Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory Mathieu Tartare1 on behalf of the Pierre Auger Collaboration2 1 Laboratoire de Physique Subatomique et de Cosmologie (LPSC) - Grenoble, France UMR UJF/INPG/CNRS 2 Observatorio Pierre Auger, Av. San Martı́n Norte 304, (5613) Malargüe, Argentina Full author list: http://www.auger.org/archive/authors 2013 02.html Context The UHECR puzzle If GZK cutoff : photons and neutrinos expected Composition ? Constraints on production models (top-down models) Origin ? Neutrinos point directly to sources GZK cutoff or maximum acceleration ? Limits on EeV photon fraction reduce systematic in other analyses The Pierre Auger Observatory Surface Detector (SD) 1600 Cherenkov water tanks with a 1.5 km spacing covering ∼ 3000 km2 61 tanks in 750 m grid (“infill” low energies) 100 % duty cycle Fluorescence Detector (FD) 4 sites + 1 HEAT (low energies) 6 fluorescence telescopes per site Field of view : 30◦ × 30◦ ' 14 % duty cycle Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 1 Ultra-high energy neutrinos Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 2 Identifying neutrinos in data Identify neutrino showers from nucleonic showers background Regular nucleonic showers : Neutrinos Interact high in the atmosphere At ground : mainly muons, flat shower front May interact closer to the ground level At ground : EM component, curved shower front Discrimination power enhanced at high zenith-angle Selection criteria : Inclined young (=deep) shower Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 3 Identification criteria : Inclined Showers Apparent speed along major axis L Elongated footprint Vertical Shower Tij ' 0 → V c Earth Skimming Down Going Elongated event : L/W ≥ 5 m Apparent speed : 0.29 ns −1 SD(V ) < 0.08 m.ns Horizontal Shower V ∼c Elongated event : L/W ≥ 3 ≤ hV i ≤ m 0.31 ns m Apparent speed : hV i ≤ 0.313 ns SD(V ) V < 8% Rec. zenith angle θ ≥ 75◦ Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 4 Identification criteria : Inclined Showers Apparent speed along major axis L Elongated footprint Horizontal Shower V ∼c Events Events Events Vertical Shower Tij ' 0 → V c 103 103 103 102 102 102 10 10 10 1 1 1 0 5 10 15 20 25 30 L/ W Mathieu Tartare [[email protected]] 0.2 0.3 0.4 0.5 0.6 <V> (m ns-1) Rencontres de Moriond, 03/12/2013 0 0.1 0.2 v 0.3 (m ns-1) 4 Identification criteria : Young Showers Young/Deep Showers = Broad Signal Signal extented in time Time over Threshold trigger Large Area over Peak value Station trigger Area over Peak ToT station ToT fraction > 0.6 Thr station ToT station ToT fraction < 0.6 Thr station Earth Skimming Down Going ToT fraction Fisher discriminant based on AoP Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 5 Identification criteria : Young Showers Young/Deep Showers = Broad Signal Signal extented in time Time over Threshold trigger Events Events Large Area over Peak value 103 3 10 simulation 102 102 10 Training Data 1 0 0.2 0.4 0.6 0.8 1 ToT stations 10 1 10-1 -10 -5 0 5 10 Fisher discriminant value Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 5 Exposure Based on detailed dedicated Monte Carlo simulations 1017 Earth-skimming (3.5 yr of full Auger) Exposure [cm2 s sr] 1016 1015 Down-going (2 yr of full Auger) 14 10 Total CC e CC µ CC τ NC x CC τ Mountains 1013 1017 Mathieu Tartare [[email protected]] 1018 ν energy (eV) 1019 Rencontres de Moriond, 03/12/2013 1020 6 Limits to diffuse fluxes After unblinding : 0 candidates survive the cuts Assuming a flux φ(E) = k × E −2 k < 3.2 × 10−8 GeV cm−2 s−1 sr−1 in 1.6 × 1017 eV< E < 2 × 1019 eV k < 1.7 × 10−7 GeV cm−2 s−1 sr−1 in 1 × 1017 eV< E < 1 × 1020 eV Single flavour neutrino limits (90% CL) 10-6 k= 10-7 Search sample : Earth skimming : Jan. 04 - May 10 10-9 10-10 -11 10 Nup R Emax φ(E)EdE E min 10-8 k = Eν2 Φ(Eν) [ GeV cm-2 s-1 sr -1 ] 10-5 Down going : Nov. 07 - May 10 ν limits Auger downward-going Auger Earth-skimming IceCube-40 (333.5 days) Anita-II (28.5 days) 1017 1018 Mathieu Tartare [[email protected]] Eν [eV] Cosmogenic models Ahlers 2010 Kotera 2010 1019 1020 1021 Rencontres de Moriond, 03/12/2013 7 Limits to point sources Search for point-like sources of UHEν over a broad range of declinations : [north -65◦ , south +55◦ ] Single flavour neutrino limits (90% CL) Auger downward-going [GeV cm-2 s-1] 10-6 kPS = E2ν F(Eν) 10-5 10-7 Auger Earth-skimming -80 -60 Mathieu Tartare [[email protected]] -40 -20 0 20 40 Source declination δ [deg] Rencontres de Moriond, 03/12/2013 60 80 8 Ultra-high energy photons Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 9 Identifying UHE photons Fluorescence Detector Deeper development of the air showers. → larger Xmax Surface Detector Smaller signal at a given distance & same energy Fewer triggered stations Sb = X Si i Ri 1000 4 → smaller Sb Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 10 Identifying UHE photons Xmax (g cm-2) FD : Deeper Xmax 1200 SD : Smaller Sb 18 < log (E /eV) < 18.5 Monte Carlo Simulations 10 photon Photon-like events 1000 800 proton 600 -3 -2 -1 0 1 2 3 log (S ) 10 Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 b 11 Photon selection Data selection Reconstruction Level : Quality cuts : Good geometry and longitudinal profile Zenith angle < 60◦ Xmax within the field of view Time periods with clouds rejected Active station within 2 km from the shower axis ≥ 4 Fisher analysis 3 separate energy intervals (1-3 EeV, 3-10 EeV, > 10 EeV) Background : proton QGSJET-II-03 Event are tagged as photon candidates for X > Xcut Proton background . 1% Photon selection efficiency = 50% Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 12 Photon candidates Using hybrid data from Jan. 2005 to Sep. 2010 : 6, 0, 0, 0 and 0 candidates above 1, 2, 3, 5 and 10 EeV Compatible with the expected nuclear background 4 3.5 E [EeV] =1.18 ±0.09 Xmax [gcm-2] =1023 ±10 log10(Sb) =1.16 ±0.27 2/Ndf= 93.8/95 3 Xmax (g cm-2) dE/dX [PeV/(g cm-2)] Example of a selected candidate 1200 1100 900 1.5 800 1 700 0.5 700 800 900 1000 1100 1200 1300 slant depth [g cm-2] selected candidate photon-like events 1000 2.5 2 ~ 2% of protons are marked as candidates 600 -1 proton simulations -0.5 0 0.5 1 1.5 2 2.5 log10(Sb) Dedicated proton simulations : same energy, arrival direction, core position and detector configuration of this selected candidate Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 13 Hybrid exposure Upper Limit to the Integral Photon Flux : Nγ95CL : Number of photon candidates (at 95% C.L.) with energy Eγ above the threshold E0 . Nuclear background not subtracted (conservative approach) Eγ,min : Minimum hybrid exposure for photons. Time dependent simulations Nγ95CL (Eγ > E0 ) Eγ,min Hybrid Exposure for photons [km2 sr yr] Φ95CL = γ 103 102 Photon candidate level 10 Realistic and time dependent simulations J anuary 2005 - September January 2005 - September2010 2010 1 Photon candidate level Photon candidate -1 10 17.5 18 18.5 (method according to Astrop. Phys. 34, 2011) Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 19 19.5 log (Energy/eV) 10 14 SHDM SHDM’ TD Z-burst GZK upper limits 95% C.L. 1 0 Integral Flux E>E [km-2 sr -1 y-1] Limits on photon flux Y Auger Hyb 2009 Y Exposure, ∆Xmax , ∆Sb , Energy scale, hadronic interaction model and mass composition assumptions : A 10-1 A Auger Hyb 2011 TA 2011 10-2 Auger SD 10-3 1018 1019 Systematic uncertainties +20% (E0 −64% = 1 EeV) +15% (E0 −36% > 1 EeV) 1020 Energy[eV] Upper limit on the integral photon fraction assuming the Auger spectrum : 0.4%, 0.5%, 1.0%, 2.6% and 8.9% at E > 1, 2, 3, 5 and 10 EeV Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 15 Conclusions Neutrino search using surface detector Earth skimming (sensitive to ντ ) : k < 3.2 × 10−8 GeV cm−2 s−1 sr−1 in 1.6 × 1017 eV< E < 2 × 1019 eV Down going (sensitive to all flavors) : k < 1.7 × 10−7 GeV cm−2 s−1 sr−1 in 1 × 1017 eV< E < 1 × 1020 eV The surface detector of the Pierre Auger Observatory is sensitive to potential point sources of UHE neutrinos in a broad range in declination. Photon search using hybrid data 6, 0, 0, 0 and 0 candidates above 1, 2, 3, 5 and 10 EeV Upper limit to the integral photon flux : 8.2 × 10−2 km−2 sr−1 year−1 above 1 EeV 2.0 × 10−2 km−2 sr−1 year−1 above 2, 3, 5 and 10 EeV Corresponding to photon fractions limit of : 0.4%, 0.5%, 1.0%, 2.6% and 8.9% at E > 1, 2, 3, 5 and 10 EeV Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 16 Perspective & Outlook GZK within reach in the next few years Photon & neutrino limits provide severe constraints on top-down models. Photon limits allow to reduce systematic uncertainties on mass composition, energy spectrum & cross section measurements Earth skimming and Downgoing combination in progress. Directional search for UHE photons in progress Search for UHE photons and neutrinos Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 17 Perspective & Outlook GZK within reach in the next few years Photon & neutrino limits provide severe constraints on top-down models. Photon limits allow to reduce systematic uncertainties on mass composition, energy spectrum & cross section measurements Earth skimming and Downgoing combination in progress. Directional search for UHE photons in progress Search for UHE photons and neutrinos a postdoctoral position Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 17 Backup slides Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 18 General neutrino search strategy Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 19 Limits to point-like sources 10-5 Single flavour neutrino limits (90% CL) Fixed energy range Down-going (2yr) E2 g(E) [GeV cm-2 s-1] 1017 eV < E < 1020 eV 10-6 1.6 1017 eV < E < 2 1019 eV Earth-skimming (3.5yr) 10-7 Energy range depends on declination Below 1017 eV Cen A 10-8 10-9 -80 -60 -40 IceCube-40 (375.5 days) -20 0 20 40 Source declination [deg] Mathieu Tartare [[email protected]] 60 Rencontres de Moriond, 03/12/2013 80 20 Limits to CenA Centaurus A - Single flavour neutrino limits (90% CL) [GeV cm-2 s-1] 10-4 10-5 10-6 Auger Earth-skimming 10-7 kPS = Eν2 F(Eν) LUNASKA 2008 Auger Downward-going IceCube 2011b Cuoco 2008 10-8 10-9 Kachelriess 2009 -10 10 1015 1016 1017 1018 1019 1020 1021 1022 1023 Eν [eV] Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 21 Point source as seen by Auger 1 1 Source at δ = -43o Source at δ = -80o 0.5 0.5 θ = 75 θ = 90o 0 cosθ cosθ θ = 75 o -0.5 o θ = 90o 0 -0.5 -1 -1 0 0.2 0.4 0.6 0.8 1 0 Time t [sidereal days] Mathieu Tartare [[email protected]] 0.2 0.4 0.6 0.8 1 Time [sidereal days] Rencontres de Moriond, 03/12/2013 22 “safe” cut on Fisher value such that expected background <1 event / 20 years of Auger data 11 Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 23 Down- going: estimation of background Assume an exponential shape for the tail of background distribution of F extrapolation to find the value of F_cut corresponding to 1 background event in a given time Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 24 Expected number of events Model & reference Cosmogenic (Fermi) [40] BBR (AGNs) [41] Exotic (SH relics) [42] Earth-skimming Downward-going ∼ 0.6 ∼ 5.1 ∼ 3.0 ∼ 0.1 ∼ 0.8 ∼ 1.0 Table 4: Number of expected events for several theoretical models of UHE neutrino production, given the exposure of the surface detector of the Pierre Auger Observatory to Earth-skimming and downward-going neutrinos (Table 3). Integrated limit The limits indicate the level of the diffuse neutrino flux needed to detect Nup events with a Poisson probability of ∼ 90% given the exposure accumulated during the 3.5 years for Earth-skimming (2.0 years for downward-going) of equivalent time of a full SD Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 25 -2 <Xmax> (g cm ) Elongation rate 1200 Fly´s Eye HiRes-MIA HiRes 2004 Yakutsk 2001 Yakutsk 2005 CASA-BLANCA HEGRA-AIROBICC SPASE-VULCAN DICE TUNKA 1100 1000 900 800 photon with preshower photon proton 700 600 iron QGSJET 01 500 QGSJET II SIBYLL 2.1 400 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 21 Elab (eV) Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 26 Systematics Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 27 Phot on candidat es Hybrid data J an 2005 - Sep 2010 (~ a factor 2 more events compared to previous analysis) 6, 0, 0, 0 and 0 candidates above 1, 2, 3, 5 and 10 EeV E (EeV) Xmax (gcm-2) log10(Sb) 1.18 ±0.09 1023 ±10 1.16 ±0.27 Xmax (g cm-2) compatible with the expected nuclear background 1200 Photon candidates Jan 2005 - Sept 2010 1150 1.59 ±0.19 981 ±16 1.35 ±0.09 1.20 ±0.09 952 ±17 1.17 ±0.07 1100 1.25 ±0.16 958 ±27 1.08 ±0.24 1050 1.13 ±0.17 1119 ±29 1.56 ±0.21 1000 1.42 ±0.19 959 ±22 1.08 ±0.55 1.13 EeV 1.18 EeV 1.59 EeV 1.25 EeV 950 1.20 EeV 1.42 EeV 900 850 0.8 1 1.2 1.4 1.6 1.8 log (S ) 10 Mathieu Tartare [[email protected]] Rencontres de Moriond, 03/12/2013 b 28
© Copyright 2025 Paperzz