Asymptotic I-Equivalence of Two Number Sequences and

Hindawi Publishing Corporation
Chinese Journal of Mathematics
Volume 2014, Article ID 805857, 5 pages
http://dx.doi.org/10.1155/2014/805857
Research Article
Asymptotic I-Equivalence of Two Number Sequences and
Asymptotic I-Regular Matrices
Hafize Gumus,1 Jeff Connor,2 and Fatih Nuray3
1
Faculty of Eregli Education, Necmettin Erbakan University, Eregli, Konya, Turkey
Department of Mathematics, Ohio University, Athens, OH, USA
3
Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon, Turkey
2
Correspondence should be addressed to Fatih Nuray; [email protected]
Received 8 November 2013; Accepted 5 January 2014; Published 24 February 2014
Academic Editors: W. Xiao and J. Zhang
Copyright © 2014 Hafize Gumus et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We study I-equivalence of the two nonnegative sequences π‘₯ = (π‘₯π‘˜ ) and 𝑦 = (π‘¦π‘˜ ). Also we define asymptotic I-regular matrices and
obtain conditions for a matrix 𝐴 = (π‘Žπ‘—π‘˜ ) to be asymptotic I-regular.
Proposition 3. 𝐼 is a nontrivial ideal in N if and only if
1. Introduction
The notion of 𝐼-convergence was introduced by Kostyrko et
al. for real sequences (see [1]) and then extended to metric
spaces by Kostyrko et al. (see [2]). Fast [3] introduced statistical convergence and 𝐼-convergence, which is based on using
ideals of N to define sets of density 0; is a natural extension of
Fast’s definition.
Definition 1. A family of sets 𝐼 βŠ† 2N is called an ideal if and
only if
(i) 0 ∈ 𝐼;
(ii) for each 𝐴, 𝐡 ∈ 𝐼 we have 𝐴 βˆͺ 𝐡 ∈ 𝐼;
(iii) for each 𝐴 ∈ 𝐼 and each 𝐡 βŠ† 𝐴 we have 𝐡 ∈ 𝐼.
An ideal is called nontrivial if N βˆ‰ 𝐼 and a nontrivial ideal is
called admissible if {𝑛} ∈ 𝐼 for each 𝑛 ∈ N (see [2]).
N
Definition 2. A family of sets 𝐹 βŠ‚ 2 is a filter in N if and only
if
(i) 0 βˆ‰ 𝐹;
(ii) for each 𝐴, 𝐡 ∈ 𝐹 we have 𝐴 ∩ 𝐡 ∈ 𝐹;
(iii) for each 𝐴 ∈ 𝐹 and each 𝐡 βŠ‡ 𝐴 we have 𝐡 ∈ 𝐹 (see
[2]).
𝐹 = 𝐹 (𝐼) = {𝑀 = N \ 𝐴 : 𝐴 ∈ 𝐼}
(1)
is a filter in N (see [2]).
Definition 4. A real sequence π‘₯ = (π‘₯π‘˜ ) is said to be 𝐼convergent to 𝐿 ∈ R if and only if for each πœ€ > 0 the set
󡄨
󡄨
𝐴 πœ€ = {π‘˜ ∈ N : 󡄨󡄨󡄨π‘₯π‘˜ βˆ’ 𝐿󡄨󡄨󡄨 β‰₯ πœ€}
(2)
belongs to 𝐼. The number 𝐿 is called the 𝐼-limit of the
sequence π‘₯ (see [2]).
Let π‘₯ = (π‘₯π‘˜ ) and 𝑦 = (π‘¦π‘˜ ) be real sequences. Pobyvanets
introduced asymptotic equivalence for π‘₯ and 𝑦 as follows: if
lim
π‘₯π‘˜
π‘˜ β†’ ∞ π‘¦π‘˜
= 1,
(3)
then π‘₯ and 𝑦 are called asymptotic equivalent; this is denoted
by π‘₯ ∼ 𝑦 (see [4]). Pobyvanets also introduced asymptotic
regular matrices which preserve the asymptotic equivalence
of two nonnegative number sequences; that is, for the
nonnegative matrix 𝐴 = (π‘Žπ‘—π‘˜ ) if π‘₯ ∼ 𝑦 then 𝐴π‘₯ ∼ 𝐴𝑦
(see [5]).
2
Chinese Journal of Mathematics
Theorem 5. Let 𝐴 = (π‘Žπ‘—π‘˜ ) be a nonnegative matrix. 𝐴 is
asymptotic regular if and only if, for each π‘š,
π‘Žπ‘—π‘š
∞
π‘—β†’βˆž βˆ‘
π‘˜=1 π‘Žπ‘—π‘˜
lim
=1
(4)
Definition 8. Two nonnegative sequences π‘₯ and 𝑦 are said
to be asymptotically statistically equivalent provided that, for
every πœ€ > 0,
󡄨󡄨
󡄨󡄨 π‘₯
1
󡄨󡄨
󡄨󡄨 π‘˜
βˆ’
1
{the
number
of
π‘˜
≀
𝑛
:
lim
󡄨󡄨 β‰₯ πœ€} = 0.
󡄨
󡄨
𝑛 𝑛
󡄨󡄨
󡄨󡄨 π‘¦π‘˜
(see [5]).
𝑆
The frequency of terms having zero values makes a termby-term ratio π‘₯π‘˜ /π‘¦π‘˜ inapplicable in many cases, which motivated Fridy to introduce some related notions. In particular,
he analyzed the asymptotic rates of convergence of the tails
and partial sums of series as well as the supremum of the tails
of bounded sequences (see [6]).
Define 𝑙1 , 𝑃0 , 𝑃, and 𝑃𝛿 spaces as follows:
∞
󡄨 󡄨
𝑙1 = {π‘₯ = (π‘₯π‘˜ ) : βˆ‘ 󡄨󡄨󡄨π‘₯π‘˜ 󡄨󡄨󡄨 < ∞} .
π‘₯π‘˜ β‰₯ 𝛿 > 0 βˆ€π‘˜} ,
𝑃0 = {the set of all nonnegative sequences which have
𝑆
𝑆
tistically regular provided that 𝐴π‘₯ ∼ 𝐴𝑦 whenever π‘₯ ∼ 𝑦,
π‘₯ ∈ 𝑃0 , and 𝑦 ∈ 𝑃𝛿 for some 𝛿 > 0 (see [4]).
Having introduced these ideas, Patterson then offered
characterizations of (i) in Theorem 6 when a nonnegative
summability matrix 𝐴 maps bounded sequences into the
absolutely convergent sequences and has the property that
𝑆
Theorem 10. In order for a summability matrix 𝐴 to be asymptotically statistical regular it is necessary and sufficient that
π‘˜
0
π‘Žπ‘›π‘˜ is bounded for each 𝑛;
(i) βˆ‘π‘˜=1
at most a finite number of zero terms} ,
(ii) for any fixed π‘˜0 and πœ€ > 0,
𝑃 = {the set of all sequences π‘₯ such that π‘₯π‘˜ > 0 βˆ€π‘˜} .
(5)
Following Fridy, given a sequence π‘₯ = (π‘₯π‘˜ ), the sequence 𝑅π‘₯
is defined to be (π‘…π‘š π‘₯) where, for each π‘š ∈ N, π‘…π‘š π‘₯ = βˆ‘βˆž
π‘˜=π‘š π‘₯π‘˜ .
Theorem 6. If 𝐴 is a nonnegative (π‘™βˆž , 𝑙1 ) summability matrix,
then the following statements are equivalent:
(i) if π‘₯ and 𝑦 are bounded sequences such that π‘₯ ∼ 𝑦 and
𝑦 ∈ 𝑃𝛿 , for some 𝛿 > 0, then 𝑅𝐴π‘₯ ∼ 𝑅𝐴𝑦;
(ii) for each π‘š,
π‘›β†’βˆž
Definition 9. A summability matrix 𝐴 is asymptotically sta-
𝑆
𝑃𝛿 = {The set of all real number sequences such that
lim (
In this case we write π‘₯ ∼ 𝑦 (see [4]).
if π‘₯ ∈ 𝑃0 , 𝑦 ∈ 𝑃𝛿 , and π‘₯ ∼ 𝑦, then 𝑅𝐴π‘₯ ∼ 𝑅𝐴𝑦 and
(ii) when a summability matrix is asymptotically statistical
regular summability matrices.
π‘˜=1
󡄨
󡄨󡄨 π‘˜0
󡄨󡄨 βˆ‘π‘˜=1 π‘Žπ‘›π‘˜ 󡄨󡄨󡄨
1
󡄨󡄨 β‰₯ πœ€} = 0 (9)
󡄨
lim {π‘‘β„Žπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘˜ ≀ 𝑛 : 󡄨󡄨󡄨 ∞
󡄨
π‘›β†’βˆžπ‘›
󡄨󡄨 βˆ‘π‘˜=1 π‘Žπ‘›π‘˜ 󡄨󡄨󡄨
󡄨
󡄨
(see [4]).
The main results of this paper have a similar focus,
where statistical convergence is replaced by convergence with
respect to an admissible ideal of subsets of N.
2. Main Results
βˆ‘βˆž
π‘˜=𝑛 π‘Žπ‘˜π‘š
)=0
∞
βˆ‘π‘˜=𝑛 βˆ‘βˆž
𝑗=0 π‘Žπ‘˜π‘—
(6)
In 2003, Patterson extended these concepts by introducing asymptotically statistical equivalent sequences, an analog
of the above definitions, and investigated natural regularity
conditions for nonnegative summability matrices (see [4]).
Definition 7. The sequence π‘₯ has statistical limit 𝐿, denoted
by st-lim π‘₯ = 𝐿 provided that for every πœ€ > 0,
1
󡄨
󡄨
{the number of π‘˜ ≀ 𝑛 : 󡄨󡄨󡄨π‘₯π‘˜ βˆ’ 𝐿󡄨󡄨󡄨 β‰₯ πœ€} = 0
lim
𝑛 𝑛
Definition 11. Let π‘₯ and 𝑦 be nonnegative real sequences and
let 𝐼 be an admissible ideal in N. If
󡄨󡄨
󡄨󡄨 π‘₯
󡄨
󡄨
{π‘˜ ∈ N : 󡄨󡄨󡄨 π‘˜ βˆ’ 1󡄨󡄨󡄨 β‰₯ πœ€}
󡄨󡄨
󡄨󡄨 π‘¦π‘˜
(see [7]).
(see [4]).
(8)
(10)
belongs to 𝐼, for every πœ€ > 0, then π‘₯ and 𝑦 are called asymp𝐼
totically 𝐼-equivalent sequences; this is denoted by π‘₯ ∼ 𝑦.
Theorem 12. Let 𝐴 = (π‘Žπ‘—π‘˜ ) be a nonnegative (π‘™βˆž , 𝑙1 ) summability matrix and let 𝐼 and 𝐽 be admissible ideals in N. Then the
following statements are equivalent:
𝐼
(i) if π‘₯ and 𝑦 are bounded sequences such that π‘₯ ∼ 𝑦, π‘₯ ∈
(7)
𝐽
𝑃0 , and 𝑦 ∈ 𝑃𝛿 , for some 𝛿 > 0, then 𝑅𝐴π‘₯ ∼ 𝑅𝐴𝑦;
(ii) 𝐽 βˆ’ lim𝑛 ((βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ )/(βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ )) = 0 for each
𝑆 ∈ 𝐼.
Chinese Journal of Mathematics
3
∞
Proof. The proof that statement (ii) implies statement (i) is
+
𝐼
given first. Assuming that π‘₯ ∼ 𝑦, let πœ€ > 0 be given and set
󡄨󡄨 π‘₯
󡄨󡄨󡄨 πœ€
󡄨
𝑆 = {π‘˜ : 󡄨󡄨󡄨 π‘˜ βˆ’ 1󡄨󡄨󡄨 β‰₯ } .
󡄨󡄨 π‘¦π‘˜
󡄨󡄨 2
βˆ’
β‰₯
(12)
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
𝛿
πœ€
+ (1 βˆ’ )
∞
2
supπ‘˜ (π‘¦π‘˜ ) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜=1 π‘Žπ‘—π‘˜
βˆ’
󡄨󡄨 βˆ‘ βˆ‘ π‘Ž 󡄨󡄨
󡄨󡄨 𝑗β‰₯𝑛 π‘˜βˆˆπ‘† π‘—π‘˜ 󡄨󡄨 πœ€
𝛿
󡄨󡄨 <
𝑇 = {𝑛 ∈ N : 󡄨󡄨󡄨
󡄨󡄨 2 sup (π‘₯ ) } ∈ 𝐹 (𝐽) .
󡄨󡄨 βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘Ž
π‘˜
π‘˜
π‘˜=1 π‘—π‘˜ 󡄨󡄨
󡄨
(13)
Observe that, for 𝑛 ∈ 𝑇,
(1 βˆ’ (πœ€/2)) (supπ‘˜ (π‘¦π‘˜ )) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
(16)
By condition (ii), there is a set π‘ˆ ∈ 𝐹(𝐽) such that, for each
𝑛 ∈ π‘ˆ, the first and third terms of the above expression can
be made small in relation to 1 βˆ’ (πœ€/2) and, in particular,
βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
𝐽 βˆ’ lim
supπ‘˜ (π‘₯π‘˜ ) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
+
(14)
βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
≀
supπ‘˜ (π‘₯π‘˜ ) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
πœ€
+ (1 + )
𝛿
2
π‘Ž
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘—π‘˜
<
supπ‘˜ (π‘₯π‘˜ ) πœ€
𝛿
πœ€
) + (1 + )
(
𝛿
2 supπ‘˜ (π‘₯π‘˜ )
2
+
β‰₯
1, if π‘˜ βˆ‰ 𝑆,
0, if π‘˜ ∈ 𝑆,
(1 βˆ’ (πœ€/2)) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘₯π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
𝛿
supπ‘˜ (π‘¦π‘˜ ) βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
𝐽
π‘¦π‘˜ = 1.
(19)
Observe that
𝑅𝑛 (𝐴π‘₯) βˆ‘π‘—β‰₯𝑛 (βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ + βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ )
=
𝑅𝑛 (𝐴𝑦)
βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
=
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ βˆ’ βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
(15)
=1βˆ’
βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
𝛿
supπ‘˜ (π‘¦π‘˜ ) βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
(18)
𝐼
On the other hand,
β‰₯
𝑅𝑛 (𝐴π‘₯)
=1
𝑅𝑛 (𝐴𝑦)
sequences, π‘₯ ∈ 𝑃0 , 𝑦 ∈ 𝑃𝛿 , and π‘₯ ∼ 𝑦, then 𝑅𝐴π‘₯ ∼ 𝑅𝐴𝑦. Let 𝑆
be a member of 𝐼 and define the sequences π‘₯ and 𝑦 as follows:
That is,
𝑅𝑛 (𝐴π‘₯) βˆ‘π‘—β‰₯𝑛 (βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ + βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ )
=
𝑅𝑛 (𝐴𝑦)
βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
(17)
and hence (ii) implies (i).
The proof is completed by showing that statement (i)
implies statement (ii). Assume that if π‘₯ and 𝑦 are bounded
π‘₯π‘˜ = {
= 1 + πœ€.
𝑅𝑛 (𝐴π‘₯)
≀ 1 + πœ€.
𝑅𝑛 (𝐴𝑦)
.
for each 𝑛 ∈ π‘ˆ. By (15) and (17), we have
βˆ‘π‘—β‰₯𝑛 (βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ + βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ )
(1 + (πœ€/2)) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘¦π‘˜
𝛿 βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
𝑅𝑛 (𝐴π‘₯)
β‰₯1βˆ’πœ€
𝑅𝑛 (𝐴𝑦)
∞
𝑅𝑛 (𝐴π‘₯) βˆ‘π‘—β‰₯𝑛 (βˆ‘π‘˜=1 π‘Žπ‘—π‘˜ π‘₯π‘˜ )
=
𝑅𝑛 (𝐴𝑦) βˆ‘π‘—β‰₯𝑛 (βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜ )
≀
(1 βˆ’ (πœ€/2)) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ π‘¦π‘˜
∞
for each π‘˜ βˆ‰ 𝑆. By (ii),
=
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
∞
(11)
Observe that 𝑆 ∈ 𝐼 and that
πœ€
πœ€
(1 βˆ’ ) π‘¦π‘˜ < π‘₯π‘˜ < (1 + ) π‘¦π‘˜
2
2
(1 βˆ’ (πœ€/2)) βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
(20)
βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
𝐽
and, as 𝑅Aπ‘₯ ∼ 𝑅𝐴𝑦, it follows that
𝐽 βˆ’ lim
βˆ‘π‘—β‰₯𝑛 βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘π‘—β‰₯𝑛 βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
= 0.
(21)
Definition 13. Let 𝐴 = (π‘Žπ‘—π‘˜ ) be a nonnegative summability
matrix and let 𝐼 be an admissible ideal in N. Further assume
that π‘₯ and 𝑦 are nonnegative real sequences with π‘₯ ∈ 𝑃 and
𝑦 ∈ 𝑃𝛿 for some 𝛿 > 0. The summability matrix 𝐴 is said to
𝐼
𝐼
be asymptotic 𝐼-regular if π‘₯ ∼ 𝑦 implies 𝐴π‘₯ ∼ 𝐴𝑦.
4
Chinese Journal of Mathematics
Lemma 14. Let π‘₯ = (π‘₯π‘˜ ) and 𝑦 = (π‘¦π‘˜ ) belong to 𝑃𝛿 ∩ π‘™βˆž and
let 𝐼 be an admissible ideal in N. Then necessary and sufficient
𝐼
condition for π‘₯ ∼ 𝑦 is 𝐼 βˆ’ lim(π‘₯ βˆ’ 𝑦) = 0.
Theorem 17. Let 𝐼 βŠ† 2N be an admissible ideal in N. Then
a nonnegative summability matrix 𝐴 = (π‘Žπ‘—π‘˜ ) is asymptotic 𝐼regular if and only if
𝐼 βˆ’ lim
𝐼
Proof. Assuming that π‘₯ ∼ 𝑦, then
󡄨󡄨 π‘₯
󡄨󡄨
󡄨
󡄨
𝑇 = {π‘˜ : 󡄨󡄨󡄨 π‘˜ βˆ’ 1󡄨󡄨󡄨 < πœ€} ∈ 𝐹 (𝐼)
󡄨󡄨 π‘¦π‘˜
󡄨󡄨
(22)
(23)
(1 βˆ’ πœ€) π‘¦π‘˜ ≀ π‘₯π‘˜ ≀ (1 + πœ€) π‘¦π‘˜ 󳨐⇒ βˆ’πœ€π‘¦π‘˜ < π‘₯π‘˜ βˆ’ π‘¦π‘˜ < πœ€π‘¦π‘˜
󡄨 󡄨
󳨐⇒ βˆ’πœ€ (sup σ΅„¨σ΅„¨σ΅„¨π‘¦π‘˜ 󡄨󡄨󡄨) < π‘₯π‘˜ βˆ’ π‘¦π‘˜
π‘˜
π‘₯π‘˜ = {
π‘˜
(𝐴π‘₯)𝑗
=
< πœ€ for each π‘˜ ∈ 𝑇.
(24)
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
(25)
βˆ’πœ€ π‘₯π‘˜
πœ€
<
βˆ’1<
π‘¦π‘˜ π‘¦π‘˜
π‘¦π‘˜
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
= 0.
(30)
Next we show that condition (27) is sufficient for 𝐴 to be
asymptotic 𝐼-regular. Define the matrix 𝐡 = (π‘π‘—π‘˜ ) by π‘π‘—π‘˜ =
π‘Žπ‘—π‘˜ / βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ . Note that, since the row sums equal 1 and
condition (27) yields criteria (i) of Theorem 16, 𝐡 is an 𝐼regular matrix. Also observe that, since the row sums equal
1, the matrix 𝐡 maps members of 𝑃𝛿 to 𝑃𝛿 . Observe that
𝐼
π‘₯ ∼ 𝑦 󳨐⇒ 𝐼 βˆ’ lim (π‘₯ βˆ’ 𝑦) = 0
(26)
𝐼
and hence π‘₯ ∼ 𝑦.
Definition 15. Let 𝐼 be an admissible ideal in N, π‘₯ a real
sequence, and 𝐴 = (π‘Žπ‘—π‘˜ ) a nonnegative summability matrix.
If 𝐼 βˆ’ lim π‘₯ = 𝐿 implies 𝐼 βˆ’ lim(𝐴π‘₯) = 𝐿, then 𝐴 is called an
𝐼-regular matrix.
Theorem 16. Let 𝐴 = (π‘Žπ‘—π‘˜ ) be a nonnegative summability
matrix, 𝐴 ∈ (π‘™βˆž , π‘™βˆž ), and 𝐼 an admissible ideal. The matrix
𝐴 is 𝐼-regular if and only if
The proof of Theorem 16 is similar to [3, Theorem 2.1].
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ βˆ’ βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
𝐼
󳨐⇒ 𝐼 βˆ’ lim𝐡 (π‘₯ βˆ’ 𝑦) = 0
󳨐⇒ 1 βˆ’
(ii) 𝐼 βˆ’ lim βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ = 1.
=
.
𝐼 βˆ’ lim
For each π‘˜ ∈ π΅πœ€ , we have
(i) {𝑗 : | βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ | β‰₯ πœ€} ∈ 𝐼 for all 𝑆 ∈ 𝐼;
(28)
Since 𝐴π‘₯ ∼ 𝐴𝑦, it follows that
Hence 𝐼 βˆ’ limπ‘˜ (π‘₯π‘˜ βˆ’ π‘¦π‘˜ ) = 0.
πœ€
πœ€ π‘₯π‘˜
<1+
<
𝛿 π‘¦π‘˜
𝛿
󡄨󡄨 π‘₯
󡄨󡄨 πœ€
󡄨
󡄨
󳨐⇒ {π‘˜ : 󡄨󡄨󡄨 π‘˜ βˆ’ 1󡄨󡄨󡄨 < } ∈ 𝐹 (𝐼)
󡄨󡄨 π‘¦π‘˜
󡄨󡄨 𝛿
π‘¦π‘˜ = 1 βˆ€π‘˜ ∈ N.
(29)
σΈ€ 
βˆ’πœ€ π‘₯π‘˜
πœ€
βˆ’1<
<
𝛿
π‘¦π‘˜
𝛿
1, if π‘˜ βˆ‰ 𝑆,
0, if π‘˜ ∈ 𝑆,
βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜ π‘₯π‘˜ + βˆ‘π‘˜βˆ‰π‘† π‘Žπ‘—π‘˜ π‘₯π‘˜
=1βˆ’
󳨐⇒ βˆ’πœ€σΈ€  < π‘₯π‘˜ βˆ’ π‘¦π‘˜
󳨐⇒
(27)
Observe that π‘₯ and 𝑦 are bounded sequences, π‘₯ ∈ 𝑃0 , and
𝑦 ∈ 𝑃𝛿 . Hence.
(𝐴𝑦)𝑗
󡄨 󡄨
< πœ€ (sup σ΅„¨σ΅„¨σ΅„¨π‘¦π‘˜ 󡄨󡄨󡄨)
βˆ’πœ€ < π‘₯π‘˜ βˆ’ π‘¦π‘˜ < πœ€ 󳨐⇒
=0
for every 𝑆 ∈ 𝐼.
and hence
Now suppose that 𝐼 βˆ’ limπ‘˜ (π‘₯π‘˜ βˆ’ π‘¦π‘˜ ) = 0. Then
󡄨
󡄨
π΅πœ€ = {π‘˜ : 󡄨󡄨󡄨π‘₯π‘˜ βˆ’ π‘¦π‘˜ 󡄨󡄨󡄨 < πœ€} ∈ 𝐹 (𝐼) .
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜
Proof. Suppose that 𝐴 is asymptotic 𝐼-regular. Let 𝑆 ∈ 𝐼 and
define the sequences π‘₯ and 𝑦 as follows:
and, for each π‘˜ ∈ 𝑇, we have
(1 βˆ’ πœ€) π‘¦π‘˜ < π‘₯π‘˜ < (1 + πœ€) π‘¦π‘˜
βˆ‘π‘˜βˆˆπ‘† π‘Žπ‘—π‘˜
󳨐⇒ 𝐼 βˆ’ lim (𝐡π‘₯ βˆ’ 𝐡𝑦) = 0
(31)
𝐼
󳨐⇒ 𝐡π‘₯ ∼ 𝐡𝑦
and hence
(𝐡π‘₯)𝑗
(𝐡𝑦)𝑗
=
=
βˆ‘βˆž
π‘˜=1 π‘π‘—π‘˜ π‘₯π‘˜
=
βˆ‘βˆž
π‘˜=1 π‘π‘—π‘˜ π‘¦π‘˜
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘₯π‘˜
βˆ‘βˆž
π‘˜=1 π‘Žπ‘—π‘˜ π‘¦π‘˜
∞
βˆ‘βˆž
π‘˜=1 (π‘Žπ‘—π‘˜ / βˆ‘π‘˜=1 π‘Žπ‘—π‘˜ ) π‘₯π‘˜
∞
βˆ‘βˆž
π‘˜=1 (π‘Žπ‘—π‘˜ / βˆ‘π‘˜=1 π‘Žπ‘—π‘˜ ) π‘¦π‘˜
(32)
.
𝐼
𝐼
Since 𝐡π‘₯ ∼ 𝐡𝑦, it follows that 𝐴π‘₯ ∼ 𝐴𝑦.
Conflict of Interests
The authors declare that there is no conflict of interests
regarding the publication of this paper.
Chinese Journal of Mathematics
References
[1] P. Kostyrko, M. Mácaj, and T. Šalát, β€œStatistical convergence and
I-convergence,” http://thales.doa.fmph.uniba.sk/macaj/ICON
.pdf.
[2] P. Kostyrko, T. Šalát, and W. Wilezyński, β€œI-convergence,” Real
Analysis Exchange, vol. 26, no. 2, pp. 669–686, 2000/2001.
[3] J. Connor, J. A. Fridy, and C. Orhan, β€œCore equality results for
sequences,” Journal of Mathematical Analysis and Applications,
vol. 321, no. 2, pp. 515–523, 2006.
[4] R. F. Patterson, β€œOn asymptotically statistical equivalent
sequences,” Demonstratio Mathematica, vol. 36, no. 1, pp. 149–
153, 2003.
[5] I. P. Pobyvanets, β€œAsymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to
generalized equivalence in the sense of CesaΜ€ro and Abel,”
Matematicheskaya Fizika, vol. 28, pp. 83–87, 1980.
[6] J. A. Fridy, β€œMinimal rates of summability,” Canadian Journal of
Mathematics, vol. 30, no. 4, pp. 808–816, 1978.
[7] M. S. Marouf, β€œAsymptotic equivalence and summability,” International Journal of Mathematics and Mathematical Sciences, vol.
16, no. 4, pp. 755–762, 1993.
5
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014