Department of Chemical and Biological Engineering 1 Reaction Pathway Analysis of the (Bio)conversion of (Bio)macromolecules Linda J. Broadbelt Department of Chemical and Biological Engineering Northwestern University Department of Chemical and Biological Engineering 2 Multiscale modeling of chemical reactivity 104 s Time Continuum scale Reactor design Mechanism validation 10-10 s Mesoscale Reaction dynamics Molecular dynamics Atomic Scale Transition states Quantum effects Elementary reaction steps > 10-10 m Length >100 m Department of Chemical and Biological Engineering 3 104 s Time Continuum scale. Reactor design. Mechanism validation 10-10 s Mesoscale. Reaction dynamics. Molecular dynamics Atomic Scale. Transition states. Quantum effects. Elementary reaction steps > 10-10 m Length >100 m Department of Chemical and Biological Engineering Thermochemical conversion Catalysis 4 Biocatalysis Department of Chemical and Biological Engineering Thermochemical conversion Catalysis 5 Biocatalysis 6 How can we use non-food biomass to replace fossil fuels? Extraction Process Heat Gas Yield ~13% Upgrading Gasification Biomass (switchgrass, stover, etc.) Fast Pyrolysis Liquid Bio-Oil Yield ~75% Chemicals Transport Fuels, etc. Turbine Electricity Engine Solid Char Yield ~12% Pyrolysis Heat Co-firing Heat Boiler Bridgwater, A. V. Therm. Sci., 2004, 8, 21. Charcoal Applications 7 How can we model fast pyrolysis? Empirical k1 Cellulose k2 Volatiles k3 Char + Gases Active Cellulose Shafizadeh, F. J. Anal. Appl. Pyrolysis 1982, 3, 283. k3 k1 Active Cellulose k4 Cellulose k2 0.95 Hydroxy-acethaldeyde + 0.25 Glyoxal + 0.20 CH3CHO + 0.20 C3H6O + 0.25 5-HMF + 0.16 CO2 + 0.23 CO + 0.1 CH4 + 0.9 H2O + 0.61 Char Levoglucosan 6Char + 5H2O Calonaci, M.; Grana, R.; Barker Hemings, E.; Bozzano, G.; Dente, M.; Ranzi, E. Energy Fuels 2010, 24, 5727. 8 Postulate mechanisms based on known products Cellulose Exp. yields at 500°C: Glycosidic bond cleavage Retro Diels-Alder reactions 1,2-Dehydration and hydrolysis + dehydration Cyclic Grob fragmentation, hydrolysis, dehydration 1,3-Dehydration, subsequent elimination Condensation of small fragments Vinu, R.; Broadbelt, L. J. Energy Environ. Sci. 2012, 5, 9808. Levoglucosan 59 wt% Glycolaldehyde 6.7 wt% 5-HMF 2.8 wt% 2-Furaldehyde 1.3 wt% Formic acid 6.4 wt% C, CO, CO2, H2O, H2 … Patwardhan, P.; Satrio, J. A.; Brown, R. C.; Shanks, B. H. J. Anal. Appl. Pyrolysis 2009, 86, 323. 9 Kinetic parameters needed for every reaction Levoglucosan 59 wt% Glycosidic bond cleavage homolytic (multiple steps) ? (multiple steps) heterolytic Mayes, H. B.; Broadbelt, L. J. J. Phys. Chem. A 2012, 116, 7098. 10 New picture of cellulose unraveling OH • Quantum mechanics (Gaussian 09 rev B) H3C – DFT (M06-2X/6-311+G(3df,2p)//M06-2X/6-31+G(2df,p)) O O HO OH – Implicit solvent to model pyrolysis electrostatic environment • Transition-state-theory OH O O HO HO O OH OH OH O O HO O OH HO O O O OH OH OH Initiation OH O O HO OH HO O OH O O HO O O + OH HO HO O O OH OH OH Depropagation OH O HO O OH OH HO O O O + HO HO O OH OH O + HO HO O O OH Mayes, H. B.; Broadbelt, L. J. J. Phys. Chem. A 2012, 116, 7098. OH HO O OH O OH 11 Validation • Kinetic parameters used in neat cellulose pyrolysis microkinetic model • Predicted levoglucosan yield compared to experiment Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012, 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13274–13289; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13290–13301. Patwardhan, P. Satrio, J. A. Brown, R. C.; Shanks, B. H. J. Anal. Appl. Pyrolysis 2009, 86, 323. 12 Microkinetic model provides detailed product speciation Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012, 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13274–13289; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13290–13301. 13 Microkinetic model further tracks species time evolution for cellulose pyrolysis at 500°C at 1 atm Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012, 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13274–13289; Zhou X et al. Ind. Eng. Chem. Res. 2014, 53, 13290–13301. Department of Chemical and Biological Engineering Thermochemical conversion Catalysis 14 Biocatalysis 15 Extending the microkinetic model Experimental Results homolytic Levoglucosan - pyranose ? heterolytic Glycolaldehyde Formic acid Levoglucosan - furanose Cellulose, Neat Cellulose + 0.006 mmol NaCl / g cellulose Anhydro xylopyranose Cellulose Hemicellulose Lignin Inorganic salts 5-HMF 0 10 20 30 40 50 60 wt % Yield Patwardhan, P. R.; Satrio, J. A; Brown, R. C.; Shanks, B. H. Bioresour. Technol. 2010, 101, 4646. 16 Determine effect of Na+ on select pyrolysis reactions A. 17 O HO 2 OH HO O HO HO OH 5 OH HO OH OH ‒H2O HO OH O HO OH OH ‒H2O HO OH HO OH OH O HO OH 1 OH O OH HO 16 OH HO HO OH O HO 23 HO HO OH 3 OH OH O HO OH OH OH OH O 10 ‒H2O ‒H2O 1 OH OH 28 OH O O HO OH OH 18 OH O HO HO OH OH HO OH O OH ‒H2O OH OH O OH O 31 OH 26 OH HO HO ‒H2O HO OH 16 O HO OH O HO HO O 37 HO O O OH 40 2 OH ‒H2O O O HO HO H O OH OH 41 H. OH OH O HO OH 3 ‒H2O HO OH OH HO HO OH OH OH HO OH ‒H2O O HO OH 30 OH O HO OH 42 OH HO ‒H2O O HO OH O 43 OH OH O HO OH HO 2 HO HO OH 15 ‒H2O ‒H2O OH 27 HO OH ‒H2O HO OH OH O O HO 29 ‒H2O 32 OH ‒H2O OH O HO OH O OH ‒H2O O 38 G. HO 7 O HO 14 25 ‒H2O OH ‒H2O HO OH O HO HO O OH ‒H2O ‒H2O OH HO HO O ‒H2O D. HO OH ‒H2O OH O ‒H2O O HO ‒H2O O 8 HO ‒H2O 9 1 12 OH 8 OH 24 OH O O OH HO 13 HO HO HO HO C. B. O HO HO OH O HO O O OH OH 15 ‒H2O OH O O HO O 39 O 33 O HO ‒H2O OH HO F. HO HO OH 34 HO O OH O HO OH ‒H2O OH 11 O OH O HO ‒H2O ‒H2O 12 OH OH ‒H2O ‒H2O ‒H2O HO ‒H2O O HO OH O OH OH O O HO OH HO O HO OH OH HO OH HO O OH OH ‒H2O OH HO ‒H2O OH O HO HO 10 ‒H2O ‒H2O O ‒H2O 7 3 OH 7 OH HO OH 35 OH 17 ‒H2O O HO OH OH ‒H2O OH O OH HO OH 6 O HO OH ‒H2O ‒H2O 6 O HO ‒H2O OH 4 OH O HO OH 36 E. OH OH OH OH O HO HO 44 OH OH OH ‒H2O 45 O HO HO Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.; Broadbelt, L.J. ACS Catal., 2015, 5, 192. Mayes, H. B.; Tian, J.; Nolte, M. W.; Shanks, B. H.; Beckham, G. T.; Gnanakaran, S.; Broadbelt, L. J. J. Phys. Chem. B, 2014, 118, 1990. OH 17 Incorporation into kinetic model Key products wt% yields from pyrolysis with 0.00 to 0.34 mmol NaCl / g cellobiose levoglucosan CO2 5-HMF Zhou, X.; Nolte, M. W.; Mayes, H. B.; Shanks, B. H.; Broadbelt, L. J. AIChE Journal, 2016, 62(3), 766-777 and 778-791 . 18 Insight: Na+ favoring competing dehydration reactions 18 Department of Chemical and Biological Engineering Thermochemical conversion Catalysis 19 Biocatalysis 20 Metabolic Models Modeling as a key component of metabolic engineering toolbox R2 K Reactions A B R3 R2 A -1 -1 0 …. B 0 1 -1 …. 2 0 0 …. 0 0 1 …. 0 0 1 R1 D E R3 …. R1 RN N L J M O Metabolites C C D H R1: A 2C R2: A B R3: B D + E …. Reaction N …. … … F … I … E S matrix G Maximize vproduct Subject to N·v=0 ai ≤ vi ≤ bi Contador, et al. Metabolic Engineering (2009) https://www.e-education.psu.edu/files/worldofweather/image/Section5/Katrina_track_gfs_ensemble_18Z_August27%20(Medium).png 21 Metabolic Models What can we model? Reaction Knockouts B A Media Changes E B D A Heterologous Expression E B D A E D P C F C F C F 22 Reaction Network (Mechanism) as Foundation of Metabolic Models •Reactants, intermediates and products DG1 k1 •Thermodynamic parameters DG9 DG6 k6 k5 DG4 k4 •Kinetic parameters k2 DG5 •Reactions DG3 k3 DG7 DG8 k7 k8 DG11 k11 DG10 k10 k9 DG16 k16 DG13 DG14 k14 DG15 k15 k13 DG12 k12 DG18 k18 DG17 k17 23 Computer-Generated Reaction Networks to Fill Gaps or Identify Novel Reactions • Graph Theory • Reaction Matrix Operations • Connectivity Reactants Scan Reaction • Uniqueness Types Determination Reaction • Property Rules Calculation • Termination Criteria DG1 k1 k2 DG5 k5 DG4 k4 DG9 DG3 k3 DG6 k6 DG7 DG8 k7 k8 DG11 k11 DG10 k10 k9 DG16 k16 DG13 DG14 k13 k14 DG15 k15 DG12 k12 DG18 k DG17 18 k17 24 Bond-Electron Representation Allows Implementation of Chemical Reaction C H H H H 01111 10000 10000 10000 10000 methane C 1111 H 1000 H 1000 H 1000 methyl radical C C H H H H 021001 200110 100000 010000 010000 100000 ethylene ij entries denote the bond order between atoms i and j ii entries designate the number of nonbonded electrons associated with atom i 25 Chemical Reaction as a Matrix Addition Operation H • + CH4 •CH3 + H2 Reactant Matrices C H H H H 01111 10000 10000 10000 10000 H• 1 C H H H H H• Reaction Operation H 001 0 -1 1 H 010 C• 0 1 0 C 1 0 0 + -1 1 0 H 100 1 0 -1 H• 0 0 1 Reactant Matrix Reordered Reactant Matrix 011110 100000 100000 100000 100000 000001 H C H• H H H 010 100 001 010 010 010 000 111 000 000 000 000 Product Matrix H C• H H H H 001 010 100 010 010 010 000 111 000 000 000 000 26 Formulation of Reaction Operators Using EC System Enzyme commission (EC) code number provides systematic names for enzymes EC i.j.k.l unique enzyme i the main class j the specific functional groups k cofactors l specific to the substrates 27 Formulation of Reaction Operators Using EC System Enzyme commission (EC) code number provides systematic names for enzymes EC i.j.k.l unique enzyme i the main class j the specific functional groups k cofactors l specific to the substrates 28 Generalized Enzyme Function Examined at the i.j.k Level •More than 9,000 specific enzymatic reactions (i.j.k.l) •Fewer than 300 generalized enzyme functions cover 55% of reactions •Novel enzyme functions should be expected through genomic sequencing, proteomics and protein engineering 29 Example of a Generalized Enzyme Reaction Generalized enzyme reaction (EC 4.2.1) • EC 4.2.1.2 (fumarate hydratase) OH CO2H HO2C HO2C CO2H + O H H H-C-C-O-H - - - - • EC 4.2.1.3 ( aconitate hydratase) HO HO2C CO2H CO2H HO2C CO2H CO2H + O H H C=C + H2O 30 Discovery of Novel Biosynthetic Routes I.J.K A+B C I.J.K L.M.N Q.R.S A+B L.M.N I.J.K L.M.N Q.R.S C D I.J.K L.M.N Q.R.S C +A+B Q.R.S E C +A+B D D P Generation Generation 0 1 Generation 2 E Generation 3 31 Implications for Novel Pathway Development Given a novel reaction (reactant/product), can we identify enzymes (catalysts) that could be engineered (evolved) to carry this novel biotransformation ? If A gives B under 4.2.1 action, then target enzymes within the 4.2.1 class 32 Application to Biobased Chemical Production P 33 Analysis of Longer Pyruvate Pathways Numerous Novel Candidate Pathways P 4 Reactions 5 Reactions Reactants of the final step F Y Z C Total Pathways # of pathways 1259 36 32 24 1410 34 Experimental Confirmation Experimental Demonstration of Novel Reaction P Enzyme 1 Enzyme 2 Enzyme 3 Stine, A.; Zhang, M.; Roo, S.; Tyo, K.E.J.; Broadbelt, L. J. Manuscript accepted. 35 Using Reaction Experimental Confirmation Rule to Identify Enzymes Finding Putative Enzymes based on Generalized Operators Reaction Operator Reaction of Interest 82 rxns out > 9,000 36 Experimental Selecting Similar Confirmation Reactions Are there natural subgroups? Reaction of Interest Reaction Operator 37 Experimental Measuring Similarity Confirmation Define Reaction Similarity Reaction of Interest Reaction Operator Dissimilarity Score = 1 Dissimilarity Score = 55 Dissimilarity Score = 2 38 Measuring Similarity Experimental Confirmation Reactions as graph with weighted edges 39 Experimental Dividing Reactions Confirmation Into Groups Reducing similarity 40 Dividing Reactions Experimental Confirmation Into Groups Identifying candidate enzymes through reaction similarity Reaction of Interest Reaction Rule Dissimilarity Score = 1 Dissimilarity Score = 55 EdgesAll with edges Cost < 1 8 6 5 3 4 2 50 30 20 15 14 12 10 41 Experimental Confirmation P Enzyme 1 Enzyme 2 Enzyme 3 Concentration of P (uM) Experimental Demonstration of Novel Reaction 50 mM F Time (s) Stine, A.; Zhang, M.; Roo, S.; Tyo, K.E.J.; Broadbelt, L. J. Manuscript accepted. Design of Reaction Operators Most Specific (Known Reactions) Promiscuity of an Enzyme Most General (2329 Operators) Potential Reactions Across All Enzymes Biomimetic Catalysis 43 How do we further constrain kinetic parameters? Inverting Fungal cellulases Retaining Koshland, D. E., Jr. Biol. Rev. 1953, 28, 413. Payne, C. M.*; Knott, B. C.*; Mayes, H. B.*; Hansson, H.; Himmel, M. E.; Sandgren, M.; Ståhlberg, J.; Beckham, G. T. Chem. Rev. 2015, 115, 1308. *equal contributors 44 Consistent feature of carbohydrate-active enzymes T. reesei Cel6A Rouvinen, J., et al. Science, 1990, 249, 380. 45 Many puckering options Mayes, H. B.; Broadbelt, L. J.; Beckham, G. T. J. Amer. Chem. Soc. 2014, 136, 1008. 46 Simulation allows us to test hypotheses and determine contributions to the reaction coordinate D221 O O H O O R H O H H OO O H O O D175 Mayes, H. B.; Knott, B. C.; Broadbelt, L. J.; Ståhlberg, J.; Beckham, G. T. Chem. Sci. 2016, DOI: 10.1039/c6sc00571c. Department of Chemical and Biological Engineering Thermochemical conversion Catalysis 47 Biocatalysis 48 Acknowledgements • • • • • • • • • • Dr. Gregg T. Beckham Dr. Xiaowei Zhou Dr. Vinu Ravikrishnan Dr. Brent H. Shanks Dr. Keith Tyo Dr. Heather B. Mayes Andrew P. Stine Jennifer L. Greene Michael W. Nolte Dr. Brandon Knott
© Copyright 2026 Paperzz