DSP First, 2/e
Lecture 7
Fourier Series Analysis
READING ASSIGNMENTS
This Lecture:
Fourier Series in Ch 3, Sect. 3-5
Also, periodic signals, Sect. 3-4
Other Reading:
Appendix C: More details on Fourier Series
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
3
LECTURE OBJECTIVES
Work with the Fourier Series Integral
ak
1
T0
T0
x ( t )e
j ( 2 k / T0 ) t
dt
0
ANALYSIS via Fourier Series
For PERIODIC signals:
x(t+T0) = x(t)
Draw spectrum from the Fourier Series coeffs
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
4
HISTORY
Jean Baptiste Joseph Fourier
1807 thesis (memoir)
On the Propagation of Heat in Solid Bodies
Heat !
Napoleonic era
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fourier.html
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
5
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
6
SPECTRUM DIAGRAM
Recall Complex Amplitude vs. Freq
1
2
X
4e
*
k
j / 2
–250
7e
j / 3
10
7e
Xk Ake
–100
N
x(t ) Xa0 { aXkk e
k 1
Aug 2016
4e
j k
0
1
2
j / 3
100
j 2 f k t
1
2
1
2
X k ak
j / 2
250
* j 2 f k t
aXkk e
© 2003-2016, JH McClellan & RW Schafer
f (in Hz)
7
Harmonic Signal->Periodic
x (t )
a e
k
j 2 k F0 t
Sums of Harmonic
complex exponentials
are Periodic signals
k
PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:
2
2 F0 0
T0
Aug 2016
1
or T0
F0
© 2003-2016, JH McClellan & RW Schafer
8
Notation for Fundamental
Frequency in Fourier Series
The k-th frequency is fk = kF0
x (t )
j 2 k F0 t
a
e
k
k
j 2 f k t
a
e
k
k
Thus, f0 = 0 is DC
This is why we use upper case F0 for the
Fundamental Frequency
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
9
Harmonic Signal (3 Freqs)
a1
a3
a5
T = 0.1
x (t )
5
j 2 (10k ) t
a
e
k
k 5
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
11
Periodic signals->Harmonic?
x (t )
a e
k
j 2 k F0 t
k
Can all periodic
signals be written as
harmonic signals?
Fourier’s contribution was to postulate the answer is yes
Called Fourier Series
For heat transfer it is easy to solve PDE for sinusoidal
sources, but difficult for general sources
Made formal by Dirichlet and Riemann
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
12
STRATEGY: x(t) ak
ANALYSIS
Get representation from the signal
Works for PERIODIC Signals
Measure similarity between signal & harmonic
Fourier Series
Answer is: an INTEGRAL over one period
ak
Aug 2016
1
T0
T0
x (t )e
j0k t
dt
0
© 2003-2016, JH McClellan & RW Schafer
13
CALCULUS for complex exp
d t
t
e e
dt
b
e
a
t
dt
1
d j t
t
e je
dt
b
e
t
a
e
1
b
e
a
b
1 j t
1 j b
j a
a e dt j e j e e
a
b
Aug 2016
j t
© 2003-2016, JH McClellan & RW Schafer
14
INTEGRAL Property of exp(j)
INTEGRATE over ONE PERIOD
T0
e
T0
j ( 2 / T0 ) mt
0
T0
j ( 2 / T0 ) mt
dt
e
j 2 m
0
T0
j 2 m
(e
1)
j 2 m
T0
e
j ( 2 / T0 ) mt
dt 0
m0
0
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
2
0
T0
15
ORTHOGONALITY of exp(j)
0
k
1
j ( 2 / T0 ) t j ( 2 / T0 ) kt
e
e
dt
T0 0
1
k
j ( 2 / T )( k ) t
T0
e
0
m k
T0
1
j ( 2 / T0 )( k ) t
e
dt
T0 0
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
16
Fourier Series Integral
Use orthogonality to determine ak from x(t)
ak
T0
1
T0
x (t )e
j ( 2 / T0 ) k t
Fundamenta l Freq.
dt
F0 1 / T0
0
*
ak ak
a0
when x(t ) is real
T0
1
T0
x(t )dt
(DC component)
0
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
19
Isolate One FS Coefficient
x (t )
j ( 2 / T0 ) k t
a
e
k
k
T0
1
T0
j ( 2 / T0 ) t
x
(
t
)
e
dt
0
j ( 2 / T0 ) k t j ( 2 / T0 ) t
ak e
dt
e
0 k
T0
1
T0
T0
j ( 2 / T0 ) t
j ( 2 / T0 ) k t j ( 2 / T0 ) t
1
1
dt ak T0 e
e
dt a
T0 x ( t )e
k
0
0
Integral is zero
T0
except for k
a T1 x (t )e j ( 2 / T0 ) t dt
T0
0
0
Aug 2016
is dummy vari able, could be k
© 2003-2016, JH McClellan & RW Schafer
20
Fourier Series: x(t) ak
ANALYSIS
Given a PERIODIC Signal
Fourier Series coefficients are obtained via
an INTEGRAL over one period
ak
1
T0
T0
x (t )e
j0k t
dt
0
Next, consider a specific signal, the FWRS
Full Wave Rectified Sine
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
21
Full-Wave Rectified Sine
x(t ) sin( 2 t / T1 )
Period is T0 12 T1
Absolute value flips the
negative lobes of a sine wave
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
22
Full-Wave Rectified Sine
{ak}
T0
1
ak x(t )e j ( 2 / T0 ) kt dt
T0 0
ak
Full-Wave Rectified Sine
x (t ) sin( 2 t / T1 )
T0
1
T0
j ( 2 / T0 ) kt
sin(
t
)
e
dt
T0
Period : T0 12 T1
0
e j ( / T0 ) t e j ( / T0 ) t j ( 2 / T0 ) kt
e
dt
0
2j
T0
1
T0
T0
1
j 2 T0
j ( / T0 )( 2 k 1) t
e
dt
0
Aug 2016
e
j ( / T0 )( 2 k 1) t
j 2 T0 ( j ( / T0 )( 2 k 1))
x (t ) sin( t / T0 )
T0
1
j 2 T0
j ( / T0 )( 2 k 1) t
e
dt
0
T0
e
j ( / T0 )( 2 k 1) t
T0
j 2 T0 ( j ( / T0 )( 2 k 1))
0© 2003-2016, JH McClellan & RW Schafer 0
23
Full-Wave Rectified Sine
ak
e
T0
j ( / T0 )( 2 k 1) t
j 2T0 ( j ( / T0 )( 2 k 1))
e
T0
j ( / T0 )( 2 k 1) t
j 2T0 ( j ( / T0 )( 2 k 1))
0
1
2 ( 2 k 1)
e
0
j ( / T0 )( 2 k 1)T0
{ak}
1 2 ( 21k 1) e j ( / T0 )( 2 k 1)T0 1
( 21k 1) e j ( 2 k 1) 1 ( 21k 1) e j ( 2 k 1) 1
Aug 2016
2 k 1 ( 2 k 1)
( 4 k 2 1)
2
(1) 1
(4k 2 1)
2k
© 2003-2016, JH McClellan & RW Schafer
24
Fourier Coefficients: ak
ak is a function of k
Complex Amplitude for k-th Harmonic
2
ak
2
(4k 1)
Does not depend on the period, T0
DC value is a0 2 / 0.6336
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
25
Spectrum from Fourier Series
Plot a k for Full-Wave Rectified Sinusoid
2
ak
(4k 2 1)
Aug 2016
F0 1 / T0
© 2003-2016, JH McClellan & RW Schafer
and 0 2 F0
26
Reconstruct From Finite Number
of Harmonic Components
Full-Wave Rectified Sinusoid x(t ) sin( t / T0 )
2
(4k 2 1)
F0 100 Hz
a0 2 / 0.6336
T0 10 ms
ak
N
xN (t ) a0 ak e j 2 kF0 t ak e j 2 kF0t
k 1
How close is xN (t ) to x(t ) sin( t / T0 ) ?
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
27
Reconstruct From Finite Number
of Spectrum Components
Full-Wave Rectified Sinusoid x(t ) sin( t / T0 )
T0 10 ms
F0 100 Hz
a0 2 / 0.6336
2
ak
2
(
4
k
1)
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
28
Synthesis: up to 7th Harmonic
1 2
2
2
2
y (t ) cos(50 t 2 )
sin( 150 t )
sin( 250 t )
sin( 350 t )
2
3
5
7
Aug 2016
© 2003-2016, JH McClellan & RW Schafer
34
© Copyright 2026 Paperzz