2H   2e 
 H2
H+
H2O  12 O2  2H   2e 
HTEL
(SOEL)
700 1000 °C
H2O  2e   H2  O 2
O2-
O 2 
Anodic Reaction (OER)
1
2
1
2
O2  H2O  2e 
O2  2e 
Ni/PSU compound
Raynel Nickel
Vermeiren et al. 2009 Martinez et al. 2010
7
© Fraunhofer ISE
~10 m
Fraunhofer ISE
~180 m
Zahid, WHEC 2010
~10 m
FCBAT
Stack Design Alkaline Water Electrolyser
 Today bipolar filter press
design (several 100 cells)
 Atmospheric - 30 bar
 Active cell area < 4.0 m²
 0.2 - 0.45 A/cm² @ < 2.4 V
IHT
NEL Hydrogen
Hydrogenics
Hydrotechnik
Diaphragm
Wire gauze electrode
Bipolar goffered plate
Schematic of a Lurgi electrolysis cell
8
© Fraunhofer ISE
FCBAT
Accagen
System Design Alkaline Water Electrolyser
 Lye loop (KOH)
 Gas-lye seperator and scrubber
 Power electronics
 Compression und fine purification
9
© Fraunhofer ISE
Picture credits: NEL Hydrogen/Norsk Hydro
FCBAT
Stack Design PEM Water Electrolyser
 Only filter press design
 Pressure tightness:
up to 207 bar
 Active cell area:
10 - 750 cm²
Proton
Giner
Kurchatov
Siemens
 Current density:
up to 2.5 A/cm² @ 2.2 V
 Cells/stack: < 120
 H2 production rate/stack:
2 Nl/h - 10 Nm³/h
CETH2
Helion
ITM Power Fraunhofer ISE
10
© Fraunhofer ISE
Hydrogenics
h-tec
FCBAT
Hamilton
System Design PEM Water Electrolyser
 Comparable to AEL
 Simpler system design
 Pressure-tight construction
11
© Fraunhofer ISE
FCBAT
Stack Design High Temperature Electrolyser
 No commercial
products
Kyushu University (25 cells) Idaho NL (720 Cell / 5.7 Nm3/hr / 17.5k W)
 Bipolar construction
 No pressurised stacks
 Cell area: ~ 100 cm²
 Current density:
0.3 - 3.0 A/cm²
Picture credits: O‘Brien, RelHy-Workshop 2009
12
© Fraunhofer ISE
Picture credits : Zahid, WHEC 2010
FCBAT
General System Layout for HTEL
 Only Concept
 Coupling with
HT source
(nuclear reactor)
 Electricity
generation with
steam turbine
Picture credits: Zahid, WHEC 2010
13
© Fraunhofer ISE
FCBAT
Realised (Alkaline) Water Electrolysis Plants
Location
Capacity
Power
[Nm³/h]
[MWel]
Zimbabwe /
Kwe-Kwe
21.000
Norway /
Glomfjord
27.100
Norway /
Rjukan
27.900
Egypt /
Aswan
32.400
160
BBC/DEMAG
132
1965 - 70
Peru / Cuzco
5.200
22
Lurgi
7
1965
Canada / Trail
21.000
?
Trail
?
?
30.000
~ 142
De Nora
?
- 1961
India / Nangal
14
© Fraunhofer ISE
Type
Modules
Construction
time
~ 95
Lurgi
28
1971 - 73
~ 142
Norsk Hydro
ca. 150
- 1949
(decommissioned 1980)
~ 142
Norsk Hydro
ca. 150
- 1929
(decommissioned 1980)
FCBAT
Realised (Alkaline) Water Electrolysis Plants
Picture credits: Barisic - ELT, 2008, NOW-Workshop
15
© Fraunhofer ISE
Picture credits:
Fell - StatoilHydro, 2008, NOW-Workshop
FCBAT
Commercial Available Electrolysis Systems
 AEL
 1 - 760 Nm³/h
 5 kWel - 3.4 MWel
 PEMEL
 0.01 - 30 Nm³/h
 0.5 - 160 kWel
Wasserelekrolyse
Hydrotechnik
Hydrognics
SAGIM
NEL Hydrogen
 PEMEL grows!
 In 3 - 5 years:
 Up to 250 Nm³/h (?)
 Up to 1.0 MWel (?)
Schmidlin
16
© Fraunhofer ISE
ITM Power
h-tec
Proton ES
FCBAT
Treadwell
Main Players in Water Electrolysis
Mature
Advanced
R&D
© Fraunhofer ISE (2011-11)
Alkaline Electrolysis
PEM Electrolysis
No claim to be complete!
17
© Fraunhofer ISE
FCBAT
Typical Today‘s Applications
Apllication
H2 Generator for jewellery, laboratory and medical engineering
Typical size
electrolyser
5 - 500 Nl/h
Generator cooling in power plants
5 - 10 Nm³/h
Hydrogen filling station
5 - 60 Nm³/h
Feed Water Inertisation (BWR water chemistry)
50 Nm³/h
Float glas production (protective atmosphere)
50 - 150 Nm³/h
Electronics industry
100 - 400 Nm³/h
Metallurgy
200 - 750 Nm³/h
Food industry (fat hardening)
100 - 900 Nm³/h
Military und aerospace
18
© Fraunhofer ISE
< 15 Nm³/h
FCBAT
 Manufacturer's data
 No standardised
data
 Differernt pressure
and H2 purity
 Specifications for
steady state
operation
Spez.
Energieverbrauch
[kWh/Nm³
H2]
Spec.
Energy
Demand[kWh
el / Nm³ H2]
Specific Energy Consumption – Efficiency of Electrolysers
10,0
9,0
AEL(atmospheric)
(atmosphärisch)
AEL (pressurised)
(Druck)
PEMEL Stack
PEMEL System
8,0
7,0
6,0
5,0
4,0
3,0
Thermodynamik @ STP
© Fraunhofer ISE
2,0
0,010
0,100
1,000
10,000
100,000
Wasserstoffproduktionsrate
Hydrogen
Production Rate [Nm³/h]
[Nm³/h]
19
© Fraunhofer ISE
FCBAT
1000,000
 Energy consumption
will not be reduced
significantly in the
future
 Higher operating
pressure
 High power
densities due to
cost pressure
 Dynamic operation
(start/stop, standby)
Spez.
Energieverbrauch
[kWh/Nm³
H2]
Spec.
Energy
Demand[kWh
el / Nm³ H2]
Specific Energy Consumption – Efficiency of Electrolysers
10,0
9,0
AEL(atmospheric)
(atmosphärisch)
AEL (pressurised)
(Druck)
PEMEL Stack
PEMEL System
8,0
7,0
6,0
PEMEL
AEL
5,0
4,0
3,0
Thermodynamik
@@
STPNTP
Thermodynamics
© Fraunhofer ISE
2,0
0,010
0,100
1,000
10,000
100,000
Wasserstoffproduktionsrate
Hydrogen
Production Rate [Nm³/h]
[Nm³/h]
20
© Fraunhofer ISE
FCBAT
1000,000
Where Do We Have R&D Demand in the Next Years?
 AEL
 PEMEL
 Increasing current
density
 Increasing life time
of materials/ stack
 (Increasing pressure
tightness)
 Scale up concepts for
stack and system
 Faster dynamics of
the complete system
(BOP)
 Decreasing costs by
substitution or
reduction of
expensive materials
 Higher part load
range
 Decreasing
production costs
through economies
of scale
21
© Fraunhofer ISE
 HTEL
 Development of
adapted electrodes/
electrolyte for SOEL
 Cell and stack design
 Proof of life time
 Pressure tightness
 Cycling stability
 (Decreasing
production costs
through economies
of scale)
FCBAT
Back to the Future!
75 MW AEL module, concept EdF (30 bar, 160 °C)
(LeRoy 1983, Int. J. Hydrogen Energy)
HT electrolysis plant, draft Brookhaven NL
(Source: Zahid 2010, WHEC)
AEL plant - concept
578 MW, 248 module
Draft Norsk Hydro
(Source: Fell/SHT 2011
NOW-Workshop)
58 MW PEMEL plant, concept GE
(Nuttall 1977, Int. J. Hydrogen Energy)
22
© Fraunhofer ISE
FCBAT
Thanks a lot for your kind attention!
Dr. Tom Smolinka
Fraunhofer ISE
Heidenhofstr. 2 / 79110 Freiburg / Germany
Tel: +49 761 4588 5212
[email protected]
www.ise.fraunhofer.de
Questions?
Executive summary (only in German):
http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/
NOW-Studie-Wasserelektrolyse-2011.pdf
23
© Fraunhofer ISE
FCBAT