Characterization of CF4 primary scintillation Andrey Morozov What, why and how? Spectral studies Photon flux measurements CF4 primary scintillation: Light emission and photon yield Effect of applied electric field Effect of He admixture Quenching effects (gas aging) Time resolved measurements Spectral studies Spectral studies: Setup Quartz window Second order filter CF4 PMT Monochromator Am-241 α-source Photon counting Al reflector R=0.80 ± 0.08 Grid (0 – 6 kV) Excitation volume CF4 primary scintillation: Raw spectra 6000 ! 1bar 3bar 5bar 5000 Spectra have to be corrected for: Counts 4000 1) Response of the monochromator and PMT 3000 2000 2) Geometrical factor of the detection 1000 0 200 300 400 500 Wavelength, nm 600 700 800 3) Gas aging Monochromator+PMT response measurements ES IF L D Tungsten strip lamp (1900 K) 450 – 850 nm PMT Tungsten halogen lamp 400 – 850 nm Monochromator ES: Entrance slit IF: Optional interference filters L: Lens NF: Neutral filter(s) D: Diaphragm Deuterium lamp 200 – 400 nm NF Spectra corrected for the instrumental response 1.0 0.5 bar 1 bar 2 bar 3 bar 4 bar 5 bar 0.9 0.8 Intensity, a.u. 0.8 0.7 0.6 Spectra from different pressures are not to scale! 0.5 0.4 0.3 0.3 0.2 0.1 0.0 200 300 400 500 Wavelength, nm 600 700 800 Need direct photon flux measurements Absolute photon flux measurements Absolute photon flux measurements: setup Extension tubes: PMT-to-source distance is adjustable from 80 to 300 mm Extension tubes PMT Optional interference filter Broad band filter (UV or visible) Light source is a half-sphere, radius: ~3 mm at 5 bar ~13 mm at 1 bar ~26 mm at 0.5 bar At the limit given by the cell geometry! Flux vs. PMT-to-source distance Point-light-source approximation: If valid, no numerical simulations (unknown error bars!) are needed. Detector R Light source Photon fluxes: FOBSERVED ∞ NSOURCE / R2 then FOBSERVED∙R2 should be constant! Flux vs. PMT-to-source distance UV component 3.0 0.12 1 bar 5 bar 4 bar 2 bar 0.06 3 bar 0.04 4 bar 5 bar 2 0.08 Count_rate*R, 10 mm /s 2 2.5 0.10 9 2.0 3 bar 7 2 0.02 2 Count_ratex R , 10 mm /s VISIBLE component 1.5 2 bar 1.0 1 bar 0.5 0.0 0.00 80 120 160 200 240 280 80 120 160 R, mm Fig.2 PMT can “see” the whole light emitting volume! 200 R, mm 240 280 Flux vs. PMT-to-source distance Missing double-event photoelectrons are taken into account! UV component VISIBLE component 3.0 1 bar 0.08 5 bar 4 bar 2.5 30% 0.06 2 bar 21% 3 bar 16% 4 bar 5 bar 0.04 12% 0.02 2.0 3 bar 7 6% 10% 2 2 2 0.10 Count_rate*R, 10 mm /s 2 8% 9 Count_ratex R , 10 mm /s 0.12 1.5 2 bar 1.0 1 bar 0.5 0.0 0.00 80 120 160 200 240 280 R, mm 80 120 160 200 240 R, mm Fig.2 Point source approximation is definitely valid for R > 140 mm for all pressures! No scattering! 280 Fluxes for the UV and VIS components 1.0 Two lines of flux measurements: UV-block CF4 3bar UG11 Filter transmission/ Photon flux 0.8 Using broad-band filters and interference filters. 0.6 0.4 IF-610 0.2 0.0 200 IF-300 300 400 500 600 700 800 Photon detection probability vs. wavelength? Wavelength, nm XP2020Q R1387 Photon detection probability Optical beam-line (2 m long) with diaphragms PMT Neutral filters Interference filter Halogen or deuterium lamp 1.0 0.5 0.0 200 Interference filters: 300 400 500 600 700 800 Relative detection probabilities UV component Visible component PMT: Photonis XP2020Q PMT: Hamamatsu R1387 D2 (10%+10%) D2 (10%+10%) D2 (1%) Halogen (1% + 10%) QE(manufacturer) QE(published in IEEE) DP approximation FluxCF4-3bar-UG11 0.27 Detection probability 0.24 0.21 0.18 0.15 0.12 0.09 0.11 Halogen Halogen, higher treshold QE*0.4 (manufacturer data) DP approximation Photon flux from CF4 (3bar, UV_block) 0.10 0.09 Detection probability 0.30 0.08 0.07 0.06 0.05 0.04 0.03 0.06 0.02 0.03 0.01 0.00 0.00 250 300 350 400 450 Wavelength, nm 500 550 600 400 500 600 Wavelength, nm Max uncertainties (main contributors: the filters and lamps): 25% 35% 700 800 CF4 emission spectra (all corrections are applied) 1.0 1 bar 2 bar 3 bar 4 bar 5 bar Flux measurements have been used to scale the spectra from different pressures Photon flux, a.u. 0.8 0.6 0.4 0.2 0.0 200 300 400 500 600 Wavelength, nm Fig.1 700 800 Photon yield Photon yield calculation Photon yield: Number of photons (in 4π) produced per MeV of energy deposited in the gas. Y = Number_of_photons / (α-Rate ∙ Average_Energy) From photon flux measurements Number of α-particles entering the gas per second multiplied by the average deposited energy Photon yield (UV component, integrated) 3000 Uncertainties Broadband (UG11) IF (300nm) Photon yield, ph/MeV 2500 Broadband: 16% sum in quadrature (40% sum) 2000 1500 1000 500 0 0 1 2 3 Pressure, bar Fig.3 4 5 IF-300 nm: 21% sum in quadrature (55% sum) Photon yield (visible component, integrated) Uncertainties 7000 6000 Photon yield, ph/MeV Broadband: 19% sum in quadrature (50% sum) Broadband (UV-block) IF (610nm) 5000 4000 IF-300 nm: 5 → 1bar: 3000 2000 1000 0 0 1 2 3 Pressure, bar Fig.4 4 5 26% → 72% sum in quadrature (67% → 120% sum) Photon yield: cross-check The ratios of yields in the UV and visible are compared with the flux ratios from the calibrated emission spectra P bar 1 Yield ratios UV / vis 2.8 ± 1.0 Spectral ratios UV / vis ~2.5 ± 0.8 2 3 4 0.70 ± 0.25 0.34 ± 0.12 0.22 ± 0.08 0.76 ± 0.15 0.50 ± 0.10 0.35 ± 0.07 5 0.17 ± 0.06 0.23 ± 0.05 1.0 0.5 Overlap! 0.0 200 300 400 500 600 700 800 Time spectra Time spectra: setup α-particle: “Start” Photon: “Stop” PMT Silicon detector (PIPS Canberra) Alpha source (Ortec) Optical filter 0 – 300 V Electronics: Start and stop → fast preamps → CF triggers → Time-to-amplitude converter → Multi-channel analyzer Time spectra: UV component UV component (XP2020Q + UG11) 1000 Counts (0.5ns bin) Two distinctive decay structures (both ? exponential) 0.5bar 3bar 100 0 5 10 15 20 25 Indications of a very weak non-exponential tail 10 Weak pressure dependence 0.5bar 1bar 3bar 1 0 10 20 30 40 50 60 70 Time, ns 80 90 100 110 120 130 Time spectra: Visible component Visible component (UV block filter) Counts (0.5 ns bins) 1000 3bar 0 V/cm 2bar 0 V/cm 1bar 0V/cm Strongly non-exponential decay Very likely there is a strong contribution from recombination 100 10 Clear pressure dependence 1 0 20 40 60 80 Time, ns 100 120 140 Effect of the electric field Photon yield, ph/MeV/nm Photon yield, ph/MeV/nm Photon yield, ph/MeV/nm Electric field: Spectra 30 1 bar, no effect of the field 20 No effect for low pressures! 10 0 200 300 30 400 500 600 700 800 3 bar, 0 kV/cm 3 bar, 2 kV/cm 20 10 0 200 300 400 500 600 700 800 For medium-high pressures: Very strong reduction of the visible component and an increase of the UV component with the field! 30 5 bar, 0 kV/cm 5 bar, 2 kV/cm 20 10 0 200 300 400 500 Wavelength, nm 600 700 800 At 5 bar: Strong reshaping of the UV component with the field! Electric field: UV component Integrated photon flux, a.u. 1.0 0.8 0.6 0.4 0.2 220-500 nmrange 0 V/cm 370 V/cm 560 V/cm 1100 V/cm 2200 V/cm 0.0 1 2 3 Pressure, bar 4 5 Electric field: Visible component Integrated photon flux, a.u. 1.0 0.8 500-800 nm range 0 V/cm 75 V/cm 280 V/cm 560 V/cm 1900 V/cm 0.6 0.4 0.2 0.0 1 2 3 Pressure, bar 4 5 Electric field: Time spectra of the UV component UV component (UG11 filter) UV 3ar 0kV/cm UV 3bar 4kV/cm 1000 Very small difference! Counts 100 10 1 0 20 40 60 80 Time, ns 100 120 140 E-field dependence: Visible component 1000 3 bar 1000 1 bar 0 kV/cm 0.5 kV/cm 3 kV/cm 0 kV/cm 1 kV/cm 100 Counts Counts 100 10 10 1 bar 3 bar 1 0 20 40 60 80 Time, ns 100 120 140 0 20 40 60 80 Time, ns Very different behavior at high and low pressures! 100 120 140 E-field dependence: Why UV and visible behave differently? CF4+ Recombination Direct excitation Quenching CF3+ UV emission CF3* Visible emission Electric field suppresses recombination UV emission benefit from that while visible emission should be reduced Effect of helium: spectra and flux measurements 1.0 1.00 CF4-3bar CF4-3bar + He-2bar CF4-1bar + He-4bar CF4-1bar 0.8 Photon flux, a.u. Photon flux, a.u. 0.80 0.60 0.40 0.5 0.3 0.20 0.00 200 300 400 500 600 700 800 0.0 200 250 Wavelength, nm 300 350 400 450 Wavelength, nm Absolute flux measurements: UV component (pressures are in bar) 3 CF4 + 2 He: same as Visible component (pressures are in bar) 3 CF4 3 CF4 + 2 He: same as 3 CF4 2 CF4 + 3 He: 20% higher than 2 CF4 2 CF4 + 3 He: same as 2 CF4 1 CF4 + 4 He: 40% higher than 1 CF4 1 CF4 + 4 He: same as 1 CF4 500 Gas aging studies: Time spectra UV component UV component, aging overnigt (~16 hours) CF4 3 bar Fresh After 20h CF4 3 bar Fresh Recorded over 20h Recorded after 70h 1000 Counts (0.5 ns bin) 1000 Counts (0.5ns bins) Visible component Visible component, 3 days agingtest 100 10 100 10 1 1 0 10 20 30 40 50 60 70 80 0 25 50 Time, ns Both components show significant aging! 75 Time, ns 100 125 150 N2 quenching Visible component UV component UV component, N2 quenching test 1bar 1bar CF4 + 16mbar N2 1bar CF4 + 32mbar N2 1000 100 ~15 ns 1000 Counts (0.5 ns bins) 10000 Counts (0.5 nm bins) Visible component, N2 quenching tests 3bar CF4 pure 3bar CF4 + 16mbar N2 3bar CF4 + 32mbar N2 100 ~6 ns 10 10 1 1 0 10 20 30 Time, ns No effect! 40 50 60 0 20 40 60 Time, ns Strong effect! Visible component is strongly affected by nitrogen admixtures! Bad news, since CF4 purifiers (effective) do not remove nitrogen. 80 100 120 Thank you!
© Copyright 2026 Paperzz