Thermionic & RF Gun Simulations for the CLIC DB Injector Mohsen Dayyani Kelisani 1. Institute For Research in Fundamental Science (IPM), Tehran, Iran 2. CERN, Geneva, Switzerland Contents 1. Introduction 1.1. CLIC DB Injector Layout 1.1. Basic Beam Dynamics Studies (Emittance Growth) 2. DB Injector Thermionic gun 2.1. Thermionic Gun Design 2.2. Thermionic Gun Simulations 3. DB injector RF gun 3.1. RF Gun Design 3.2. RF Gun Simulations 3.3. Comparison 1. Introduction DC Gun 1 1.1. CLIC DB Injector Layout (2 Options) Bunching System RF Gun 13 TW Accelerating Structures 12 TW Accelerating Structures 1. Introduction 2 1.2. Beam Dynamics Studies (Emittance Growth) Wanglerβs formula: Any non-uniformity in the beam distribution will result in the emittance growth specially in nonrelativistic beams and beams with bigger RMS radiuses πππ 2 ππ§ = πππ 2 π β βπ 2πΌππ 2 πΎ2 β1 ππ§ Gamma Energy ππ = RMS beam radius Potential Energy difference Between the beam and its equivalent uniform beam π₯ 2 πΎπ½π₯ β² 2 β π₯πΎπ½π₯ β² Nonlinear fields change the beam uniformity and cause to emittance growth 2 1. Introduction 3 1.2. Beam Dynamics Studies (Designing Strategies) Wanglerβs formula: πππ 2 ππ§ Strategies for designing a low emittance electron gun =β ππ0 πππ 2 π βπ 2πΌππ 2 πΎ2 β1 ππ§ 1) Design the gun with as much as possible linear electromagnetic fields 2) Minimize the action of remaining nonlinearities with faster acceleration and smaller beam size 2. DB Injector Thermionic Gun 4 2.1. Thermionic Gun Design (Potential Expansion) β β1 π π, π§ = 1 + π=1 According to the Maxwell equations for axisymmetric electrostatic fields we can write: πΈπ§ π, π§ = β 1 + πΈπ π, π§ = π π 2 π! 2 2π π 2π π π§ ππ§ 2π π β1 π 2 β π=0 π! 2 π × 1+ 2 β π=1 2π π2π ππ§ 2π πβ² π§ π 2π 2π β1 π 2 π! π + 1 ! ππ§ 2π π π β²β² π§ If we can somehow find the potential function on symmetric axis z then we can easily find the electrostatic potential every where and so the electrode shapes If we want to have a linear electrostatic field we should have a parabola shape for potential function on symmetric axis 2. DB Injector Thermionic Gun 5 2.1. Thermionic Gun Design (Envelope Equation) Envelope equation: β² β²β² πΎ × πΎ πΎ × πΎ π β²β² + 2 × π β² + πΎ β1 2 πΎ2 β 1 ππΌ ×π = 4ππ0 πππ 2 πΎ 2 β 1 4ππ 2 + 3 2 3/2 π π πΎ β1 + π πΎ π§ =1+ π β π π§ ππ 2 πππ‘βπππ β² 2 β²β² 2 β 1π 2 2π 2ππ 4 πΎ ππΌ π π π β²β² + πβ² = β + β πΎ2 β 1 4 π ππΎ π 4ππ0 πππ 2 π 2 πΎ 2 β 1 π 2. DB Injector Thermionic Gun 6 2.1. Thermionic Gun Design (Potential Equation) 2π β² β² 2ππ 2 4 πΎ 2 β 1ππ 2 ππΌ π β²β² 2 π + π =β + β πΎ β1 π ππΎ π 4 4ππ0 πππ 2 π 2 πΎ 2 β 1 π β²β² ππ = 140 ππ Very close to a parabola and so linear fields π = 51.6ππ 2. DB Injector Thermionic Gun 7 2.1. Thermionic Gun Design (Equipotential Surfaces) π π, π§ = β 1+ β1 π=1 π π 2 π! 2 2π π 2π π π§ ππ§ 2π π π, π§ =0 kV Anode π π, π§ =140kV Cathode 2. DB Injector Thermionic Gun 8 2.1. Thermionic Gun Design (Cathode Shape) A parabola could be a good approximation for the cathode shape 2. DB Injector Thermionic Gun 9 2.1. Thermionic Gun Design (Anode Shape) A nose could be a good approximation for the anode shape 2. DB Injector Thermionic Gun 10 2.1. Thermionic Gun Design (DC Gun Geometry) π = β140ππ π = 0ππ πΆππ‘βπππ ππππ’π 10mm πππππππ‘π’ππ β 1500k Current 5A πΈπππππ¦ 140keV 2. DB Injector Thermionic Gun 11 2.2. Thermionic Gun Simulations (Beam Envelope) πΆππ‘βπππ πππ π ππππ‘ππ π π ππ = 3.6ππ 2. DB Injector Thermionic Gun 12 2.2. Thermionic Gun Simulations (Normalized Emittance) πΆππ‘βπππ πππ π ππππ‘ππ 2. DB Injector Thermionic Gun 13 2.2. Thermionic Gun Simulations (Solenoid Channel) π΅ = 774 πΊ ππ = 5.8 ππ β ππππ 2. DB Injector RF Gun 14 2.1. RF Gun Design (Specifications) π·ππππππππ π½ππππ ππ’ππππ ππ πΆπππ 1.6 πΉππππ’ππππ¦ πΊπ»π§ 1,2,3 π ππ π΅π’ππβ πΏππππ‘β ππ 10 πΆβππππ πππ π΅π’ππβ ππΆ 8.4 π΅π’ππβ πΉππππ’ππππ¦ [πΊπ»π§] 0.5 πΆπ’πππππ‘ [π΄] 4.2 ππππ π π ππππ‘ππ‘πππ π ππ‘π [π»π§] 50 πΌπππ’π‘ πππ€ππ [ππ] π’π π‘π 40 ππππ π πΏππππ‘β [ππ] 140 2. DB Injector RF Gun 15 2.1. RF Gun Designing (Designing &Optimization Algorithm) Selection of a Working Phase for the cavity Optimum Structure Matching the beam to the solenoid channel and simulate the beam in acc structures Beam Loading calculations and find the optimum coupling factor and detuning with the goal of having minimum input power Designing the cavity with this coupling factor and calculate its electromagnetic fields with CST Beam dynamics simulations in cavity fields with Parmela and calculate the beam parameters at the end of cavity Change the working phase of the cavity 2. DB Injector RF Gun 2.1. RF Gun Design (Beam Loading Optimization) 16 2. DB Injector RF Gun 2.1. RF Gun Design (RF Phase Optimization) 17 2. DB Injector RF Gun 18 2.1. RF Gun Design (Specifications of Optimum Structure) π·ππππππππ π½ππππ ππ’ππππ ππ πΆπππ 1.6 π ππππ πΉππππ’ππππ¦ πΊπ»π§ 2 πΉππππ’ππππ¦ π·πππππππππ ππ»π§ 46 πΆππ’πππππ πΉπππ‘ππ 3.08 ππ’ππππ‘π¦ πΉπππ‘ππ 17263 π΅πππ ππππ‘β ππ»π§ 237 πΉππππππ ππππ ππ 0.672 πβπ’ππ‘ πΌππππππππ πΞ© 3.165 πππ₯ πΈππππ‘πππ πΉππππ ππ/π 99.83 π πΉ πβππ π πππ 35 π πΉ πππ€ππ ππ ππ π‘π 40 2. DB Injector RF Gun 19 2.1. RF Gun Design (Cavity Fields) π·ππππππππ π½ππππ ππ₯ 1/π 29.3 ππ¦ 1/π 27.3 2. DB Injector RF Gun 20 2.1. RF Gun Design (Focusing Channel) 12 Accelerating Structures Envelope Equation π·ππππππππ π½ππππ πΆπππ πππ π΄ππ 24 π΄ππ πΏππππ‘β [π] 2.4 π΄ππ ππππ‘πππ ππ 3.8 2. DB Injector RF Gun 21 2.2. RF Gun Simulations (Emittance & Envelope) ππ = 5.26 π₯πππ = 1.02 2. DB Injector RF Gun 22 2.3. RF Gun Simulations (Longitudinal Parameters ) RF DC 2. DB Injector RF Gun 23 2.3. Comparison ππππππππππππππ π«πͺ πΉπ ππππππππ§ππ πΈπππ‘π‘ππππ ππ β ππππ 35 5 πΈπππππ¦ ππππππ 1% 0.75% Sππ‘πππππ‘π ππππ’πππ‘πππ 2.1% 0 π΅π’ππβπππ ππ¦π π‘ππ πππ ππ πΏπππππ‘π’πππππ π·ππ π‘ππππ’π‘πππ ππππ¦ πππππππ πΏπππππ‘π’πππππ πβππ π πππππ Vπππ¦ πΆππππ & ππ¦ππππ‘πππ Work in Progress Thanks for Attention
© Copyright 2026 Paperzz