Leaf Area and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and Water Additions TimothyJ. Albaugh, H. Lee Allen, Phillip M. Dougherty,Lance W. Kress, and John S. King ABSTRACT. A 2 x 2 nutrient and water factorial experiment with four replications was installed in an 8-yr-old stand of Ioblolly pine (Pinus taeda L.) growing on an infertile, excessively drained sandy site in Scotland County, North Carolina. After the fourth year of treatment, estimated stem volume increment, total biomass production, and peak leaf area index (LAI) increased 152%, 99%, and 101%, respectively, with fertilization and 25%, 23%, 16%, respectively, with irrigation. Stem volume growth efficiency (growth per unit LAI) increased 21% with fertilization, 9% with irrigation, and 30% with both fertilization and irrigation. Total biomass production efficiency increased 91% with fertilization, 29% with irrigation, and 120% with both fertilization and irrigation. The observed increase in stem volume growth efficiency may have been due, in part, to changes in biomass partitioning. However, altered partitioning patterns alone did not explain the observed increase in total biomass production efficiency. We hypothesized that the change in total biomass production efficiency may have been a result of greater allocation to foliage (photosynthesizing tissue) and less allocation to fine roots (a high maintenance respiration tissue) under fertilization and irrigation treatments. FOR.Sc•. 44(2):317-328. Additional Key Words: Growth efficiency, biomass partitioning. be requiredto manageforestplantationsin an economi- NORDER TO MEET INCREASING DEMAND for forest productson a declining land base,silvicultural treatments like soil tillage,competitioncontrol,andfertilization are commonly used to increasethe availability of site resourcesand, in turn, productivityin forest plantations. The conceptthat sitequality is a fixed or inherentproperty of a site has been replaced with an understandingthat productivityis largely dependenton resourceavailability andthat siteresources,especiallynutrientsandwater,can be manipulated.Clearly, a basic understandingof how nutrient and water availability interact with prevailing climatic conditionsto determineproductionpotentialwill cally and environmentallysustainablemanner. Biomassproduction potentialof foreststandsiscorrelated with the capacityof standsto interceptlight (Linder 1987, Cannell 1989). Light interceptionis a functionof foliage production,life span,and distribution.Of thesefactors, foliage productionis believedto be the mostimportantin determiningpotentialproductivity(Wang andJarvis1990). A strongcorrelationbetweenstemwoodproductionandleaf areahasbeendemonstrated for loblollypine(PinustaedaL.) (Teskey et al. 1987, Vose and Allen 1988). Maximum abovegroundproductivityof temperateforestsshouldbe T.J Albaugh(correspondingauthor), Box8008, North Carolina State University,Raleigh, NC 27695.8008--Phone: 919-515.3500; Fax: 919-5156193; E-mail:[email protected]; H.L. Allen, Box8008, Departmentof Forestry,NorthCarolinaState University,Raleigh,NC 27695-8008--E-mail: [email protected];P.M. Dougherty,Forest Science Laboratory,Westvaco Corp, POB 1950, Summerville, SC 29484--E-mail: pmdoughCa•vestvaco.com; L.W. Kress, USDAForestService,3041 CornwallisRoad, RTP,NC 27709; and J.S. King,Schoolof Forestryand Wood Products,MTU, Houghton,MI 49931--E-mail: [email protected]. Acknowledgments: This work contributesto the Global Change and Terrestrial Ecosystem(GCTE)core projectof the InternationalGeosphereB•osphereProgram(IGBP).We gratefullyacknowledgethe supportprovidedby the USDAForestServiceSouthem ForestExperimentStation, the SouthemGlobalChangeProgram,the Departmentof Forestry,NorthCarolinaState University,and membersof the NorthCarolinaState Forest NutritionCooperative.We wishto thank staff membersand graduatestudentsfor their assistancein the destructiveharvests.This paper has not been subject to USDA Forest Service policyreview and should not be construedto representthe policies of that agency.The use of trade names •n this paper does not implyendorsementby the associatedagenciesof the productsnamed, nor criticismof similarones not mentioned. Manuscriptreceived July11, 1996. AcceptedSeptember 29, 1997. Copyright¸ 1998 by the Societyof AmericanForesters ForestSctence 44(2)1998 317 achievedat a leaf areaindex(LAI)(projected) of approxi- mately5 m2 m-2 based onJarvisandLeverenz' (1983) theoretical modelandtypicalstandlight extinctioncoefficients.Unfortunately, manystandsproducelevelsof leaf areawell belowthis optimum.In the southeastern United States,lownutrientandwateravailability,hightemperature, andelevatedozonelevelshavebeenimplicatedas factors responsible fortheobserved suboptimal levelsof leafareain pineplantations (Teskeyet al. 1987,VoseandAllen 1988, Colbertet al. 1990,Hennessey et al. 1992,Stowet al. 1992). Growthefficiency,the slopeof theproduction-leafarea relationship, depends onthephotosynthetic efficiencyof the foliage,maintenance respirationcost,and biomassallocation.Recentevidencesuggests thatimprovednutrientavailabilitycanincrease photosynthesis (Zhang1993,Murthyet al. 1996) and maintenance respirationrates(Maier et al. 1998)of 1oblollypine.In addition,improvednutrientand wateravailabilityhavebeenreportedtoreducebelowground biomassallocationin stand-levelstudies(KeyesandGrier 1981,AxelssonandAxelsson1986,Vogt et al. 1986,Gower et al. 1992,HaynesandGower 1995). Previousstudies haveexaminedtheimpactof standdevelopment(Kinersonetal. 1977),environmental factors(Teskey et al. 1987, Hennesseyet al. 1992, Stow et al. 1992), and nutrients(Colbertet al. 1990, Vose andAllen 1988) on leaf areaand growthefficiencyof 1oblollypine. However,no studieshavequantifiedtheeffectsof bothnutrientandwater availabilityonleafarea,production, andgrowthefficiencyin intermediate-aged 1oblollypinestands.Our objectiveswere to determinetheeffectsof nutrientandwateravailabilityon leaf area,above-andbelowground productivity,andgrowth efficiencyof 1oblollypine. Methods StudySite The studywas establishedin the Sandhillsof Scotland County,North Carolina(35øNlat., 79øWlong.) on a flat, infertile, excessivelydrained, sandy, siliceous,thermic PsammenticHapludultsoil (Wakulla series).Annual precipitationaverages1210mm(30 yr average),butextended droughtsarepossibleduringthe growingseason.Average annualtemperatureis 17øC(30 yr average).The site was handplantedon a 2 x 3 m spacingwith 1oblollypine in 1985 afterfelling of thepreviousnaturallongleafpine (P. palustris Mill.) standandapplication of Velpar TMgrid balls(17kgha-l). Sixteen50 x 50 m (0.25 ha)treatmentplotswith30 x 30 m measurementplots centeredin the treatmentplot were establishedin January1992 in the 8-yr-old stand.Through plot selectionandthinninginitial meantree height,diameter, stand basal area, volume, LAI, and density (1260 stems ha-l ) weresimilar(nostatistically significant differencesdetected)in all plotsprior to treatmentimposition.A 10m bufferseparated thetreatmentplotsandin the two cases where the buffer was less than 10 m, a 150 cm deeptrenchbetweenthe treatmentplots was dug, lined with plastic,and refilled. Completecontrolof nonpine vegetationin the treatmentplots has been maintained 318 ForestSctence 44(2)1998 since 1992 through a combination of mechanical and chemical(glyphosate)methods.Treatmentswere a 2 x 2 factorial combination of nutrition and water additions replicatedfour times. The nutritiontreatments,which beganin March 1992 were (1) optimumnutritionthroughfertilizationor (2) no addition.Optimumnutritionwasdefinedas(1) maintaining a foliar nitrogen(N) concentration of 1.3%, (2) maintaining foliar macronutrient concentration:N concentration ratios of 0.10 for phosphorus (P), 0.35 for potassium (K), 0.12 for calcium(Ca), and0.06 for magnesium(Mg), and(3) maintainingfoliar boron(B) levelsgreaterthan 12 ppm.Foliar nutrientstatuswasmonitoredmonthlyin eachplotusing35 fascicles(7 fasciclesfrom eachof 5 trees)collectedfrom a branchterminalin theupperthirdof thecrownofcodominant or dominanttrees.Fertilizerwasappliedasneededto meet the statedtarget. Water treatments,whichbeganin April 1993 were (1) naturalprecipitation and(2) naturalprecipitation plusimgation appliedto meet the target soil water contentlevel Irrigationeventsweretargetedto maintainsoilwatercontent at greaterthan3.0 cm soilwatercontentin thesurface50 cm of soil (40% available water content) as determinedfrom volumetric soil water content measured with time domain reflectometry (TDR)(ToppandDavis 1985).The soilmoisturetargetwasbasedonevidencesuggesting that40% of the availablesoilwatercontentmaybea biologicallymeaningful threshold for photosynthesis andgrowth(MyersandTalsma 1992). Water content was determined with a 50 cm TDR probeattenlocationswithineachtreatmentplotonbiweekly intervalsduringthe growingseason(March to November). Percent available soil water content in the surface 50 cm (AWC) was calculatedas: AWC = (MV- WP)/(FC- WP) x 100 (1) where MV was the measuredvolumetric soil water content, FC wasfield capacity(5.5 cm), WP waswiltingpoint(1 5 cm). For example,a measured soil watercontentof 3 cm in the surface50 cm of soil wouldresultin 38% A WC ((3 - 1.5)/ (5.5 - 1.5)x 100).The irrigationsystemconsistedof Rainbird irrigationnozzlespositionedon 35 cm risersspaced10 m x 10 m aparton a headto headdesign.DuringeachirrigaUon event2.5 cm of waterwasaddedto the plot. The system operatedas neededto maintainthe targetsoil waterlevel duringthe growingseason. Estimationof LAl and StemVolume StandLAI (projected) wasmeasured monthlyfromMarch 1992 to December1995 in eachof the 16 treatmentplots usingthe Li-Cor LAI2000 plant canopyanalyzer(Li-Cor 1991).For eachmonthin eachplot, 20 LAI measurements alonga transectonthe southsideof theplotweremadeat a heightof 60 cm between0700 and 1000EST usinga 180ø viewcap.Simultaneously, abovecanopylightmeasurements were collectedin an openfield adjacentto the studysite wherethe light sensorhadan unobstructed view of the sky. The 20 measurements were averagedto estimatemonthly plot LAI, and the unadjusted maximummonthlyLAI re- cordedfor eachploteachyearwasusedasourestimateof peakLAI. In Decemberof eachyearfrom 1991(priorto treatment) to 1995,measurements of diameterat breast(1.4 m) height (D), height(H), andlive crownlength(L) weremadeonall treesin eachplot (-100 treesperplot).Stemwoodvolume Wholetreestemwoodbiomass regression equations (Ap- pendix) weredeveloped using D2xHandageasthepredictor variables. A totalof 48 trees(Table1)(24 control,8 irrigated, 8 fertilized,and8 fertilizedandirrigated)wereusedin the wholetreestembiomass regressions. Wholetreefoliageand branchwoodbiomass regression equations (Appendix)were was calculated as: developed using D2x H, L, andageaspredictor variables. Wholetreefoliageandbranchwoodbiomassestimates from 448trees(Table1)(124control,108irrigated,108fertilized, and 108 fertilizedandirrigated)wereusedto developthese where V was total outside bark volume in cubic meters regression equations. Forty-eightof thetreeswerefromthe (Sheltonet al. 1984). Stemwood volumewas calculatedfor destructive harvests wherefoliageandbranchwoodbiomass eachtreein a plot, summedto the plot level andscaledto were directly measured.The additional 400 trees were determine volumeperhectare. Stemwoodvolumegrowthfor nondestructively measuredand branchlevel foliage and eachyear wasdeterminedasthedifferencebetweencurrent branchwoodbiomass regression equations wereappliedto andpreviousyear stemwoodvolume. eachbranchon eachtree andthen summedby tree for the wholetreefoliageandbranchwoodbiomassestimates. The Estimationof BiomassProductionand Allocation branch level regression equations were developed with data Standlevelbiomass (dryweight)estimates for 1992to 1995 fromthebranches onthedestructively harvested trees.Branch for foliage,branchwood,stemwood,andcoarseroot(>2 mm diameter and distance from the top of the tree were usedas diameter) components werecalculated fromageandtreatment predictor variables (Gillespie et al. 1994). specific wholetreeregression equations applied toalltreesand Regressionequationspredictingwhole tree coarseroot thenscaledto an areabasisfor eachplot. The wholetree andtaprootbiomass weredeveloped usingD asthepredictor regression equations (Appendix)weregenerated by destrucvariable(H, L, andagewerenot significantpredictorvaritivelyharvesting treesfrom eachtreatment. Standleveldry ables).Coarserootestimates presented in ouranalyses were weightfine root (<2 mm diameter)biomassestimateswere thesumof thecoarserootandtaprootestimates. A totalof 23 calculated byscaling coredatato anareabasisforeachplot. Destructive sampling of treecomponents wascompleted trees(Table 1) (6 control,6 irrigated,5 fertilized,and 6 in February1992(priorto treatment andonlyaboveground fertilizedandirrigated)wereusedto developthewholetree components), February1994andFebruary1996on 16trees coarseandtaprootregression equations. Finerootbiomass •n eachyear(Table1). Treeswereselected to represent the was estimatedfrom coresamplescollectedeachmonthin rangein H andD bytreatment at thetimeof sampling. H, D, eachplotandscaledto anareabasis.In 1993and1994,all live andL were measuredfor eachtree, and branchdiameterand anddeadloblollypinerootswereremovedanddriedfrom20, branchdistance fromthetopof thetreeweremeasured for 6.6 cm diameterx 10 cm deepcorescollectedin eachplot eachlive branchon eachtree.All treeswerecutat ground (Mignano1995).Samples werescaledtoa 50 cmdepthusing level,separated intostemwood,branchwood,andfoliageby Mignano's(1995) rootdistributionassessments. In 1995,the branch,anddriedat65øCtoaconstant weight.In 1994(seven sameprocedures werefollowed,however,onlyfive, 15.2cm trees)andin 1996(16trees),all coarse rootsfoundin a square diameterx 15 cm deepcoresweresampledin eachplot. metercenteredon thetreestumpdownto 50 cm in the soil, Productionestimatesfor stem wood, branch wood, and andtheentiretaproot wereremovedanddriedat 65øCto a coarseroot biomassfor a givenyearwere calculatedasthe constant weight.Treessampledin 1992wereselected from differencebetweenthebiomass estimatefor thefollowing treesweremovedpriorto treatmentimpositionto equilibrate year and the given year for thesecomponents. For exspacingandstanddensityamongplots.In 1994and 1996, ample,the 1993 productionestimatefor stemwoodbiomass was the difference between the 1994 and 1993 biomass treeswereselected fromwithinthetreatment plots,butthey represented lessthan1%of treesin theplots.Consequently, estimatefor stemwood. The foliage found on the trees removalof harvested treeshadminimalimpactonotherstand whenourbiomassdeterminations werecompletedin Febmeasurements (e.g.,LAD. ruary of 1992, 1994, and 1996 was largely produced V = 0.00748+ (0.0000353 x D2x H) Table1. Numberof treesin eachtreatmentusedto developwholetree biomassregressions by yearandsampletype (destructiveor nondestructive). Numbersindicatethe numberof trees. Lettersindicatethe treatment where C is control,I is irrigated,Fis fertilized, and R is fertilized and irrigated. Year Sample type 1992 Destructive 16C Foliage 16C Branch wood 16C Stemwood Coarse root 1992 1993 1994 1994 1995 Nondestructive Nondestructive Destructive Nondestructive Nondestructive 20C, 20I, 20F, 20FI 20C, 20I, 20F, 20FI 4C, 4I, 4F, 4FI 20C, 20I, 20F, 20FI 20C, 20I, 20F, 20FI 20C, 20I, 20F, 20FI 20C, 20I, 20F, 20FI 4C, 4I, 4F, 4FI 20C, 20I, 20F, 20FI 20C, 20I, 20F, 20FI 4C, 4I, 4F, 4FI 2C, 2I, 1F,2FI 1996 1996 Destructive 4C, 4I, 4F, 4FI Nondestructive 20C,20I, 20F,20FI 4C, 4I, 4F, 4FI 20C,20I, 20F,20FI 4C, 4I, 4F, 4FI 4C, 4I, 4F, 4FI ForestSctence 44(2)1998 319 duringthe previousgrowingseasons of 1991, 1993, and 1995, respectively.Consequently, productionof foliage for a givenyearwastheestimatedeterminedin February of thefollowingyear.For example,1993foliageproduction was the estimate of the amount of 1993 foliage determined inFebruary, 1994.FairleyandAlexander' s(1985) decision matrixwasusedto estimate finerootproduction of eachplot from the monthlybiomassand necromass esti- tallymeasured variablesthatquantifiednutrientand/orwater availabilitywereusedto developa morebroadlyapplicable mates. This method did not account for carbon losses to root wherethedependent variableandLAI werethesameasin the basemodel,[50,[51,[52,[53,and•4 wereparameters to be estimated, andN andW wereexperimentally measured esti- linear model of the form: Dependentvariable = •0 + ([•ILAD+ ([•2X LAIx N) + ([•3x LAI x W) + ([•4x LAIx Nx W) exudationor mycorrhizalassociation. StatisticalAnalyses The statisticalsignificance of thefertilization,irrigation, andfertilizationby irrigationinteractioneffectsweredetermined usinganalysisof variance(SAS 1988). Treatment (4) matesof nutrientand wateravailability,respectively. We selected JanuaryfoliarN concentration (%) (NCONC) and a combinednutrientindex (sum of foliar N, P, and K content (mgfascicle-1)) (NCONT)to quantify thenument effectson annualincrementfor D, H, basalarea,volume,and peak LAI were examinedfor 1992, 1993, 1994, and 1995. Treatmenteffectson biomassproductionby component (foliage,branchwood,stemwood,coarseroot,fineroot,and total) for 1993, 1994, and 1995 were alsoevaluated.There were no belowground biomassproductionestimatesavailable for 1992. Linearregression wasusedto quantifythe relationship betweenproductivity andlightinterception. Fortheseanalyses,datafor eachtreatmentwere pooledacrossall years available(1992 to 1995for stemvolumeand1993to 1995for totalbiomassproduction). Our baserelationshipwasin the form of a simplemodel: treatment. To quantifythewatertreatment,weexaminedthe meangrowingseasonsoilwatercontent(cmof soilwaterin thesurface50 cmof soil)(SMMEAN)andminimumgrowing seasonsoil watercontent(cm of soil waterin the surface50 cm of soil) (SMMIN). The variablesNCONC andSMMEAN wereselectedbecause theywereusedto regulateournutrient andwatertreatmentapplications, respectively. Thevariables NCONT and SMMIN were used to determine if the more balancednutrientavailabilityin our fertilizedplotsandif extremesoilwaterconditions, respectively, affectedthebase relationship. Finally, initial standbasalareawastestedasa covariatein themodel.All significance levelswere{x< 0 05 RESULTS Dependent variable= [50+ ([•iLAI) (2) Nutrient and WaterAvailabilityAssessments Averagedoverthe 4 yr of treatment,nonfertilizedplots hadfoliar nutrientconcentrations for N, P, K, Ca, andMg where the dependentvariable was stem wood volume increment (m3ha-1 yr-1)ortotalbiomass production (Mg ha-1 yr-1) andLAI waspeakleafareaindex(m2m-2).In of 0.95%, 0.10%, 0.42%, 0.14%, and 0.07% and fertilized orderto understand howtreatmentaffectedtheslopeof the volume-LAI or production-LAIrelationships, we examinedan expanded model: plotshadconcentrations of 1.29%,0.11%, 0.56%, 0.11%, and 0.06%, respectively.From 1992 through1995, we Dependent variable= [•0+ ([•1LA/)+ ([•2X LA! X F) + ([•3X LA/X/) + ([•4X LAIx FX/)(3) plots (Table 2). Nutrient levels have been maintainedas closeas possibleto statedtargetsin light of difficulty in achievingMg uptake.Foliar Mg levelsin the fertilized plotsneverreachedthe targeteven thoughexchangeable soil Mg levelsin the fertilizedplotswerehighcompared added 475kgha-1N, 134kgha-1P,281kgha-1 K, 159kg ha-1 Ca,146kgha-1 Mg,and3 kgha-1 B tothefertilized wherethedependent variableandLAI werethesameasin the basemodel,[•0, [•1, [•2, [•3, and •4 wereparameters to be tountreated plots(42kgha-1 in fertilized plotsversus 17 kgha-1 innonfertilized plotsin 1994).In 1993,additional estimated,F (0 if nonfertilized, 1 if fertilized) and I (0 if nonirrigated, 1 if irrigated)indicated treatment. Thissecond modelprovidedfor directtestsof significanttreatmenteffectson the slopeparameter(growthor production efficiency).Finally,if a treatment termhada statistically significanteffectontheslopeof thebasemodel,thenexperimen- N requiredto maintaintheN targetwasnotaddedbecause theMg:N ratioin thefertilizedplotshaddroppedto0.039 However,no visiblemacro-or microscopic symptomsof foliar Mg deficiencyweredetectedin the fertilized plots Table2. Yearlyelementalapplication rate(kgha-1)andprimarysourceforfertilizersappliedto fertilizedplotsin 1992, 1993, 1994, and 1995. No nutrient additions ware made to the nonfertilized plots during the study. N Year 1992 1993 1994 1995 (urea) 225 82 112 56 a Sulphate of potash magnesia. 320 ForestScience 44(2)1998 P K (TSP) (KCI) 56 50 0 28 112 113 0 56 Ca (gypsum) 135 0 0 24 Mg (Sophomag') 56 56 0 34 B (borate) 2 0 0 1 Table3. Averagesoilwater content(cmwater in upper50 cm of soil)and water inputs(mm of water) for irrigated and nonirrigatedplotsfrom March 1 to November1 for 1992,1993,1994,and 1995. Yc;• Nonirrigated Soilwatercontent Waterinput 1992 1993 1994 1995 Irrigated Soilwatercon•nt Waterinput 2.68 866 2.60 866 2.55 2.85 2.85 735 885 990 2.86 3.03 3.91 1,403 1,052 1,591 Irrigatedplotsreceived91%, 19%, and61% morewater during 1993, 1994, and 1995, respectively, than nonirrigatedplots(Table 3). On a growingseasonbasis, our soilwatertargetwasachievedin 1994 and 1995 (Table 3) In 1993,thetargetlevel couldnotbemaintainedduring a 6 wk droughtin May andJuneand2 wk droughtsin July andAugust.Soil watercontentin irrigatedplotsdropped to aslow as2.4 cm(23% AWC) duringtheseperiodswhile soil watercontentin nonirrigatedplotsdroppedto 1.7 cm (5% AWC). Even thoughthe growingseasonsoil water targetwas achievedfor irrigatedplotsin 1994, the target wasnot maintainedthroughoutthe growingseason.Duringtwo periods,oneperiodin March to April anda second periodin October,the soil water contentin the irrigated plotsdroppedto 2.4 cm (23% AWC) while in nonirrigated plotssoil watercontentwasaslow as 1.7 cm (5% AWC). We wereunableto maintainthetargetedsoil watercontent becauseour irrigation systemdid not supplywater at a sufficientrate even when operatingat maximumcapacity in 1993 and 1994. Theseproblemswere eliminatedfor the 1995 seasonwhenthe site experiencedtwo long drought periods,a 60 day period in April and May and a 35 day period in July and August.Throughouttheseperiods,the target soil water contentwas maintainedin irrigatedplots. In contrast,soil water contentdroppedto 1.6 cm (3% AWC) in nonirrigatedplots. ProductivityResponses FertilizationsignificantlyincreasedD, H, basalarea, volumeannualincrement,andpeakLAI in eachof the 4 yr followingtreatment(Tables4 and5). In contrast,irrigation Table4. Diameterat breastheight(D),haight,basalarea,and volumetreatmentmeansand root meansquareerror for standingcrop(pre-and post-treatment)andannualincrement(1992,1993,1994,1995).Also,paakleafareaindex (LAI)standingcroptreatmentmeansandrootmeansquareerrorby year.PeakLAIoccursin Augustor September each year. Variable Control Irrigated Fertilized Fertilized andirrigated Rootmeansquare error Pre-treatment D (cm) Height(m) ....................................................(beginningof 1992).................................................. 4.77 4.42 4.45 4.43 0.31 3.43 3.29 3.35 3.29 0.15 BasalArea(m2ha-q) Volme (msha-q) 2.38 12.80 2.11 12.39 2.17 12.71 2.12 12.34 0.34 1.08 ............................................................ (1992).............................................................. D 1.72 1.77 2.64 2.64 Height 0.80 0.82 0.90 0.93 0.16 0.09 Basal Area Volume Peak LAI 1.83 4.63 0.63 1.81 4.38 0.62 2.94 6.98 1.01 2.83 6.76 0.92 0.34 1.02 0.20 ............................................................ (1993).............................................................. D 1.37 1.68 2.24 2.80 0.14 Height 0.57 0.77 0.86 1.25 0.06 Basal Area Volume Peak LAI 1.85 5.35 0.96 2.23 6.50 0.97 3.56 10.63 1.48 4.41 14.20 1.70 0.42 1.73 0.34 ............................................................ (1994).............................................................. D 1.37 1.50 2.29 2.33 0.10 Height 0.77 0.82 1.16 1.13 0.04 Basal Area Volume Peak LAI 2.19 7.92 1.24 2.44 8.78 1.24 4.56 17.81 2.29 4.67 19.04 2.23 0.36 1.84 0.33 ............................................................ (1995).............................................................. D 1.04 1.31 1.63 1.82 0.07 Height 0.59 0.88 1.33 1.47 0.08 Basal Area Volume Peak LAI 1.92 7.87 1.21 2.52 11.14 1.37 Post-treatment D Height Basal Area Volume 3.94 21.88 2.38 4.47 26.11 2.81 0.39 2.99 0.43 ...................................................(end of 1995) .................................................... 10.3 10.7 13.2 14.0 0.59 6.2 6.6 7.6 8.1 0.33 10.2 38.6 11.1 43.2 17.2 70.0 18.5 78.4 1.69 7.95 ForestSctence 44(2)1998 321 Table5. Statisticalsummary(probability> F)oftreatmenteffects on diameterat breastheight (D), height,basalarea, and volume for pre-andpost-treatmentstandingcropandannualincrement in 1992, 1993, 1994, and 1995.The same statisticsfor standing cropof peak LAIfor 1992,1993,1994,and1995arealsopresented. Fertilizer* Variable Pre-treatment Irrigation Fertilizer irrigation ....................(beginningof 1992).......... D 0.271 0.336 0.322 Height 0.214 0.632 0.644 Basal Area 0.364 0.561 0.540 Volume 0.469 0.820 0.967 ..............................(1992)....................... D 0.768 <0.001 0.036 0.784 Height 0.584 0.917 Basal Area 0.688 <0.001 Volume 0.654 0.001 0.980 Peak LAI 0.321 0.017 0.931 0.786 ..............................(1993)....................... D Height Fertilization significantly increased totalbiomass productton 79%, 81%, and90% in 1993, 1994,and 1995,respectively (Tables6 and7). Irrigationincreased totalbiomass production 19%, 10%,and23% in 1993, 1994,and 1995,respectively; however, onlythedifferences in 1993and1995weresignificant (Tables6 and 7). Over the 3 yr, fertilizationincreasedtotal <0.001 0.099 0.014 biomass production 19.6Mg ha-] (112%)whileirdgaOon increased totalbiomass production 6.1Mgha-] (25%). At the end of 1995, D, H, basal area, volume, and total 0.295 Volume 0.022 <0.001 0.188 Peak LAI 0.630 0.006 0.582 ................................ (1994) ..................... 0.160 <0.001 0.428 Height 0.716 <0.001 0.060 Basal Area 0.358 <0.001 0.706 Volume 0.306 <0.001 0.882 Peak LAI 0.999 <0.001 0.703 ............................... (1995) ...................... <0.001 0.262 Height <0.001 0.001 <0.001 0.096 Basal Area 0.019 <0.001 0.848 Volume 0.034 <0.001 0.761 Peak LAI 0.199 <0.001 0.539 ......................(end of 1995).................... D 0.106 <0.001 0.664 Height 0.034 <0.001 0.929 Basal Area 0.235 <0.001 0.869 Volume 0.146 <0.001 0.679 * Sulfate of potash magnesia. didnotsignificantly affectpeakLAI in anyyearandonlyhad significantpositiveeffectsontheannualincrementfor D, H, basalarea,andvolumeduring1993and1995,theyearswith extendeddroughts. The interactionbetweenfertilizationand irrigationwas significantonly for heightgrowthin 1993 (Table 5). The height incrementin 1993 attributableto irrigationwas greaterin the fertilized plots than in the nonfertilizedplots. PeakLAI, whichoccurredin Augustor September,increasedduringthefirst3 yr oncontrolplotsandin all years ontreatedplots(Table4). Duringthe4 yr of treatment, peak LAI increased from0.6to 1.3m2m-2 innonfertilized plots andfrom1.0to2.6m2m-2infertilized plots(Table 4).Peak LAI increased 54%, 65%, 82%, and100%,respectively for 1992 through 1995, in fertilized plots compared to nonfertilizedplots (Table 4). In control plots, peak LAI 322 stem volume growth wasincreased 33.4m3ha-] (118%)with fertilization, and6.9m3ha-] (17%)withirrigation. <0.001 <0.001 Post-treatment Fertilizationsignificantlyincreased stemvolumegrowth 52%, 109%,120%,and152%,respectively for 1992through 1995 (Tables4 and 5). Irrigationincreasedstemvolume growth30%,8%, and25%in 1993,1994,and1995,respectively, althoughonly theresponses in 1993 and 1995 were statistically significant(Tables4 and5). Overthe4 yr period, <0.001 0.018 D tion (Tables4 and 5). <0.001 Basal Area D remainedthesamein 1994and1995,whilepeakLAI in the fertilizedplotsincreased eachyearof thestudy.In 1995,peak LAI wasslightly,but not significantly,increasedby irriga- Forest Sctence 44(2)1998 biomasswere significantlygreater(30%, 23%, 68%, 81%, and 89%, respectively) in fertilized plots than in the nonfertilizedplots (Tables4-7). Height was significantly increasedby 7% in the irrigatedplots comparedto the nonirrigatedplotsby the endof 1995. At thistime,D, basal area,volumeandtotalbiomassweregreater(5%, 8%, 12%, and 14%, respectively)in the irrigatedplotscomparedto nonirrigated plotsbutthesedifferences werenotsignificant No significantfertilizationby irrigationinteractionswere foundfor any of thesevariablesat the endof 1995. Allocation of BiomassProduction Foliage,branch,stem,andcoarserootbiomass production were significantlyincreasedin all 3 yr, while fine root productionwassignificantlyreducedin all 3 yr (Tables6 and 7) with fertilization.Irrigationsignificantlyincreasedfohage, branch,stem,and coarseroot biomassproduction•n 1993and 1995(Tables6 and7), theyearswith extendeddry periods.Foliage biomassproductionwas significantly•ncreasedin 1994 with irrigation.Fine root productionwas significantlyreducedwith irrigationin 1993.The interactive effectsof fertilizationandirrigationwerenotsignificantfor productionof any biomasscomponent in anyyear. Theallocationof thetotalbiomass production tofineroots was lessin fertilizedplots (8%, 10%, and 6% in fertilized plotsand24%, 24%, and18%in nonfertilizedplotsin 1993, 1994, and 1995, respectively)comparedwith nonfertilized plotsandgenerallydecreased overtimein all plots(Table6) The 3 yr averageportionof total biomassproductionallocatedto belowground components was35%, 31%, 25%,and 23% for control,irrigated,fertilized,andfertilizedandirrigatedplots,respectively. Forall treatments, theproportion of total biomassproductionallocatedto belowground componentswasreducedeachyear(32%, 31%, and24% in 1993, 1994, and 1995,respectively). Of the biomassproductionallocatedaboveground, proportionallymorebiomasswasallocatedto stemwoodproductionandthe stemwoodallocationincreased eachyear; Table6. Beginningof 1993andend of 1995biomasspoolsizeestimatesandyearlybiomassproductionestimates(Mg ha-1yr-1)bytreatmentfrom1993through1995forfoliage,branchwood,stemwood,coarseroot,fineroot(<2mm) biomasscomponentsandtotal biomass.Proportionalproduction(percantof total biomassin parentheses)data ara presented.Root mean square errors are also shown. Biomass component Foliage Control Branch wood Stem wood Coarse root Fine root Total Foliage Branchwood Stemwood Coarseroot Fineroot Irrigated Fertilized FertilizedandIrrigated Rootmeansquare error ...................................................(Pool size beginningof 1993)..................................................... 1.8 1.7 3.6 3.4 0.3 2.2 4.7 2.2 0.9 11.8 2.0 4.4 2.1 0.9 11.1 3.1 6.6 3.5 1.3 18.1 3.0 6.4 3.4 0.8 17.1 0.4 0.7 0.4 0.2 1.8 ......................................................................(1993 Production) .................................................... 2.0(24) 2.3(26) 4.3(32) 5.1(30) 0.4 0.7(9) 0.9(10) 1.8(13) 2.5(15) 0.3 2.2(27) 2.7(30) 3.7(27) 5.1(30) 0.6 1.0(12) 1.2(13) 2.4(18) 3.0(18) 0.3 2.3(28) 1.8(20) 1.4(10) 1.2(7) 0.3 Total 8.2 8.9 13.6 16.9 1.6 ......................................................................... (1994 production) ................................................... Foliage 2.4(24) 2.8(24) 5.2(28) 6.2(30) 0.5 Branchwood 1.0(10) 1.1(9) 2.5(13) 2.6(13) 0.2 Stemwood 3.2(32) 3.5(30) 6.1(32) 6.4(31) 0.6 Coarseroot 1.1(11) 1.3(11) 3.1(16) 3.2(16) 0.2 Fineroot 2.4(24) 2.9(25) 2.0(11) 2.0(10) 0.4 Total 10.1 11.6 18.9 20.4 1.5 ....................................................................(1995 production) ....................................................... Foliage 2.7(28) 3.4(28) 5.6(30) 6.9(31) 0.6 Branchwood 1.0(10) 1.5(12) 2.4(13) 3.0(13) 0.4 Stemwood 2.9(30) 4.3(35) 7.0(37) 8.4(37) 0.9 Coarseroot 1.0(10) 1.3(11) 2.7(14) 3.1(14) 0.2 Fineroot 2.0(21) 1.7(14) 1.1(6) 1.2(5) 0.3 Total Foliage 9.6 12.2 18.8 22.6 2.0 ......................................................... (Pool size end of 1995)......................................................... 3.0 3.5 5.7 6.9 0.6 Branch wood Stem wood Coarse root Fine root Total 4.9 13.0 5.3 0.8 27.0 5.5 14.9 5.8 1.2 30.9 9.8 23.4 11.7 0.7 51.3 however,thesechangeswereslight.Averagedoverall treatments,the proportionof aboveground biomassproduction representedby stemwoodwas42%, 45%, and46% in 1993, 1994,and 1995,respectively. 11.1 26.4 12.6 0.9 58.0 1.3 2.7 1.0 0.2 5.6 LAI x F x I interaction term was not significant). Total biomassproduction efficiency increased 120% from 2.7 Mgha-1yr-1 perunitofLAI incontrol plotsto6.0Mgha-1 35 GrowthEfficiency Significant,positivelinear relationships betweenstem A_ir0gated Fertilized ßConlrol Fe rt iIize d+l rrl •t/• 30--, volume growth andtotalbiomass production, andpeakLAI wereobserved [Equation (2)].Ninety-three percent of the variation instemvolume growth and87%ofthevariation in • Ferllllzed+lrl'lgaled •Fer Iize totalbiomassproduction wereaccounted for by peakLAI (Table8). An additional 2% and8% of variationin stem volumegrowthandtotalbiomassproduction,respectively, were accounted forbythesignificant positive effect that .-= fertilization (LAI*F)andirrigation (LAI*I)hadontheslope of the expanded model (growth or production efficiency)[Equation (3)]. Stem volumegrowthefficiencyincreased28% from 7 1m3ha-1 yr-1perunitofLAI incontrol plotsto9.2m3 ha-1 yr-1 perunitof LAI in fertilized andirrigated plots (Table 8 and Figure 1). Stemvolumegrowthefficiency wasincreased20% and8%, by fertilization andirrigation, respectively(Figure 1) andtheir effects were additive (the 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Peak leaf area index Figure1. Stemvolumagrowth(m3ha-1yr-1)perunitofpaakleaf araa index for control, irrigated, fertilized, and fertilized and irrigated plots during four years (1992-1995) of tha study. Regression lines are shown for aach treatment. ForestSctence 44(2)1998 323 3O Table7. Statisticalsummary(probability> F)oftreatmenteffects on biomasspool size (beginningof 1993 and end of 1995) and production(1993-1995)for foliage, branchwood, stem wood, coarse root, and fine root components and total biomass. Fertilizer* Biomass component Foliage Branch wood Stem wood Coarse root Fine root Total Foliage Branch wood Stem wood Coarse root Fine root Total Foliage Irrigation Fertilizer irrigation .........(Pool sizebeginningof 1993)........ 0.480 <0.001 0.887 0.535 0.441 0.511 0.080 0.357 0.001 <0.001 <0.001 0.260 <0.001 0.866 0.856 0.938 0.085 0.886 ...................(1993 production)................. 0.025 <0.001 0.241 0.012 0.017 0.021 0.020 0.034 <0.001 <0.001 <0.001 0.004 <0.001 0.146 0.213 0.194 0.387 0.154 0.493 0.252 0.317 0.204 <0.001 <0.001 <0.001 0.014 0.862 0.933 0.879 0.249 Total 0.062 <0.001 0.913 Branch wood Stem wood Coarse root Fine root Total Foliage Branch wood Stem wood Coarse root Fine root Total <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 0.1 04 <0.001 1,5 2.0 2,5 3.0 3.5 4 0 laaf area index Figure2. Totalbiomassproduction (Mg ha-1yr-1}perunitof leaf irrigated plots during three years (1993-1995} of the study. Regressionlines are shown for each treatment. volume growth than the basemodel. The othervariables tested (NCONC, SMMIN, and initial basal area) were not significant in the model. The significant measuredvariablesin thetotalbiomassproductionmodel[Equation(4)] were NCONC and SMMIN. Again, the other variables tested(NCONT, SMMEAN, andinitial basalarea) were not significantin the model and the measuredvariable model explainedonly 5% moreof the variationin total biomass productionthanthe basemodel. 0.900 0.925 0.822 0.247 0.566 ...............(Pool size ending 1995)........... 0.016 <0.001 0.258 0.152 0.113 0.217 0.018 0.092 1.0 area index for control, irrigated, fertilized, and fertilized and .........................(1995 production).............. 0.010 <0.001 0.300 0.017 0.014 0.015 0.476 0.013 0.5 Peak ......................(1994 production) .............. 0.015 <0.001 0.263 Branch wood Stem wood Coarse root Fine root Foliage 0,0 Discussion 0.624 0.694 0.688 0.455 0.632 Fertilizationhadstrongpositiveeffectson leaf areaand stemvolumegrowthefficiencyandbecauseof the multiphcativeeffectsof thesetwo components, stemvolumegrowth was dramaticallyincreased(Figure 1 and Table 4). Stem volume growth efficiency averaged 7.7m3ha-1yr-1perunit ofLAIandcompared favorably withthe7.3m3ha-1yr-• per yr-1perunitofLAIinfertilized andirrigated plots (Table8 and Figure 2). Total biomassproductionefficiencywas increased91% and 29%, by fertilizationand irrigation,respectively(Figure2), andtheir effectswere additive. When replacing the nominal treatmentdesignations with experimentallymeasuredvariablesin Equation(4), NCONT and$MMEAN hadstatisticallysignificanteffects on the slopeof the annualstem woodvolume growthto LAI relationship (Table 8). However, these measured variablesexplainedonly 1% moreof thevariationin stem unit of LAI reportedfor loblollypine by Vose andAllen (1988). The analysesof treatmenteffectson growth and production efficiencywerebasedonslopecomparisons which included all data. Becauseof the fertilizer effects on LAI, the overlapping rangein LAI acrossall treatments wasfrom0.6 to 1.6.The trendsin growthandproductionefficienciesin thisrangewerethesameasthoseobservedfor all data. Similarto previousreports(Linder1987,Cannell1989), we found that fertilization increased leaf area more than it Table 8. Models examined to understand the relationship be{ween stem wood volume or total biomass production and peak leaf area index (LAI).Summarystatisticsand parameterestimatesare presented. Dependentvariable Stemvolume Model Regression equation Volme = -2.67+(9.52'LAI) Basemodel[Equation(2)] Expandedmodel[Equation(3)] Volume= -0.99+(7.12* LA1) +(1.50*LAI*F)+(0.58* L,4I * W) Continuous variable model Volume=-1.44+(5.56' L,4/) +(0.76* L,4I *NCONT) [Equation(4)] +(0.59* L,4I*SMME,4N) See text for equation forms, variable definitions, and units. 324 Forest$ctence 44(2)1998 Totalbiomassproduction n s R2 Regression equation n 64 6.7 0.93 Production = 2.33+(7.26*LA1) 48 64 6.7 0.95 Production = 6.40+(2.74*LA1) 48 +(2.49*L4/*F)+(0.80* LAI * W) 64 6.7 0.94 Production = 3.63+(0.85*LA1) 48 +(3.01' LAI *NCONC) +(0.96* LAI *SMMIN) s R2 5.1 5.1 0.87 0.95 5.1 0.92 •ncreasedstemvolumegrowthefficiency(61% and 28%, respectively). Clearly,thenativelevelof nutrientavailability strongly limitedleafareaproduction andstemvolumegrowth efficiencyat oursite.It wasnotpossible to determine which of thenutrients wereprincipallyresponsible fortheincreased leaf areaandstemvolumegrowthefficiencybecausemany nutrientswere added. However,pretreatment foliar N, K, Our estimatesof productionand patternsof biomass allocationcomparedwell with otherstudies.Stem wood volume increment inourstudy (4 to26m3ha-! yr-1)wasin the samerangeas otherstudieshavinga similartreatment design [Snowdon andBenson 1992(20to50m3ha-1yr-1), LinderandBergh1996(5 to 30 m3 ha-1 yr-1)].Our belowground production estimates (3 to5 Mgha-1 yr-1) and B concentrations were all below established critical were lessthan, or in the rangeof thosefound in Vogt's valuesfor loblolly pine (Allen 1987) and two of these elements,N andK, havebeenlinkedto leaf areaproduction. Quantifyingtheimportance of additionalvariablesin the expanded[Equation(3)] modeland the more mechanistic model[Equation(4)] washindered by thecolinearity among predictor variables. Thesmallamountof additional variation m stemwoodvolumegrowth(<2%) explainedby fertilization was due to the high correlationbetweenLAI and N concentration (r = 0.66). This result was not surprising becauseincreasedloblolly pine foliage productionin responseto fertilizationhasbeenreported(Vose and Allen, (1991)(5 to 11Mg ha-1 yr-1) survey of Pinusspecies in 1988).Themodel R2values presented heremaybeinflated due to the serial nature of the data. Duringthe2 dryyears(1993and1995),irrigationsignificantlyincreasedannualstemwoodvolumegrowth(up to 30%),althoughtheseincreases weremuchlessthangains(up to 150%) observeddue to fertilizationduring thesesame years.In contrastto the gain in stemvolumegrowthfrom fertilization,over60% of thegainin volumegrowthdueto irrigationresultedfrom increasedgrowthefficiencyrather than increasedleaf area.The lack of a leaf arearesponseto •rrigationcontrasts with resultsfrom the Biologyof Forest Growth (BFG) study in Australia, where substantialincreases in leaf areaproduction wereobservedwithirrigation aloneduringdry years(Linder et al. 1987, Bensonet al. 1992).On our site,low soil watercontentandthe periodof leafareaproduction donot,generally, occursimultaneously. However, at the BFG site, low soil water content did occur dunngtheperiodof foliageproduction. Other factors may have influenced the weak growth response to irrigation. Manogaran (1973), using Thornwaite's(1948) water budgetapproach,concluded thatirrigationwouldproducelittle additionalloblollypine growth in our studyarea. Even thoughour site has low water holdingcapacity,it usuallyhas frequentgrowing seasonprecipitationand relatively low evaporativedemand(whencomparedto moresouthernandwesternareas of the loblolly pinerange).In addition,leaf areamay still below enough,evenonfertilizedplots,thatthedeepsandy profile may provideenoughwater to meet transpiration losses.When greaterleaf area is attainedon fertilized plots,a positiveinteractionbetweenirrigationandfertilization may develop.Suchan effect hasbeenobservedfor Eucalyptusplantationson sandysites(Tome and Peteira 1991).Finally, theweakgrowthresponse in irrigatedplots may haveresultedfrom waterstressin the irrigatedplots during part of 1993 and 1994, when soil water content droppedto 23% AWC. Myers andTalsma (1992) founda rapiddecreasein predawnwaterpotentialoncesoil water contentdroppedbelow 40% AWC. temperateforestecosystems. When comparedto foliage productionestimatesfromthesamesurvey,ourestimates (2to7Mgha-! yr-1)weregreater than, orintherange ofthe survey data(2 to 6 Mg ha-1 yr-1).Patterns of biomass allocationfor plotsin thisstudyweresimilarto thosefound in LinderandAxelsson's studyonP. sylvestris (1982)andin Cannell's(1985) examinationof dry matterpartitioning.In all threestudies,aboveground production associated with improvednutrition(fertilization)appeared to be at the expenseof belowgroundbiomasscomponents. At the same time,shiftsin allocationaboveground dueto improvednutrition were small relativeto the above-versusbelowground trade-offs. All regression equations developed to predictcomponent biomass were based on dimensional (D, H, and L) and componentbiomassmeasuresfrom destructivelysampled treesat thesite(Appendix).For all components exceptthe coarserootcomponent, treatment (F and/or/)hada statisticallysignificant influenceontheparameter estimates for the regression equations. Consequently, thereportedsignificant treatmentdifferencesin coarseroot biomassproduction (Tables6 and 7) were the resultof statisticallysignificant treatmentdifferencesin diametergrowth.Additionalevidence(Kress,pets.comm.)fromoursiteindicateda significant positiverelationshipbetweencoarseroot and stem diametergrowththatwasunaffected bytreatment for 16trees measured in 1993and1994.Thelackof significant treatment effectsin the coarseroot biomassregression equationmay have been a result of our limited samplesize (23 trees); however,oursamplesizefor coarserootbiomasswaslarger thanmostreportedin theliterature(Santantonio et al. 1977, Kinersonet al. 1977,LinderandAxelsson1982,Vogt 1991, andHaynesandGower 1995). Therearetwohypotheses regardingtheeffectsof nitrogen availability on above- versusbelowgroundallocationof biomassproduction. The firsthypothesis suggests thatallocationto finerootproduction decreases andfinerootbiomass decreases or remainsthesamewith increased nitrogenavailability(Petsson1983,Vogt et al. 1986,Goweret al. 1994, HaynesandGower 1995).The secondhypothesis suggests thatallocationto fine rootproduction remainsconstantbut fine root biomassdecreases(Raich and Nadelhoffer 1989, Hendrickset al. 1993).Ourresults,indicatinga proportional andabsolute decrease in finerootproduction, aresupportive of thefirsthypothesis andindicatethatthehypothesis maybe extended to include the effects of both nutrient and water availability. Comparisonof biomassallocationin our studyandthe Kinersonet al. (1977) studywhichmeasured productivityin ForestSctence 44(2)1998 325 12- to 16-yr-old 1oblollypine standsin North Carolina revealedseveralinteresting differences. While totalbiomass production in theirstandandourfertilizedplotsweresimilar, ourfertilized plotsproduced upto 2 Mg ha-1 yr-1 more foliage biomassin 1994 and 1995. Also, while foliage biomassproduction increased substantially eachyearin our study,it remainedrelativelyconstantin theirs.At the same time,theportionof totalbiomassproduction allocatedto the stemin theirstudy(60%) wasgreaterthanin ourstudy(37% orless).Kinersonet al. (1977)indicatedthatstandagewasan importantconsideration when comparingproductivityin forestecosystems, and this may have been a factorin the differences between the two studies. Yet these differences wereevidentevenwhenthestands werethesameage(ourlast andtheir first year). Our resultsindicatethatstanddevelopmental stage,history of perturbation, level of siteresourceavailability,and standage shouldbe consideredwhen examiningtreatment differencesin standproductivityand biomassallocation, supportingthe conceptspresentedby Miller (1981) and others(Ovington1957,Assman1970).While Miller (1981) indicatedthatfertilizedstandswouldeventuallyreturnto the samegrowthcurve as their nonfertilizedcounterparts, this probablywill not be the casein our studyas long as we maintainthe treatments. In light of thesedifferences,it may be interestingin thefuture,whenmoredataareavailable,to compareour plotsat the samedevelopmental stagerather than the samechronologicalage to understandtreatment inducedchanges.However, given the low native nutrient availabilityof thesiteandtheincreasein nutrientavailability associated with ourtreatments, thecontrolplotsmaynever reachthesamedevelopmental stageasthefertilizedplots.In thatregard,fine root biomassdecreased slightlyandpeak LATremained at1.2m2m-2inthecontrol plotsduring 1994 and 1995eventhoughcanopyclosurehadnot occurred.In contrast, asfertilizedplotsnearedcanopyclosurein 1995,we observed a decrease in fine root biomass but an increase in peakLAT.Apparently,thecontrolstandsmayhavealready achieved"full" siteoccupancy withrootclosurebutwithout canopyclosure. Stemvolumegrowthefficiencyandtotalbiomass production efficiencyincreaseddue to fertilizationand irrigation (Figures1 and2). The gainin stemvolumegrowthefficiency resulted,in part, from proportionallygreaterallocationof biomass production from belowground (fine roots) to aboveground components (includingstem)(Table7). However,the changein allocationamongbiomasscomponents didnotexplaintheobserved increase intotalbiomass productionefficiency.Consequently, at the standlevel,netcarbon convertedintobiomassperunitof LATmusthaveincreased with fertilizationandirrigationto accountfor the observed increasein totalproduction perunitLAT.Resultsfromother researchat thesiteprovidedanexplanation for theobserved increase in production efficiency.Murthyet al. (1996)found 26% higherphotosynthesis ratesin fertilizedplotsthanin nonfertilized plotsoverthelife of the1993foliagecohort.On the other hand, Maier et al. (1998) found increasedstem (130%) and branch(40%) wood maintenance respiration 326 Forest Sctence 44(2)1998 rateswithfertilization.Finerootrespiration didnotincrease duetofertilizationorirrigation,butfinerootrespiration rates wereupto 15timesgreaterthanstemorbranchwoodytissue respiration rates(Maier,pers.comm.).Basedontheobserved changes in allocation, photosynthesis rates,andrelativecomponentrespiration rates,wehypothesized thatincreased total biomassproductionefficiency,on a standbasis,resulted whenmorebiomasswasallocatedto foliage(photosynthesizingtissue)andlessto fine roots(a highrespirationrate tissue).Fertilizationand irrigation(high levels of soil resourceavailability)providedan environmentwherethese changesoccurred. Improvements in growthefficiencyassociated with fertilizationandirrigationin thisstudymaynotcontinuethrough the life of the stands.Mencucciniand Grace(1996) suggest that, in mature trees, increasedhydraulicresistanceand maintenancerespirationresultsin reductionsin biomass accumulationfor a givenlevel of LAT. Thesefactorswould impactthe treatmentsin this studydifferently.Increased hydraulicresistance maybemoreimportantin fertilizedtrees (wherethetreeswouldbetaller)whilemaintenance respiration may be higherin the controlplots due to a larger (absoluteandproportionally) finerootbiomasscomponent. While the net impactof thesefactorson growthefficiency may be uncertain,the overallproductivityof the fertilized and irrigatedplotsshouldremaingreaterthan the control plotsdueto higherlevelsof LAT in theseplots. Given the stageof standdevelopment andexistingsite conditions, growthappearsto be limitedprimarilyby nutrientsandsecondarilyby water.This findingcontradicts currentnutrientprescription technology thatwouldranksimilar sitesas poor candidatesfor N+P fertilization.Due to the overallpoorinherentsitenutrientavailability,theimposition of anoptimumnutritiontreatment, ratherthanN+P fertihzation alone,may be responsiblefor the strongresponseto nutrientadditions.The potentialfor applyinga "complete" nutritiontreatmentto enhancegrowthon droughtysitesis intriguing.However,theremayberisksinvolvedin increasingleaf areaandreducingfinerootsonsuchsites.At thesame time, while somemight argue that, operationally,better potentialfertilizationsitesmay exist,the strategicimportanceof enhancinggrowthon sitesthat can be harvested underalmostanyconditionwithoutsoildegradationcannot be overlooked. LITERATURE CITED All. E/q,H.L. 1987.Forestfertilizers:Nutrientamendment,standproductivity, andenvironmental impact.J. For. 85(2):37-46. ASSMA/q, E. 1970. The principlesof forestyield study.PergammonPress, Oxford,UnitedKingdom. AxEl.SSOta, E., n•aI•B. AxF•ssota. 1986.Changesin carbonallocadonpatterns in spruceandpinetreesfollowingirrigationandfertilization.TreePhys 2:189-204. BAS•RVml. E, G.L. 1972.Use of logarithmicregression in the estimationof plantbiomass.Can.J. For. Res.2:49-53. BE/qso/q, R.E., B.J.MYERS, A/qI> R.J.RA•SO/q. 1992.Dynamicsof stemgrowth of Pinusradiataas affectedby waterandnitrogensupply.For. Ecol Manage.52:117-138. CAr,n•ELL, M.G.R. 1985.Dry matterpartitioning in treecrops.P. 160-193in Attributesof treesas cropplants,Cannell,M.G.R., and J.E. Jackson (eds.).Inst.Terr. Ecol., Titus Wilson andSons,LTD, Kendal,Cumbria, MENCUCCIN1, M., ANDJ. GRACE. 1996.Hydraulicconductance, lightinterception and needlenutrientconcentration in Scotspine standsand their relations withnetprimaryproductivity. TreePhys.16:459-468. Great Britain. CArO•ELL, M.G.R. 1989.Physiological basisof woodproduction: A review. Scand. J. For. Res. 4:459-490. COLBERT, S.R., E.J. JOKELA,AN• D.G. NEARY. 1990. Effects of annual fertilizationandsustained weedcontrolon d•y matterpartitioning, leaf area,andgrowthefficiencyofjuvenile1oblollyandslashpine.For.Sci. MIGNANO, J.R. 1995. Effects of water and nutrientavailabilityon root biomass,necromass and productionin a nine-year-oldIoblolly pine plantation.M.S. Thesis,Dep. of For., NorthCarolinaStateUniv., Raleigh,NC. MILLER, H.G. 1981.Forestfertilization:Someguidingconcepts. Forestry 54(2):157-167. 36:995-1014. MURTHY,R., P.M. DOUGHERTY, S.J.ZARNOCH, ANDH.L. ALLEN.1996. Effects FAIRLET, R.I., ANDl.J. ALEXANDER. 1985. Methodsof calculatingfine root production in forests.P. 37-42 in Ecologicalinteractions in soil.Fitter, A.H., etal.(eds.).Spec.Publ.No.4. BlackwellScientific,Oxford,United Kingdom. GILLESPIE, A.R., H.L. ALLEN,ANDJ.M. VOSE.1994. Amount and vertical distribution of foliageof youngIoblollypinetreesasaffected by canopy of carbondioxide,fertilization,andirrigationonphotosynthetic capacity of loblollypinetrees.Tree Phys.16:537-546. MYERS,B.J., ANDT. TALSMA.1992. Site water balance and tree water status in irrigated and fertilised stands of Pinus radiata. For. Ecol.Manage. 52:17-42. positionandsilviculturaltreatment.Can.J. For. Res.24:1337-1344. OVINGTON, J.D. 1957.D•y-matterproduction byPinussylvestrisL. Ann.Bot. GOWER, S.T.,K.A. VOOT,AN•C.C. GPdER. 1992.Carbondynamics of Rocky MountainDouglas-fir:influenceof waterandnutrientavailability.Ecol. PERSSON, H.A. 1983.Thedistribution andproductivity of finerootsin boreal Monogr.62:43-65. GOWER, S.T., H.L. GHOLZ,K. NAKANE, ANDV.C. BALDWIN.1994. Production andallocationpatternsof pine forests.P. 115-135 in Environmental constraints onthestructure andproductivity of pineforestecosystems: a comparative analysis. Gholz,H.L., etal. (eds.).Ecol.Bull.(Copenhagen) 43:115-135. HAYNES, B.E., ANDS.T. GOWER. 1995.Belowground carbonallocationin nonfertilizedandfertilizedredpineplantations in northernWisconsin. Tree Phys.15:317-325. HENDPdCKS, J.J.,K.J. NADELHOFFER, ANDJ.D.ABER.1993.Assessing therole of fine rootsin carbonandnutrientcycling.Tree 8:174-178. HENNESSEY, T.C., P.M. DOUG•mRXY, B.M. CP,EGO,ANDR.F. WITFWER. 1992. Annualvariationinneedlefall ofa 1oblolly pinestandinrelationtoclimate andstanddensity.For.Ecol.Manage.51:329-338. JARVIS, P.G.,ANDJ.W.LEVERENZ. 1983.Productivity of temperate, deciduous, andevergreen forests.P. 233-280 in Physiological PlantEcologyIV. Encyclopedia of plantphysiology. Vol. 12D.Lange,O.L., et al. (eds.). Springer-Verlag, New York. KEYES, M.R., ANDC.C.GRIER. 1981.Above-andbelow-ground netproductaonin40 year-oldDouglas-fir stands onlowandhighproductivity sites. Can. J. For. Res. 11:599-605. FaNEPSON, R.S.,C.W. RALSTON, ANDC.G. WELLS. 1977.Carboncyclingin a 1oblollypineplantation.Oecologia(Bed.) 29:1-10. LI-CoR,INC.1991.LAI-2000 plantcanopyanalyzer,Instruction manual.Lieor, Inc., Lincoln, Nebraska. LINDER, S.,ANDB. AXELSSON. 1982.Changes in carbonuptakeandallocation patternsas a resultof irrigationand fertilizationin a youngPinus sylvestris stand.P. 38-44 in Carbonuptakeandallocation in a sub-alpine ecosystem asa keyto management. Waring,R.H. (ed.).corvallis,OR. LINDER, S. 1987.Responses to waterandnutrients in coniferous ecosystems. P. 180-202in Potentials andlimitations of ecosystems analysis. Ecol. Studies 61.Schulze, E.D.,andH.Z. Wolfer(eds.).Springer-Verlag, New York. 21:287-314. forests. Plant Soil 71:87-101. RAICH, J.W.,ANDK.J.NADELHOFFER. 1992.Belowground carbonallocation in forestecosystems: Globaltrends.Ecology70:1346-1354. Santantonio,D., R.K. Hermann, and W.S. Overton. 1977. Root biomass studiesin forestecosystems. Pedobiologia 17:1-31. SAS INSTITUTE, INC.1988.SAS/STATUser'sguide,Release6.03 ed.Ca,y, NC. SAS Institute,Inc. 1028p. SHELTON, M.G., L.E. NELSON, ANDG.L. SWITZER. 1984.The weight,volume andnutrientstatusof plantation--grown 1oblollypinetreesintheinterior flatwoods of Mississippi. Mississippi StateTech.Bull.# 121.Mississippi Agric.andFor. Exp. Sta. SNOWDON, P.,ANDM.L. BENSON. 1992.Effectsof combinations of irrigation andfertilisation onthegrowthandabove-ground biomass production of Pinusradiata.For. Ecol. Manage.52:87-116. STow,T.K., H.L. ALLEN, ANDL.W. KRESS. 1992.Ozoneimpactson seasonal foliagedynamicsof young1oblollypine.For. Sci. 38:102-119. WEsKEY, R.O., B.C. BONGARTEN, B.M. CREGO,P.M. DOUOHERTY, ANDT.C. HENNESSEY. 1987. Physiologyandgeneticsof tree growthresponse to moisture andtemperature stress: An examination of thecharacteristics of 1oblollypine (PinustaedaL.). Tree Phys.3:41-61. THORNWAITE, C.S. 1948. An approachtowardsa rationalclassificationof climate.Geogr.Rev. 38:55-94. TOME,M., ANDJ.S. PEREIRA. 1991. Growthand management of Eucalypt plantationsin Portugal.P. 147-157 in Proc.of Third AustralianForest Soils and Nutrition Conf. ToPP,G.C.,ANDJ.L.DAVIS.1985.Time-domain reflectometry (TDR) andits application toirrigationscheduling. P. 101-127inAdvances inirrigation. Vol. 3., Hillel D. (ed.).AcademicPress,Orlando,FL. VOOT,K.A., C.C. GRIER,ANDD.J. VOGT. 1986. Production,tamover, and nutrient dynamics of above-andbelow-ground detritus of word forests. Adv. Ecol. Res. 15:303-377. VOOT,K. 1991.Carbonbudgetsof temperateforestecosystems. Tree Phys. 9:69-86. LINDER, S., M.L. BENSON, B.J. MYERS, ANDR.J. RAISON. 1987. Canopy dynamicsand growthof Pinus radiata.I. Effectsof irrigationand fertilizationduringa drought.Can.J.For. Res.17:1157-1165. LINDER,S., ANDJ. BEROH.1996. Naringsoptimering--granen vaxer ur produktionstabellerna. FaktaSkogNr 4. Sverigeslanthrul•universitet, Uppsala,Sweden. MAmR, C.A., P.M.Douo•mRTY, ANDS.J.ZAP,•OCa. 1998.Modellingtheeffects of temperature andtissuenitrogenon dormantseasonstemandbranch maintenance respiration ina young1oblolly pine(PinustaedaL.) plantauon. Tree Phys.18:11-20. VOSE,J.M., ANDH.L. ALLEN.1988. Leaf area, stem wood growth, and nutritionrelationships in Ioblollypine.For. Sci. 34:547-563. WANO,Y.P., ANDP.G. JARVIS. 1990.Influenceof crownstructuralproperties on PAR absorption, photosynthesis, andtranspiration in Sitkaspruce: applicationof a model(MAESTRO, radiation,and PSYN model).Tree Phys.7:297-316. ZHANG, S. 1993.Theeffectsofnitrogenavailabilityonleafarea,photosynthesisandfoliarnutrientstatusofloblollypine.Ph.D.Diss.,Dep.ofForestry, NorthCarolinaStateUniv., Raleigh,NC. MANOGARAN, C. 1973.Economicfeasibilityof irrigationin southern pines. Water Resour. Res. 2:1485-1496. ForestSctence 44(2) 1998 327 breast height (D),D2x height (H), length of thelivecrown APPENDIX Thisappendix presents thestand-andsite-specific whole treecomponent biomassregression equations andsummary statistics usedfor ouranalyses. The full modelformwas: DEPVAR = INDVAR ß WINDVAR F W F * W INDVAR * F INDVAR * F * W whereDEPVAR was the dependentvariable(whole tree component dryweightfor stem,branch,foliage,coarseroot, taproot),INDVARwastheindependent variable[diameterat (L), andAge],F was0 if nonfertilized or 1 if fertilized,andW was0 if nonirrigated or 1 if irrigated.The wholetreebranch wood,foliage,andstemcomponents hadat leasttwo independentvariables,eachwith the full set of treatmentand independent variableinteractions in thefull model.Nons•gnificanttermsweredroppedfromthe full modelto develop a reducedmodelfor eachdependent variablewhichwasused toestimatewholetreecomponent biomass.Whencalculating the absolutedata from the log-log models,Baskerville's (1972) adjustment to theantilogarithm [antilog(meansquare error/2)] was used. Model type, parameter estimates, and summary statisticsfor whole tree component biomass regressions.Parameter estimates for the F(fertilizer), I (irrigation), Independent*F, and Independent*l are the values shown when F= 0 (nonfertilized)and I = 0 (nonirrigated). When F= 1 (fertilized) and I= 1 (irrigated) then the parameter estimate for these terms is zero. Parameter Dependent variable Stem wood + bark Type Intercept INDVAR transformed• 2.12 D2xH Log-log 0.31 D2xH D2xHxAge Current-year foliage I INDVAR*F INDVAR*I MSE a Log-log Coarseroot Log-log Taproot Log-log a Mean square error. b Residualswere not biased, ForestSctence 44(2)1998 -1.39 0 -4.52 -0.23 23.67 0 0.94 0 -1.44 -4).14 R2 rt 0.99 48 0.041 0.88 448 0.060 0.92 448 0 0 0 0 0 Age 0.58 0.11 0 0 0 0 0 0.17 . D2xH 3.09 3.55 170 1.42 0.12 -0.26 -0.18 0 L 1.51 0.64 0 Age 0.64 0.087 0 0 0 0 0 0 0 0 0 D• xHxAge L xAge 328 F L D2xHxAge L xAge Branchwood estimate Not D D -0.073 -2.45 0 0.13 -0.25 1.69 2.06 0 -0.35 0 0 0.166 0.097 0.78 0.92 23 23
© Copyright 2026 Paperzz