Magic Numbers in Large Hydrated Alkali Metal Clusters: K+ and Cs+

Magic Numbers in Large Hydrated
Alkali Metal Clusters: K+ and Cs+
Matthew L. Ackerman, Jason D. Rodriguez, Dorothy J. Miller,
and James M. Lisy
University of Illinois at Urbana-Champaign
K+(H2O)n Mass Spectrum
n = 20
50000
45000
40000
Beam Intensity (cps)
35000
30000
25000
20000
15000
10000
5000
0
50
150
250
350
450
550
Mass (amu)
650
750
850
950
K+(H2O)n IRPD Spectra
DAA
3.00E-18
DA
2.50E-18
23
2.00E-18
22
1.50E-18
21
1.00E-18
20
19
5.00E-19
18
17
16
0.00E+00
3600
3620
3640
3660
3680
3700
3720
-1
Frequency (cm )
3740
3760
3780
3800
K+(H2O)n IRPD Spectra
1.60E-18
1.40E-18
1.20E-18
21
1.00E-18
8.00E-19
20
6.00E-19
4.00E-19
2.00E-19
19
0.00E+00
3600
3620
3640
3660
3680
3700
3720
-1
Frequency (cm )
3740
3760
3780
3800
Lorentzian Fits
K+(H2O)n Peak Centers
3726
3724
3722
3720
3718
3716
Frequency (cm-1)
3714
3712
Magic Number at n = 20
3710
3708
3706
3704
3702
3700
3698
3696
3694
3692
15
16
17
18
19
20
# of Waters
21
22
23
24
Cs+(H2O)n Mass Spectrum
200000
n = 20
180000
160000
Beam Intensity (cps)
140000
120000
100000
80000
60000
40000
20000
0
140
240
340
440
Mass (amu)
540
640
740
Cs+(H2O)n IRPD Spectra
DAA
3.00E-18
2.50E-18
2.00E-18
1.50E-18
1.00E-18
5.00E-19
0.00E+00
3600
3620
3640
3660
3680
3700
3720
-1
Frequency (cm )
3740
3760
3780
3800
Cs+(H2O)n IRPD Spectra
1.60E-18
1.40E-18
1.20E-18
1.00E-18
21
8.00E-19
6.00E-19
20
4.00E-19
2.00E-19
19
0.00E+00
3600
3620
3640
3660
3680
3700
3720
-1
Frequency (cm )
3740
3760
3780
3800
Lorentzian Fits
Cs+(H2O)n Peak Centers
3722
Frequency (cm-1)
3717
3712
Magic Numbers at n = 20, 22
3707
3702
3697
3692
15
16
17
18
19
20
# of Waters
21
22
23
24
Conclusions
3.00E-18
DAA
2.50E-18
2.00E-18
DA
H3O+(H2O)20
n = 20
1.50E-18
Li+(H2O)20
1.00E-18
+
Na (H2O)2
0
5.00E-19
K+(H2O)20
+
Cs (H2O)2
0
0.00E+00
3600
3620
3640
3660
3680
3700
3720
3740
3760
3780
3800
Frequency (cm-1)
3.00E-18
2.50E-18
n = 21
+
H3O (H2O)21
2.00E-18
Li+(H2O)21
1.50E-18
+
Na (H2O)21
1.00E-18
K+(H2O)21
5.00E-19
+
Cs (H2O)21
0.00E+00
3600
3620
3640
3660
3680
3700
Frequency (cm-1)
3720
3740
3760
3780
3800
• There are no IR
signatures of the
magic number
observed in the mass
spectrum; only AAD
bands arise in the
magic number region
for K+ and Cs+
• No observed
relationship between
appearance/
disappearance of AD
bands and increased/
decreased intensity in
mass spec
Multi-photon Absorption in Cs+(H2O)n clusters
• Dip in intensity when
monitoring loss of 1
water
• For n = 22, loss of 2
waters has a higher
cross section than loss
of 1 water
• Significant dissociation
when monitoring loss of
3 or more waters
• Multi-photon
absorption!
9E-19
8E-19
n = 16
7E-19
6E-19
5E-19
4E-19
3E-19
2E-19
1E-19
0
3640
3660
3680
3700
3720
3740
3760
3780
3800
Frequency (cm-1)
1.2E-18
1E-18
n = 22
8E-19
6E-19
4E-19
2E-19
0
3640
3660
3680
3700
3720
Frequency (cm-1)
3740
3760
3780
3800
Mechanism of Multi-photon Absorption
• The OH stretch potential
energy curve is sufficiently
anharmonic that a single
oscillator cannot absorb more
than one photon
• However, the free OH
oscillators in the cluster are
highly uncoupled  Each one
can absorb a photon
• There are generally uneven
numbers of DA and DAA
waters in a given cluster, so it
is critical to understand these
processes when analyzing the
action spectra of these clusters
K+(H2O)17
Calculated Global
Minimum Structure
8 DAA Water
1 DA Water
Schulz, F. and Hartke, B Theor Chem ACC,
114 (2005)
Poisson Statistics
• I = Ioe-sF ~ Io(1-sF)
• (I/Io) = 1-sF
• sF = 1-(I/Io) = Depletion of Parent Cluster
• Poisson Distribution – P(x) = (h)xe-h/(x!)
 P(x) = (sF)xe-sF/(x!)
Experimental Data
n=
6
Loss Channel
1W
2W
3W
Measured
26.21106 3.929942 0.302638
Poisson
25.25124 4.583515 0.554655
4W
5W
6W
Total Dissociation
30.44364
8
Measured
Poisson
30.54045 8.132974 1.249623
30.61184 7.799039 1.324651
39.923047
10
Measured
Poisson
33.34207 18.22819 3.316608
35.90991 14.29209 3.792151
54.886866
16
Measured
Poisson
22.39367 25.59229 8.714336 2.705972
36.59754 16.49738 4.957775 1.117429
59.406276
22
Measured
Poisson
8.657451 41.97932 8.459858 6.336702 1.553745 0.441189
36.53654 20.49198 7.662125
2.1487 0.48205 0.090121
67.428268
• Preliminary data shows that experimental values track closely with
Poisson probabilities
• As n increases, one photon absorption leads to loss of more than
one water
Difference between Free and H-Bonded OH Stretches
Cs+(H2O)8 Scaled to Loss of 1 Water
1.4E-18
Free OH
Bands Scaled
1.2E-18
Drop in relative
cross section in
hydrogen bonded
region
1E-18
8E-19
6E-19
4E-19
2E-19
0
3350
3400
3450
3500
3550
3600
-1
Frequency (cm )
3650
3700
3750
3800
Internal Energy Distribution of Cs+(H2O)22
• FWHM decreases going from 1 water loss to 6 water loss
• We can now probe the coldest part of the cluster distribution
Cs+(H2O)22 Loss of 1 - 6 Waters, Scaled to Loss of 2 Waters
1.2E-18
30
1E-18
25
8E-19
FWHM (cm -1)
20
6E-19
15
10
4E-19
5
2E-19
0
0
3640
1
3660
3680
2
3700
3
3720
Frequency (cm-1)
4
Waters Lost
3740
3760
5
3780
6
3800
Conclusions and Future Work
• We observed Cs+(H2O)n clusters undergo multi-photon absorption
• Each free OH oscillator can absorb only one photon, but more than
one oscillator can be excited
• Poisson statistics correctly predict the probability of multi-photon
absorption
• As more waters are lost, the colder part of the internal energy
distribution is sampled
• The branching ratio between one and two water loss subsequent to
1j absorption needs to be characterized
• Previously collected spectra need to reexamined in light of these
new multi-photon absorption discoveries
Acknowledgements
Lisy Group Members
– James Lisy
– Dorothy Miller
– Jason Rodriguez
– Amy Willmarth
– Jordan Beck