Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 rsta.royalsocietypublishing.org Research Cite this article: Bishop JL, Englert PAJ, Patel S, Tirsch D, Roy AJ, Koeberl C, Böttger U, Hanke F, Jaumann R. 2014 Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Phil. Trans. R. Soc. A 372: 20140198. http://dx.doi.org/10.1098/rsta.2014.0198 One contribution of 14 to a Theme Issue ‘Raman spectroscopy meets extremophiles on Earth and Mars: studies for successful search of life’. Subject Areas: geology, geochemistry, biogeochemistry, astrobiology, solar system Keywords: Antarctic Dry Valleys, sediments, Raman spectra, reflectance spectra, chemistry Author for correspondence: Janice L. Bishop e-mail: [email protected] Electronic supplementary material is available at http://dx.doi.org/10.1098/rsta.2014.0198 or via http://rsta.royalsocietypublishing.org. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances Janice L. Bishop1,2 , Peter A. J. Englert3 , Shital Patel1,4 , Daniela Tirsch5 , Alex J. Roy6 , Christian Koeberl7,8 , Ute Böttger5 , Franziska Hanke5,9 and Ralf Jaumann5 1 Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA, USA 2 NASA Ames Research Center, Moffett Field, CA, USA 3 Hawaii Institute of Geophysics and Planetology, University of Hawaii at Mânoa, HI, USA 4 Department of Chemistry, San Jose State University, San Jose, CA, USA 5 German Aerospace Center (DLR), Berlin, Germany 6 Department of Land and Natural Resources, Honolulu, HI, USA 7 Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 8 Natural History Museum, Burgring 7, 1010 Vienna, Austria 9 Technische Universität Berlin, Berlin, Germany Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2014 The Author(s) Published by the Royal Society. All rights reserved. Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 The objective of this study is to investigate surface sediments in the Antarctic Dry Valleys (ADV) region (figure 1) with a focus on Wright and Taylor Valleys. The overall goal of this project is to identify and interpret weathering and soil formation processes on Mars through comparison with the composition and weathering status of systematically studied Mars analogue soils [1–3]. We seek to identify signatures of physical and chemical alteration in these sediments, and, further, to apply these data to Mars and determine if there are short-term and long-term liquid-waterbased chemical alteration indicators embedded in current Mars chemical and physical data. The extremely cold, arid ADV environment provides one of the best analogues for the surface of Mars today. For this reason, ADV soils and sediments have long been under study [2,4–7]. The data presented here will be useful for comparison with orbital and landed datasets from Mars. Raman spectrometers have been proposed for use on Martian rovers [8,9] and Raman data from cold, dry analogue sites will be supportive of data interpretation for a future Raman spectrometer at Mars. Visible/near-infrared (VNIR) reflectance spectra presented here are comparable to the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra [10], and analyses of these samples will assist in characterizing sediments from orbit on Mars. Similarly, mid-IR region spectra are related to data collected by the Mars Global Surveyor Thermal Emission Spectrometer instrument [11]. The X-ray diffraction (XRD) data presented are similar to data collected by the Chemistry and Mineralogy (CheMin) instrument [12] on the Mars Science Laboratory (MSL) rover. Elemental abundances were acquired at Mars by the Mars Odyssey Gamma Ray Spectrometer (MOGRS) [13,14] and the Mars Exploration Rovers (MER) [15,16], and the elemental analyses presented here will assist in interpreting these data. (a) Antarctic Dry Valleys Pioneering work by Claridge [17], followed by the suggestion that the ADVs are the best terrestrial approximation of contemporary Mars [18–20] encouraged other studies of ADV soils and sediments as potential analogues for Martian surface material [1,2,6,7,21–36]. Gibson and co-workers [2,30] provided an early precedence for this kind of study, applying multiple dimensions of analysis to several samples in an 80 cm depth profile from Prospect Mesa, Wright Valley. That study links analyses to soil formation processes in the ADV and on Mars. Data evaluated encompass adsorbed water, and petrography from fine- and coarse-grained fractions of representative sample aliquots, and mineralogical and chemical composition, water soluble ions, plus total carbon, sulfur and sulfates from bulk samples. Minerals were analysed in detail, including identification of zeolites, clays and sulfates. Geochemical analyses performed on soil samples from the pit found the permanently frozen zone at a depth of approximately 40 cm [2], consistent with subxerous regions in the dry valleys where soils may be exposed to liquid water for short periods of time [31,37]. Gibson et al. [2] noted elevated salt concentrations approximately 2– 4 cm below the surface, which have been attributed to subsurface migration of brines [38] owing to the presence of thin films of liquid water at temperatures much below freezing [39]. ......................................................... 1. Introduction 2 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 2, 273–287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 162° E 163° E study location (a) 164° E 165° E 166° E 167° E (b) 77°15¢ S 77°15¢ S 77°45¢ S 77°30¢ S 78° S 77°45¢ S 161° E 162° E 0 163° E 5 10 0 5 10 164° E 20 miles 165° E 166° E 20 km (c) Figure 1. Images of ADV study sites: (a) overview indicating location of ADV in Antarctica, (b) ADV region showing Taylor and Wright Valleys and (c) locations of Lakes Brownworth, Fryxell and Vanda. (Online version in colour.) Another interesting feature of the ADV region is the presence of perennially ice-covered lakes that host active biosystems in these extreme habitats [4–6,26]. Organisms exist in microbial mats in the lakebottom sediments below both oxic (oxygen-rich) and anoxic (oxygen-poor) waters in these lakes. Lake Hoare in the Taylor Valley has received abundant attention owing to the 3–5 m thick year-round ice cover and algal mats growing in both oxic and anoxic regions of the lakebottom [33,40–43]. The water temperature in Lake Hoare varies from 0.0◦ C to 0.8◦ C [44], whereas the mean annual air temperature above the ice is typically −18◦ C [45]. Coordinated reflectance spectroscopy and geochemical analyses of lakebottom sediments from the Dry Valleys have enabled identification of minerals formed in this environment and characterization of microbial activity [24,25]. Those studies analysed numerous sediments ......................................................... 77°30¢ S rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 Antarctica 77° S 3 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Quantitative approaches using major element weathering indices such as the chemical index of alteration (CIA) have been used to assess the effects of physical versus chemical weathering in pedogenesis [46–48]. CIA values can be used to assess weathering processes [49,50] by comparing source rock material CIAs with those of soils. The CIA is based on mobility of the major elements Al, Ca, Na and K. Fresh basalts have a CIA of about 30–45, whereas completely weathered kaolinite has a CIA of 100. K and Th abundances are important chemical parameters for provenance and weathering in soils and K/Th ratios are a useful indicator for alteration profiles. K and Th data are available for the ADV granitoids [51] and Ferrar dolerites [52] and provide unaltered baseline values for our sediment dataset. 2. Methods (a) Samples Sediment samples were collected in 2004 by scooping material from the surface in multiple locations around Lakes Fryxell, Vanda and Brownworth (FVB) and a few locations on top of the lakes. Maps of sample collection sites are provided in figure 2. Samples were sealed at the field site and returned to the laboratory for study. A list of the samples is provided in table 1. For each sample, ground aliquots were prepared of a portion of the material by gently crushing the grains and dry sieving the crushed product until all of the crushed material passed through a less than 125 µm sieve. Samples were ground and sieved iteratively in order to avoid over-grinding the softer grains. Through analysis of these samples, we seek to determine whether chemical alteration or microbial activity is taking place at the surface near the lakes of the ADV. We used XRD, Raman spectroscopy and reflectance spectroscopy to identify and characterize the mineralogy of these sediments. We used VNIR reflectance spectra to characterize chlorophyll bands in the sediments and to identify CH vibrations owing to organic material. Elemental trends are coordinated with the observed mineralogy and ratios of selected elements are used for assessing the degree of alteration in the sediments. (b) X-ray diffraction XRD was run on the particulate less than 125 µm size fraction of each sample using the Terra X-ray diffraction and X-ray fluorescence instrument (Olympus Corporation) [53]. Base mineral concentrations were then analysed using JADE, which is pattern processing, identification and ......................................................... (b) Characterizing soil alteration through elemental abundances 4 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 retrieved from oxic and anoxic zones in Lake Hoare. Calcite and organic matter were abundant in oxic region lakebottom sediments [24]. Spectroscopic parameters were developed to discriminate the organic C and calcite in these sediments, as the features for these groups both occur in the 3.3–3.5 µm spectral region. The mineralogy of the Lake Hoare sediments is dominated by quartz, feldspar and pyroxene [24], consistent with the rocks and soils from the ADV region [37]. Another study involving Raman and reflectance spectra of coarse sediment grains from Lake Hoare more closely identified the types of minerals present [1]. The presence of biogenic pyrite, chlorophyll-like spectral absorptions and organic C in that study correlated well with the S isotope compositions in anoxic sediments, and microbial activity was found to be much higher in the anoxic than oxic sediments. Raman analyses of sediment grains showed the presence of chalcedony together with quartz in some sediments [27]. Raman analyses of feldspar grains in that study found spectra consistent with a range of compositions, including sanidine, albite, oligoclase and labradorite, and found pyroxene grains corresponding to orthopyroxene and clinopyroxene. Selected magnetic grains were found to contain titanomagnetite [1,27]. Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (a) 5 LFR-4(E) LFR-3(E) LFR-6(ss) LFR-1(E) LFR-9(ss) LFR-7(ss) LFR-2(E) Lake Fryxell (lower Taylor Valley) (b) LVA-5(ss) LVA-6(ss) LVA-4(E) LVA-7(ss) LVA-3(E) LVA-9(E) LVA-2(E) LVA-1(E) LFR-8(ss) Lake Vanda (upper Wright Valley) (c) LBR-4(E) LBR-3(ss) LBR-2(ss) LBR-1(ss) blue ice area; no samples collected Lake Brownworth (lower Wright Valley) Figure 2. Views of lakes showing locations of sediment sampling sites: (a) Lake Fryxell, (b) Lake Vanda and (c) Lake Brownworth (image credit: Will Hine/ TVNZ). Samples were collected from the ice surface as ‘surface samples’ (SS) and along the ‘edge’ (E) of each lake. (Online version in colour.) quantification software (Materials Data, Inc.), to determine specific minerals present in processed samples. The XRD unit is similar to the CheMin instrument on the MSL rover [12]. The instrument provides for both quick survey and quantitative analyses of sample suites. (c) Raman spectroscopy Raman spectra were collected on multiple grains of the original sample material for one sample from each lake region. These spectra were measured with a Witec Alpha 300 Raman spectrometer ......................................................... LFR-5(E) rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 LFR-10(ss) LFR-8(ss) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 1. List of samples studied. 6 lake name Lake Fryxell sediment location SS, sediment on surface of ice covering lake JB651 LFR-1 Lake Fryxell E, sediment at edge of lake JB652 LFR-2 Lake Fryxell E, sediment at edge of lake JB653 LFR-3 Lake Fryxell E, sediment at edge of lake JB654 LFR-4 Lake Fryxell E, sediment at edge of lake JB655 LFR-5 Lake Fryxell E, sediment at edge of lake JB656 LFR-6 Lake Fryxell SS, sediment on surface of ice covering lake JB657 LFR-7 Lake Fryxell SS, sediment on surface of ice covering lake JB658 LFR-8 Lake Fryxell SS, sediment on surface of ice covering lake JB659 LFR-9 Lake Fryxell SS, sediment on surface of ice covering lake JB660 LFR-10 Lake Fryxell SS, sediment on surface of ice covering lake JB661 LVA-1 Lake Vanda E, sediment at edge of lake JB662 LVA-2 Lake Vanda E, sediment at edge of lake JB663 LVA-3 Lake Vanda E, sediment at edge of lake JB664 LVA-4 Lake Vanda E, sediment at edge of lake JB665 LVA-5 Lake Vanda SS, sediment on surface of ice covering lake JB666 LVA-6 Lake Vanda SS, sediment on surface of ice covering lake JB667 LVA-7 Lake Vanda SS, sediment on surface of ice covering lake JB668 LVA-8 Lake Vanda SS, sediment on surface of ice covering lake JB669 LVA-9 Lake Vanda E, sediment at edge of lake JB670 LBR-1 Lake Brownworth SS, sediment on surface of ice covering lake JB671 LBR-2 Lake Brownworth SS, sediment on surface of ice covering lake JB672 LBR-3 Lake Brownworth SS, sediment on surface of ice covering lake JB673 LBR-4 Lake Brownworth E, sediment at edge of lake .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... under ambient air of a spot approximately 1.5 µm in diameter using a confocal microscope as in [54]. The excitation wavelength was 532 nm, the laser power ranged between 0.5 and 3 mW, and a 600 lines mm−1 grating was used. The spectral resolution was about 4–5 cm−1 across the range 100–3800 cm−1 . Raman spectra were measured at several spots on the grains in order to characterize as many minerals present as possible. Confocal Raman microscopy [55] was used in order to view the surface of the mineral grains at the specific sites where spectra were collected. (d) Reflectance spectroscopy Reflectance spectra were measured on the particulate less than 125 µm size fraction for each sample from 0.3 to 50 µm as in past studies [1,25]. The spectra are a composite of bidirectional spectra collected under ambient conditions at 5 nm spectral resolution from 0.3 to 1.3 µm relative to Halon and biconical Fourier transform IR spectra collected under a dehydrated environment at 4 cm−1 spectral resolution from 1 to 50 µm relative to a rough gold surface. ......................................................... lake id LFR-A rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 sample id JB650 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (e) Elemental analyses The XRD data contribute semi-quantitative mineralogical trends (figure 3) and provide confirmation of the minerals detected using Raman and reflectance spectroscopy. The Raman and reflectance spectra of Lake Fryxell sediments are presented in figures 4 and 5, respectively; the Raman and reflectance spectra of Lake Vanda sediments are presented in figures 6 and 7, respectively; and the Raman and reflectance spectra of Lake Brownworth are presented in figures 8 and 9, respectively. Spectroscopy data presented in this paper are available in the electronic supplementary material. Raman spectra from figures 4, 6 and 8 are provided in table S1 and reflectance spectra from figures 5, 7 and 9 are provided in table S2. (a) X-ray diffraction The XRD data indicate that the composition of all samples is dominated by quartz, feldspar and pyroxene. Representative XRD scans illustrate distinct mineral distribution patterns for each of the lake environments, although the general mineralogical composition is very similar for all samples (figure 3a). A quantitative mineral assessment (figure 3b) shows that Lake Fryxell sediments are dominated by albite, whereas the Lake Brownworth sediments are rich in albite and Na- and Ca-bearing feldspars. The major mineral component for Lake Vanda samples is quartz followed by feldspars and pyroxene. The average quartz content of the Lake Brownworth samples is lower than that of Lake Vanda samples, but exceeds the Lake Fryxell average and all of the individual sample quartz abundances. The samples collected from the ice cover at both Lakes Fryxell and Vanda tend to have higher quartz components than those collected along the perimeter of the lakes. The feldspar and pyroxene abundances do not show notable differences between lakeshore and on-ice samples. (b) Raman spectroscopy Raman spectra are dominated by quartz, feldspar and pyroxene signatures, whereas a few spots were consistent with aluminosilicates and amorphous material. The Raman peak positions are given in table 5 for selected spectra of individual grains shown in figures 4, 6 and 8. The Raman signatures of feldspar-rich grains are, in general, more characteristic of albite (NaAlSi3 O8 ) and oligoclase (Na,Ca)[Al(Si,Al)Si2 O8 ] and less consistent with Ca-rich anorthite or K-rich microcline or sanidine. Typically, a strong doublet is observed near 510 and 480 cm−1 and additional peaks or combinations of peaks occur near 290 and 190 cm−1 . Raman spectrum 1 of a feldspar-rich grain in the Lake Brownworth sediment JB671 (figure 8) also contains peaks at 1086, 995, 949, 817 and 777 cm−1 and its spectrum closely resembles that of albite. Raman spectrum 4 of a feldspar grain in the Lake Fryxell sediment JB651 contains a broad peak shape near 252–288 cm−1 and a peak at 160 cm−1 that are consistent with a small amount of sanidine (K-feldspar) in this grain together with Na/Ca-rich feldspar. ......................................................... 3. Results rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 Major elements were measured for the particulate less than 125 µm size fraction of each sample by ACME laboratories. Additional minor and trace element abundances, including those of the rare earth elements, were measured by instrumental neutron activation analysis (INAA) at the Department of Lithospheric Research, University of Vienna, Austria. Details on instrumentation, accuracy and precision of this method are described by Koeberl and co-workers [56,57]. There was excellent agreement for the elements measured by both techniques and an average was used, where applicable, for the elemental abundance data presented in tables 2–4. Elemental abundances and ratios of selected elements of these surface sediments were compared with data from Martian meteorites and Mars as in prior studies [58]. 7 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 2. Elemental abundances. Lake Fryxell. 8 LFR-1 JB651 LFR-2 JB652 LFR-3 JB653 LFR-4 JB654 LFR-5 JB655 LFR-6 JB656 LFR-7 JB657 LFR-8 JB658 LFR-9 JB659 LFR-10 JB660 C (wt%) 1.1 0.17 0.22 0.23 0.19 0.12 0.28 0.29 0.76 0.72 0.56 TOC (wt%) 0.96 0.07 0.09 0.03 0.06 0.07 0.26 0.28 0.75 0.71 0.49 TIC (wt%) 0.14 0.1 0.13 0.2 0.13 0.05 0.02 0.01 0.01 0.01 0.07 Na (wt%) 2.00 2.42 2.27 2.27 2.26 2.16 1.92 1.87 2.01 1.96 2.09 Mg (wt%) 2.65 4.35 3.76 3.00 3.29 4.24 3.53 3.50 3.11 3.15 3.81 Al (wt%) 7.01 6.93 7.17 7.51 7.39 6.84 6.67 6.68 7.02 7.04 6.93 Si (wt%) 27.89 25.36 26.03 27.78 26.96 26.86 29.24 29.28 28.82 28.47 26.93 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... P (wt%) 0.08 0.18 0.15 0.11 0.11 0.12 0.05 0.05 0.06 0.07 0.12 S TOT (wt%) 0.57 0.03 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.04 0.04 S SO4 (wt%) 0.196 0.013 0.027 0.020 0.023 0.017 0.017 0.010 0.010 0.020 0.017 K (wt%) 2.05 1.84 2.10 1.76 1.94 1.72 1.84 1.70 1.81 1.80 2.01 Ca (wt%) 3.89 4.89 4.84 4.36 4.69 4.70 4.24 4.3 4.13 4.24 4.72 Sc 15.75 19.48 20.53 14.76 17.68 22.07 22.90 22.40 20.50 19.38 19.18 Ti (wt%) 0.46 1.04 0.84 0.58 0.65 0.70 0.34 0.38 0.38 0.41 0.69 Cr 129 245 236 145 173 248 202 192 174 169 211 Mn (wt%) 0.070 0.116 0.108 0.077 0.093 0.108 0.085 0.085 0.077 0.077 0.101 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Fe (wt%) 3.89 6.29 5.82 4.09 4.76 5.67 4.32 4.40 4.11 4.16 5.08 Co 20.0 34.1 31.3 21.2 23.9 32.9 27.4 25.7 24.2 23.6 31.6 Ni 58.27 128.40 90.13 70.57 87.75 102.65 74.13 73.04 59.43 73.58 107.67 Zn 66.6 98.2 95.6 65.5 74.4 92.4 70.9 71 69 70.4 92 Ga 2 9 9 22 3 7 6 3 2 3 10 As 1.32 1.43 1.10 1.09 1.34 0.61 1.72 <0.8 0.53 0.6 1.25 Se 1.27 <0.9 <0.9 0.75 0.98 1.04 0.29 0.89 0.8 1.07 <1.3 Br 1.7 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.9 1.2 1.0 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Rb 84.5 66.6 74.1 85.8 73.5 66.1 70.2 72.7 74.1 76.2 75.8 Sr 342 512 463 451 422 396 312 285 307 322 251 Y 18 27 25 19 24 24 18 19 19 20 22 Zr 172 388 312 214 241 297 169 217 176 159 268 Nb 23 55 41 31 29 28 11 11 16 20 35 Sb 0.14 0.15 0.12 0.15 0.13 0.09 0.03 <0.1 <0.1 0.06 <0.3 Cs 1.77 1.39 1.54 1.66 1.48 1.38 1.28 1.28 1.32 1.39 1.38 Ba 341 323 338 373 345 311 315 325 328 345 346 La 25.5 48.4 42.1 30.0 32.2 41.7 23.5 29.1 28.9 31.0 33.5 Ce 47.5 90 79.4 55.4 60.9 76.9 44.2 55.2 54.4 57.1 60.8 Nd 20.3 38.5 35.4 25.3 27.8 33.4 17.2 24.0 19.6 21.3 25.4 Sm 4.30 7.51 6.69 4.95 5.54 6.24 3.85 4.27 4.05 4.81 5.87 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... (Continued.) ......................................................... LFR-A JB650 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 2. (Continued.) 9 LFR-1 JB651 2.13 LFR-2 JB652 1.89 LFR-3 JB653 1.40 LFR-4 JB654 1.47 LFR-5 JB655 1.67 LFR-6 JB656 1.10 LFR-7 JB657 1.16 LFR-8 JB658 1.19 LFR-9 JB659 1.23 LFR-10 JB660 1.57 Gd 4.26 6.32 5.99 4.06 5.29 4.48 4.01 4.58 3.98 4.78 4.35 Tb 0.59 1.02 0.90 0.67 0.76 0.85 0.60 0.64 0.61 0.69 0.84 Tm 0.22 0.45 0.39 0.28 0.34 0.38 0.28 0.27 0.27 0.26 0.36 Yb 1.46 2.52 2.28 1.60 1.88 2.12 1.78 1.85 1.72 1.69 2.12 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Lu 0.23 0.36 0.34 0.24 0.29 0.34 0.27 0.29 0.28 0.27 0.30 Hf 3.04 7.48 6.03 4.29 5.16 6.42 3.41 4.78 4.08 3.12 5.02 Ta 1.6 4.29 3.17 2.47 2.13 2.44 0.98 1.07 1.06 1.35 2.88 Ir (ppb) <1.2 <1.4 <1.4 <1.2 <1.5 <1.3 <1.4 <1.4 <1.4 <1.4 <1.5 Au (ppb) 4.6 0.3 0.2 0.3 <0.3 0.8 0.9 <0.3 <0.3 <0.3 <2.3 Th 6.40 8.58 7.56 6.40 6.48 7.62 5.52 6.33 7.01 7.47 11.0 U 1.59 1.97 1.79 1.67 1.55 1.51 0.86 1.02 0.76 1.29 1.65 K/Th 3199 2141 2771 2744 2996 2259 3337 2691 2589 2406 1833 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Raman spectra of the pyroxene-rich grains in most of the sediments are more consistent with monoclinic clinopyroxene (or pigeonite) than orthopyroxene with peaks at 1016, 667–670, 390– 391, 326 and 130–136 cm−1 . The quartz grains exhibit Raman peaks near 466–470, 207–209 and 130–133 cm−1 . Spectrum 3 of Lake Vanda sediment JB669 contains not only a mixture of feldspar and quartz and is dominated by feldspar peaks but also contains weak peaks or shoulders attributed to quartz near 467, 211 and 126 cm−1 . The Raman spectrum 2 of an aluminosilicatebearing grain in the Lake Brownworth sediment JB671 has peaks at 1040, 990–1030, 679, 667, 547 and 198 cm−1 attributed to chlorite. The Fe2+ endmember chamosite has peaks at 1031, 667, 544 and 198 cm−1 , whereas the Mg-rich endmember clinochlore has peaks at 1037, 670, 547 and 201 cm−1 . The grain likely contains an intermediate Fe2+ Mg chlorite as well as some orthopyroxene contributing to the weak and broad band from 990 to 1030 cm−1 and the sharp peak at 679 cm−1 . (c) Reflectance spectroscopy Most VNIR spectra are dominated by strong electronic absorption bands characteristic of Fe2+ in pyroxene. These are observed near 0.94 and 1.94 µm in spectra of most Lake Fryxell samples (figure 5a) and are attributed to Fe2+ -rich pyroxene based on band centre correlations with pyroxene chemistry [59]. These band centres are observed at slightly longer wavelengths, near 0.95 and 1.98 µm, in spectra of the Lake Vanda (figure 7a) and Lake Brownworth (figure 9a) sediments, implying a small shift towards lower Fe in the pyroxene [59]. Chlorophyll bands are observed at 0.67 µm (figure 5a) for samples JB650 and JB660 collected from the ice surface above Lake Fryxell. These samples also exhibit the strongest aliphatic CH stretches at 3.3–3.5 µm owing to the presence of organic material. Weak chlorophyll and CH bands are observed for Lake Fryxell samples JB656–JB659, but there is no evidence of chlorophyll or CH bands in Lake Vanda or Lake Brownworth samples. Spectra of Lake Fryxell samples JB650–JB654 and JB660 include bands characteristic of calcite near 2.3, 2.5, 3.4 and 4 µm (figure 5a,c). Carbonate bands are not observed in spectra of the Lake Vanda and Lake Brownworth samples. The CH and carbonate bands overlap near 3.4 µm; however, they have distinctive triplet signatures and the 3.42 µm band is stronger for aliphatic ......................................................... LFR-A JB650 1.17 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) Eu Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 3. Elemental abundances. Lake Vanda. 10 LVA-2 JB662 0.08 LVA-3 JB663 0.04 LVA-4 JB664 0.04 LVA-5 JB665 0.05 LVA-6 JB666 0.04 LVA-7 JB667 0.05 LVA-8 JB668 0.04 LVA-9 JB669 0.14 TOC (wt%) 0.03 0.08 0.04 0.03 0.04 0.04 0.05 0.05 0.07 TIC (wt%) 0 0 0 0.01 0.01 0 0 0 0.07 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Na (wt%) 1.19 1.77 0.97 1.00 1.15 1.19 1.13 1.37 1.35 Mg (wt%) 2.4 3.35 4.36 4.13 2.41 1.88 1.87 1.68 2.92 Al (wt%) 4.4 6.36 4.12 4.23 4.88 4.55 4.61 4.63 5.42 Si (wt%) 34.77 29.23 29.23 30.06 34.12 35.74 35.49 35.95 31.37 P (wt%) 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03 S TOT (wt%) 0.02 0.08 0.03 0.02 0.02 0.02 0.02 0.01 0.01 S SO4 (wt%) 0.010 0.060 0.010 0.010 0.010 0.010 0.010 0.000 0.000 K (wt%) 1.10 1.54 0.73 0.87 1.01 1.12 0.99 1.08 1.00 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Ca (wt%) 3.24 4.54 4.69 4.51 3.54 3.15 3.11 2.84 4.67 Sc 19.77 27.21 37.38 34.64 19.89 16.82 16.12 14.87 27.61 Ti (wt%) 0.19 0.35 0.95 0.81 0.20 0.16 0.15 0.14 0.34 Cr 140 172 239 231 122 98 98 97 142 Mn (wt%) 0.062 0.093 0.147 0.132 0.070 0.054 0.054 0.046 0.085 Fe (wt%) 3.19 4.67 7.73 6.89 3.25 2.85 2.57 2.44 4.62 Co 19.3 27.4 40.7 36.6 20.1 18.3 15.6 15.8 28.4 Ni 46.39 64.54 84.25 74.24 50.83 35.14 33.58 32.87 60.43 Zn 58 93 146 132 60 56 42 43 96 Ga 1.8 3 5.3 9.4 1.6 3.4 1.2 1.8 8.8 As <1.0 <1.4 <1.5 <2.1 <1.2 <1.3 <1.4 <1.1 0.52 Se <1.1 <1.4 <1.9 <1.6 <1.1 <1.1 <1.3 <0.9 <1.4 Br 0.4 0.4 0.4 0.5 0.3 0.5 0.6 0.5 0.5 Rb 42.5 58.5 43.8 40.0 44.9 48.0 37.5 47.5 53.2 Sr 81 126 83 73 69 80 72 96 88 Y 14 17 24 20 13 11 11 10 16 Zr 100 186 346 201 104 102 85 111 198 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... Nb 5 6 10 13 8 5 5 6 7 Sb <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 Cs 1.15 1.26 1.10 1.16 1.14 1.23 0.88 1.24 1.38 Ba 201 306 163 157 179 207 180 226 211 La 14.5 23 35.3 19.1 12.7 14.6 12.4 13.3 21.0 Ce 25.6 40.3 61.4 34.1 23.3 25.2 22 23.8 37.4 Nd 9.03 15.7 21.4 14.4 9.48 9.34 8.50 8.28 13.4 Sm 2.23 3.18 4.80 3.29 2.12 2.25 1.79 2.04 3.26 Eu 0.59 0.79 0.76 0.64 0.59 0.66 0.53 0.66 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... 0.77 .......................................................................................................................................................................................................... (Continued.) ......................................................... LVA-1 JB661 0.03 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) C (wt%) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 3. (Continued.) 11 LVA-2 JB662 3.34 LVA-3 JB663 3.86 LVA-4 JB664 2.86 LVA-5 JB665 2.28 LVA-6 JB666 2.27 LVA-7 JB667 1.54 LVA-8 JB668 2.11 LVA-9 JB669 3.56 Tb 0.38 0.52 0.77 0.48 0.35 0.36 0.29 0.32 0.54 Tm 0.17 0.24 0.36 0.29 0.17 0.16 0.14 0.15 0.25 Yb 1.25 1.59 2.42 2.07 1.21 1.21 1.01 1.09 1.78 Lu 0.20 0.27 0.40 0.34 0.20 0.20 0.17 0.17 0.31 Hf 2.15 3.71 9.02 5.26 2.30 2.26 2.2 2.10 4.58 Ta 0.39 0.59 1.31 0.92 0.32 0.36 0.24 0.29 0.53 Ir (ppb) <1.2 <1.4 <2 <1.6 <1.2 <1.1 <1.3 <0.9 <1.4 Au (ppb) <1.5 <2.0 <2.1 2.0 <1.6 <1.7 <1.9 <1.6 <1.9 Th 5.66 8.85 13.9 7.52 6.49 6.12 5.01 7.37 9.93 U 0.65 0.80 1.33 1.02 0.75 0.92 0.53 0.68 0.97 K/Th 1941 1745 522 1157 1563 1835 1968 1469 1003 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... CH absorptions, and the 3.36 and 3.48 µm bands are stronger for calcite [25]. The carbonate band position at 3.98 µm is characteristic of calcite, as found previously for lakebottom sediments [25]. OH combination stretching plus bending bands in the range 2.19–2.34 µm characteristic of aluminosilicates are observed in many samples (figures 5c, 7c and 9c). These features are often weak and the relative band strengths vary indicating differing abundances of the OH-bearing components. The 2.34 µm band is generally owing to Fe2+ –OH species and is strongest in spectra of sample JB671 from Lake Brownworth, but is present in all four Lake Brownworth spectra. This feature is also clearly detected in spectra of sample JB657 from Lake Fryxell and samples JB667 and JB668 from Lake Vanda. A weak band near 2.34 µm is present in most of the sediment spectra. For occurrences of a stronger band at 2.34 µm, a weak band near 2.25 µm is also present, which is consistent with a chlorite mineral [60]. This band occurs at 2.36 µm in spectra of chamosite and at 2.33 µm in spectra of clinochlore [61], so our samples likely have an intermediate composition chlorite mineral. In spectra from the Lake Fryxell region, a weak doublet near 2.33 and 2.38 µm is more consistent with actinolite spectra [62] as observed in some lakebottom spectra [7]. An additional weak feature near 2.19 µm is present in spectra of most samples and is attributed to the presence of allophane as in a past study [7]. Features owing to H2 O in these samples are present near 1.4, 1.9, 2.9–3.1 and 6.1 µm. The H2 O band near 1.9 µm is often correlated with the OH bands near 2.2–2.4 µm and could be due to the allophane or another hydrated component. The mid-IR spectral region exhibits strong bands consistent with quartz near 1215, 1160, 1080, 805, 785, 550, 495 and 375 cm−1 for most sediments (figures 5b, 7b and 9b). These are particularly strong in the Lake Vanda and Lake Brownworth spectra. The Christiansen feature (reflectance minimum) shifts from near 1330–1340 cm−1 for the Lake Vanda spectra to approximately 1310– 1330 cm−1 for the Lake Brownworth spectra and to approximately 1280–1310 cm−1 for the Lake Fryxell samples, which indicates a shift from more quartz-dominated sediments to more intermediate or basaltic materials [63,64]. The Christiansen feature is observed at approximately 1350 cm−1 for quartz, approximately 1300 cm−1 for albite, approximately 1235 cm−1 for anorthite and approximately 1175 cm−1 for augite [63]. The Lake Fryxell spectra also include a peak near 885 cm−1 that is consistent with pyroxenes such as enstatite and broadened features from 450 to 600 cm−1 under the sharp quartz peaks at 550 and 495 cm−1 that are characteristic of pyroxenes such as augite and enstatite [63]. Carbonate features are difficult to detect in the mid-IR region ......................................................... LVA-1 JB661 2.24 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) Gd Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 4. Elemental abundances. Lake Brownworth. 12 LBR-2 JB671 0.06 LBR-3 JB672 0.09 LBR-4 JB673 0.09 TOC (wt%) 0.08 0.06 0.09 0.08 TIC (wt%) 0.01 0 0 0.01 Na (wt%) 2.00 2.41 2.01 1.61 Mg (wt%) 1.89 1.56 1.89 2.64 Al (wt%) 6.68 7.19 6.82 6.32 Si (wt%) 32.35 31.92 32.37 31.51 P (wt%) 0.03 0.03 0.03 0.03 S TOT (wt%) 0.01 0.01 0.03 0.05 S SO4 (wt%) 0.010 0.000 0.017 0.027 K (wt%) 1.87 2.80 2.01 1.52 Ca (wt%) 3.36 3.07 3.30 4.08 Sc 14.40 12.58 14.52 20.41 Ti (wt%) 0.17 0.17 0.17 0.24 Cr 107 84 100 147 Mn (wt%) 0.054 0.046 0.046 0.070 Fe (wt%) 2.64 2.64 2.61 3.50 Co 15.6 14.2 15.6 20.6 Ni 39.76 30.26 37.03 50.46 Zn 49 55 45.0 56.3 Ga 4.8 3.9 4 2 As <1.8 <1.9 <1 <0.6 Se <1 <1 <0.7 0.98 Br 0.4 0.5 0.5 0.4 Rb 89.2 114 78.8 62.5 Sr 151 170 259 202 Y 13 15 13 17 Zr 131 152 107 105 Nb 6 6 5 8 Sb 0.05 < 0.2 < 0.1 < 0.1 Cs 1.43 1.90 1.33 1.24 Ba 399 485 348 280 La 18.3 20.6 13.7 19.2 Ce 32.9 35.5 25.4 34.5 Nd 12.6 13.8 10.9 13 Sm 2.82 3.18 2.28 3.02 Eu 0.81 0.96 0.82 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... 0.78 .......................................................................................................................................................................................................... (Continued.) ......................................................... LBR-1 JB670 0.09 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) C (wt%) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 4. (Continued.) 13 LBR-2 JB671 3.19 LBR-3 JB672 2.48 LBR-4 JB673 3.6 Tb 0.42 0.46 0.36 0.49 Tm 0.18 0.25 0.19 0.22 Yb 1.14 1.52 1.14 1.48 Lu 0.19 0.22 0.19 0.23 Hf 2.54 3.10 2.37 2.57 Ta 0.50 0.60 0.42 0.60 Ir (ppb) <1.0 <1.0 <1.1 <1.2 Au (ppb) 6.3 <1.9 0.6 <0.2 Th 8.80 8.88 3.95 5.88 U 0.89 0.96 0.64 0.95 K/Th 2123 3154 5077 2576 .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... .......................................................................................................................................................................................................... owing to multiple overlapping bands, but weak bands are observed near 1530 cm−1 in spectra of JB650 and JB656–JB660 from Lake Fryxell that are attributed to calcite. (d) Elemental analyses The samples from FVB collected for this study show distinct major and minor elemental abundance patterns indicating that each lake environment may represent different soil formation and weathering conditions. For example, K/Th ratios in the sample suite range from 522 to 5077 (tables 2–4), and are below 3000 for all but three samples, with Lake Vanda soils clearly distinguished by ratios systematically below 2000. K/Th ratios are useful in providing information on soil provenance and for comparison of ADV soil data and processes to Mars findings. Individual element abundances can provide clues on compounds they may be associated with as is the case for carbon and sulfur. Major and minor element abundances are used in geochemical indices to obtain information on weathering- or liquid-water-related processes. Trace elements were measured and are provided in tables 2–4, but not discussed in detail. Carbon and sulfur abundances were measured for all samples in order to evaluate the potential of biogenic material present. Both total organic carbon and total inorganic carbon are presented in tables 2–4. Sulfur was measured as sulfate (S SO4 ) and total sulfur (S TOT) and both values are given in tables 2–4. The carbon abundance patterns for each of the lake areas are different with Lake Fryxell showing exceptionally high abundances between 0.1 and 1.1 wt%, followed by Lake Brownworth close to 0.1 wt%, and Lake Vanda below 0.1 wt% apart from two samples (figure 10). Most significant, however, is that the majority of Lake Fryxell samples have an organic carbon component between 0.1 and 0.96 wt% (absolute). Organic carbon abundance is generally lower in samples from the other two lake regions. Lake Fryxell samples with significant organic carbon components are JB650 and JB656–JB660 collected on top of the lake ice, with JB650 having the highest total carbon and the highest organic carbon abundance. Inorganic carbon abundances tend to be elevated in the sediments collected along the edges of the lakes with the highest abundances present in samples JB650–JB655 and JB660 from Lake Fryxell and sample JB669 from Lake Vanda. Inorganic carbon is below 0.02 wt% for the remaining samples from Lakes Fryxell and Vanda and for all of the Lake Brownworth samples. Sulfur abundance in all lake surface samples does not exceed 0.1 wt% except for JB650 (Fryxell) whose total sulfur abundance is 0.57 wt% (figure 11). In addition, sample JB650’s sulfate ......................................................... LBR-1 JB670 2.81 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 elements (ppm) Gd Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (a) 14 normalized counts Lake Vanda Lake Brownworth Lake Fryxell 600 400 200 0 10 (b) 60 Lake Fryxell 20 30 scattering angle, 2q Lake Vanda 40 50 quartz albite 50 augite Ca-rich feldspars others Lake Brownworth abundance (%) 40 30 20 10 JB 6 JB 50 6 JB 51 65 JB 2 6 JB 53 65 JB 4 6 JB 55 65 JB 6 6 JB 57 65 JB 8 6 JB 59 66 JB 0 6 JB 61 66 JB 2 6 JB 63 66 JB 4 6 JB 65 66 JB 6 6 JB 67 66 JB 8 6 JB 69 67 JB 0 6 JB 71 6 JB 72 67 3 0 sample number Figure 3. XRD data of <125 µm size fractions of sediments in the study. Peaks are observed for quartz, feldspar and pyroxene in all samples, but the relative abundances vary. (a) Representative XRD scans from each lake environment and (b) relative abundance in weight percentage of major mineral components from each sample. (Online version in colour.) contributes less than 0.2 wt% (absolute) to total sulfur, leaving more than 0.3 wt% (absolute) to be accounted for by other sulfur compounds. For most samples, however, sulfate and other sulfur compound contributions to total sulfur are balanced. Low surface sulfate abundance is a normal aspect of ADV soils, although sulfate is generally enriched in subsurface soil strata. Important chemical parameters for provenance and weathering are K and Th abundances. Figure 12 shows K/Th ratios and K abundances (ppm) for ADV lake surface sediments, their potential source rocks, ADV granitoids and Ferrar dolerite [46,68], MOGRS average regional and ......................................................... 800 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 1000 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (a) (b) 15 1-feldspar 2 100 µm (c) 2-pyroxene 1000 3 3-quartz 100 µm 500 (d) 4-feldspar 0 800 700 600 500 400 300 wavenumber (cm–1) 200 4 100 100 µm Figure 4. (a) Raman spectra of mineral grains in sample 1 from Lake Fryxell (JB651), (b) image of grains 1–3, (c) image of grains 2–3 and (d) image of grain 4. Spectra are offset for clarity and lines mark key features in Raman spectra. (Online version in colour.) (a) (b) 5 6 wavelength (µm) 7 8 15 10 25 JB650 JB651 JB652 JB653 JB654 JB655 JB656 JB657 JB658 JB659 JB660 0.2 reflectance reflectance 0.4 50 (c) 0.1 0.2 carb 1.8 1 2.0 2.2 2.4 2.6 2 3 wavelength (µm) 4 2000 1600 800 1200 wavenumber (cm–1) 400 Figure 5. Reflectance spectra of the <125 µm size fraction of Lake Fryxell samples. (a) VNIR spectra from 0.35 to 5 µm showing features owing to pyroxene, carbonate and aluminosilicates. (b) Mid-IR spectra from 5 to 50 µm showing features owing to quartz, feldspar, pyroxene and carbonate. (c) NIR inset from 1.8 to 2.5 µm showing a H2 O band at 1.92 µm, OH features at 2.19, 2.25 and 2.34 µm, and carbonate bands near 2.3 and 2.5 µm. (Online version in colour.) global surface areas [13] and Martian (SNC) meteorites [67]. For the purpose of comparison, K/Th is normalized to bulk planet ratios of 2900 for Earth and 5300 for Mars, following Taylor et al. [13]. Normalized K/Th ratios for the FVB surface sediments have only a slightly wider spread, but higher K abundances, as expected, than those for Mars. To first order, different proportions of the source materials can explain the K/Th versus K pattern for ADV lakes: a high K/Th and high K component, ADV granitoids, and a relatively low K/Th and K abundance component, local Ferrar dolerite. ......................................................... 1 1500 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 Raman intensity 2000 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (a) 1500 (b) 1-feldspar Raman intensity + 100 µm (c) 3 3-feldspar 500 100 µm (d) 4-pyroxene + 0 1200 1000 800 600 wavenumber (cm–1) 200 400 4 100 µm Figure 6. (a) Raman spectra of mineral grains in sample 9 from Lake Vanda (JB669), (b) image of grains 1 and 2, (c) image of grain 3, and (d) image of grain 4. Spectra are offset for clarity and lines mark key features in Raman spectra. (Online version in colour.) (b) 5 6 reflectance 0.6 wavelength (µm) 7 8 15 10 25 50 BKR1JB661 BKR1JB662 BKR1JB663 BKR1JB664 BKR1JB665 BKR1JB666 BKR1JB667 BKR1JB668 BKR1JB669 0.4 0.2 reflectance (a) (c) 0.1 0.2 1.8 2.0 1 2.2 2.4 2.6 3 2 wavelength (µm) 4 2000 1600 800 1200 wavenumber (cm–1) 400 Figure 7. Reflectance spectra of the <125 µm size fraction of Lake Vanda samples. (a) VNIR spectra from 0.35 to 5 µm showing features owing to pyroxene, carbonate and aluminosilicates. (b) Mid-IR spectra from 5 to 50 µm showing features owing to quartz, feldspar, pyroxene and carbonate. (c) NIR inset from 1.8 to 2.5 µm showing a broad H2 O band centred at 1.94 µm and OH features at 2.19, 2.25 and 2.34 µm. (Online version in colour.) 4. Discussion (a) Mineralogical trends Quartz is identified in all ADV sediments in the XRD, Raman and mid-IR data and has the highest abundance for the Lake Vanda samples and lowest abundance for the Lake Fryxell samples. ......................................................... 2-quartz rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 1 1000 16 + 2 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 (a) 1000 (b) 17 + Raman intensity 1 100 µm 600 2-clay (c) 3-pyroxene 400 + 3 100 µm 200 (d) 4-quartz + 0 1200 1000 4 200 800 600 400 wavenumber (cm–1) 100 µm Figure 8. (a) Raman spectra of mineral grains in sample 2 from Lake Brownworth (JB671), (b) image of grains 1–2, (c) image of grain 3 and (d) image of grain 4. Spectra are offset for clarity and lines mark key features in Raman spectra. (Online version in colour.) (a) (b) 5 6 25 50 0.3 JB670 JB671 JB672 JB673 0.2 0.4 (c) 0.60 reflectance reflectance 0.6 wavelength (µm) 7 8 15 10 0.1 0.56 0.2 0.52 1.8 2.0 1 2.2 2.4 2.6 2 3 wavelength (µm) 4 2000 1600 800 1200 wavenumber (cm–1) 400 Figure 9. Reflectance spectra of the <125 µm size fraction of Lake Brownworth samples. (a) VNIR spectra from 0.35 to 5 µm showing features owing to pyroxene and aluminosilicates. (b) Mid-IR spectra from 5 to 50 µm showing features owing to quartz, feldspar and pyroxene. (c) NIR insert from 1.8 to 2.5 µm showing a very broad H2 O band centred at 1.92 µm with a shoulder extending past 2.1 µm and OH features at 2.19, 2.25 and 2.34 µm. (Online version in colour.) XRD results indicate feldspar abundance is highest in the Lake Fryxell samples and lowest in the Lake Vanda samples. Raman spectra of feldspar grains are consistent with albite and Naand Ca-rich feldspars. VNIR spectra indicate an Fe-rich pyroxene, whereas the Raman data indicate a monoclinic clinopyroxene form in most cases, with less orthopyroxene. XRD data are ......................................................... 2 + rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 1-feldspar 800 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 Table 5. Raman bands. 18 −1 peak positions (cm ) 1-feldspar (albite + Na/Ca-feldspar) 511 2-pyroxene 670 482 293 252 209 192 175 .......................................................................................................................................................................... 390 326 .......................................................................................................................................................................... 3-quartz 466 209 131 .......................................................................................................................................................................... 4-feldspar (albite + Na/Ca-feldspar + 517 479 455 288 278 252 197 179 160 some K-spar) .......................................................................................................................................................................................................... LVA-9 (JB669) 1-feldspar (albite + Na/Ca-feldspar) 511 2-quartz 467 482 409 292 267 195 183 174 .......................................................................................................................................................................... 409 357 268 207 133 .......................................................................................................................................................................... 3-feldspar (albite + Na/Ca-feldspar + 509 483 467 406 280 211 199 182 126 quartz) .......................................................................................................................................................................... 4-clinopyroxene 1016 667 391 326 136 1-feldspar 1086 995 949 817 777 .......................................................................................................................................................................................................... LBR-2 (JB671) 513 483 .......................................................................................................................................................................... (albite + Na/Ca-feldspar) 391 2-chlorite (+orthopyroxene) 1040 324 290 207 189 167 .......................................................................................................................................................................... ∼ 1000 679 667 391 667 547 198 .......................................................................................................................................................................... 3- clinopyroxene 1016 326 130 .......................................................................................................................................................................... 4- quartz 470 207 130 .......................................................................................................................................................................................................... consistent with augite (figure 3b) or could be attributed to a combination of two pyroxenes as found previously for lakebottom sediments [7]. Pigeonite (Fe-rich monoclinic pyroxene) could be present along with augite in order to produce the bulk Fe-rich pyroxene signature observed in the VNIR spectra. NIR and Raman data are consistent with a minor amount of chlorite, especially in the Lake Brownworth samples. The spectral features from both datasets fall in between the peak positions for chamosite (Fe2+ -rich) and clinochlore (Mg-rich) suggesting that the chlorite is an Fe2+ /Mg-chlorite. NIR spectra of the Lake Fryxell samples are also consistent with a small presence of actinolite. The NIR and mid-IR carbonate features present in spectra of the samples collected around Lake Fryxell are characteristic of calcite. The weak NIR bands at 1.92 and 2.19 µm in spectra of most of the samples are attributed to a small amount of the amorphous aluminosilicate allophane, which is an indicator of immature volcanic soils [69]. The weak NIR calcite bands are in line with inorganic carbon concentrations between 0.1 and 0.2 wt%. The highest inorganic C levels are found in the lakeshore sediment samples from Lake Fryxell (JB651–JB655) and also the surface sediments JB650 and JB660. The wt% inorganic C follows the trend: JB653 > JB650 > JB652, JB654 > JB651 > JB660 > JB655. The 3.98 µm calcite band is strongest in spectra of samples JB650–JB654 and JB660, which is consistent with the elemental trends. A calcite band is also observed in the Lake Vanda sediment JB669 spectrum (figure 7a) corresponding to 0.07 wt% inorganic C (table 3). The rest of the Lake Vanda sediments and all of the Lake Brownworth sediments have very low inorganic C levels (less than 0.02 wt%) and do not exhibit calcite spectral features. (b) Organic material The highest organic C levels are found in the sediment samples collected from the surface of the ice from Lake Fryxell. The wt% organic C follows the trend: JB650 > JB658 > JB659 > JB660 > JB657 > JB656. The CH-stretching bands at 3.3–3.5 µm (figure 5a) follow this same trend, and the chlorophyll bands are strongest for samples JB650, JB660 and JB658. This suggests that the organic C is largely present as saturated hydrocarbons and that photosynthetic microbes ......................................................... grain LFR-1 (JB651) rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 sample Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 1.2 19 C total Lake Fryxell TIC abundance (%) 0.8 0.6 0.4 0.2 Lake Vanda Lake Brownworth JB 6 JB 50 6 JB 51 65 JB 2 6 JB 53 65 JB 4 6 JB 55 65 JB 6 6 JB 57 65 JB 8 6 JB 59 6 JB 60 66 JB 1 6 JB 62 66 JB 3 6 JB 64 66 JB 5 6 JB 66 66 JB 7 6 JB 68 6 JB 69 67 JB 0 6 JB 71 6 JB 72 67 3 0 sample number Figure 10. Weight percentage abundance of total carbon (C total), total organic carbon (TOC), and total inorganic carbon (TIC) in the FVB sediments. Carbon abundance patterns are different for each lake. Lake Fryxell samples show the highest organic carbon abundance. (Online version in colour.) 0.6 Lake Fryxell 0.5 S total S SO4 S other abundance (%) 0.4 0.3 0.2 0.1 Lake Vanda Lake Brownworth JB 6 JB 50 6 JB 51 65 JB 2 6 JB 53 65 JB 4 6 JB 55 65 JB 6 6 JB 57 65 JB 8 6 JB 59 6 JB 60 66 JB 1 6 JB 62 66 JB 3 6 JB 64 66 JB 5 6 JB 66 66 JB 7 6 JB 68 6 JB 69 67 JB 0 6 JB 71 6 JB 72 67 3 0 sample number Figure 11. Weight percentage abundance of sulfur in the FVB sediments. The S values are divided into total sulfur (S total), sulfate (S SO4 ) and S present in other compounds (S other). Sulfur and/or sulfate abundance is low as expected for the ADV samples in this study, except for JB650 (Lake Fryxell). (Online version in colour.) ......................................................... TOC rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 1.0 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 20 4 2 0 103 2 3 4 5 6 7 8 9 104 K (ppm) 2 3 4 5 6 Figure 12. K/Th ratios and K abundances (ppm) for ADV lake and surface sediments (circles, tables 2–4 and [24]) and their source rocks (triangles, [51,65,66]) and nearby soils (squares, [65]), MOGRS regional averages (diamonds, [13]) and Martian (SNC) meteorites (diamonds, [67]). K/Th is normalized to bulk planet ratios of 2900 for Earth and 5300 for Mars, following Taylor et al. [13]. (Online version in colour.) are present in some but not all of these environments. Spectral features owing to chlorophyll have been observed previously in the lakebottom mats in both the oxic and anoxic regions of Lake Hoare [25,70]. Neither a chlorophyll band nor clear CH vibrations were observed for the lakeshore sediments from Lake Fryxell, nor the sediments from Lakes Vanda and Brownworth, which correlates well with the low organic C values for these samples. Weak CH vibrations were observed for samples with organic C approaching 0.1 wt%. (c) Trends in elemental abundances K/Th and Al/Ti ratios indicate local sources such as the Ferrar dolerite and ADV granitoids as the provenance of our sediments. Typical terrestrial weathering conditions fractionate (mobile) K from Th, creating a trend to lower K/Th as a function of weathering grade. Normalized K/Th ratios for several surface sediments studied exhibit a range of 0–2 and high K abundances (figure 12). The lower K/Th ratios (table 3) for the Lake Vanda sediments are correlated with a higher quartz content, whereas the slightly elevated K/Th ratios (table 2) for the Lake Fryxell sediments are correlated with more feldspar, clays and calcite. ADV granitoids exhibit an even wider range of normalized K/Th ratios (approx. 0–8) and higher K abundances, whereas ADV Ferrar dolerites exhibit normalized K/Th ratios on a par with our sediments but much lower K abundances. These data are consistent with a preference of physical over chemical weathering processes for our sediments. Additional K/Th values are provided for comparison with Martian meteorites [67] and Martian orbital data [13], which both represent lower K abundances than our sediments, but a similar spread in normalized K/Th ratios. Interestingly, the K abundances of lakebottom sediments from the ADV are similar to those of our surface sediments and the normalized K/Th ratios cluster similarly, but some K/Th ratios are elevated for the lakebottom sediments (figure 12). ......................................................... 6 Lake Hoare bottom sediments, Taylor V. [T.] (Bishop et al. [24]) Lakes Fryxell [T], Vanda and Brownworth, Wright V. Barton Peninsula soils (Lee et al. [65]) MOGRS global and regional avarages (Taylor et al. [13]) selected Martian meteorites (Lodders [67]) Antarctic Dry Valley granitoids/basement (Allibone et al. [51]) Antarctic Dry Valley Ferrar dolerites (e.g. Morrison et al. [66]) Barton Peninsula source rocks (Lee et al. [65]) Hawaii basalt reference suite (Basaltic Volcanism Study Project 1981) rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 K/Th normalized to K/Th = 2900 (Earth) or to K/Th = 5300 (Mars) 8 Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 80 50 40 ADV source rock averages basement lower beacon Ferrar dolerite McMurdo volcanic group Lashley formation 30 CIA 48.7 64.6 42.4 33.9 and 43 63.7 (Al2O3/TiO2)molar 17.6 18.6 15.0 2.8 and 8.7 18.8 20 10 20 30 (Al2O3 /TiO2)molar 40 50 60 Figure 13. Chemical index of alteration (CIA) versus molar oxide ratio of Al/Ti for sediments from FVB. For comparison potential source rock data (triangles, [51,65,66]) and Lake Hoare bottom sediment data (circles, [24]), a Prospect Mesa Core (circles, [2]) and Barton Peninsula soils data (squares, [65]) are included. V, valley; Is., island. ADV source rock average geochemistry (box, lower right) is adapted from Roser & Pyne [68] and Krissek & Kyle [46]. (Online version in colour.) The CIA can be used to assess weathering processes in ADV soils and sediments [46,47,49,50] by comparing CIAs of source rock material with those of soils and sediments. The CIA is based on the mobility of the major elements Al, Ca, Na and K. Fresh basalts have a CIA of about 30– 45, while completely weathered clays such as kaolinite have a CIA of 100. The CIA values are compared with molar Al2 O3 /TiO2 ratios for our surface sediments (figure 13) together with data from other sediments, soils and source rocks from the region. The CIAs for our sediments from FVB are low, especially for samples higher in sulfate. Our results for ADV surface sediments show that mixing of source materials is dominating the alteration process, while leaving open the option of isochemical weathering. Some of the classical molecular major element weathering and pedogenesis ratios and indices can be applied to the ADV samples, as well as to Martian rock and soil data from the MER, but only a few of these can be applied to Martian orbital MOGRS data. Sheldon & Tabor [47] provide a summary of quantitative methods addressing weathering, including the application of Al/Si and Ti/Al molar ratios. The CIA values for the surface sediments in this study are similar to those of lakebottom sediments and soil pits from previous studies (figure 13), but are distinct from the CIA values of the Barton Peninsula soils from King George Island, West Antarctica [65]. This is consistent with more limited chemical weathering in the arid environment of the ADV samples compared with those from the less arid environment of the Barton Peninsula. 5. Implications for Mars This study evaluates several techniques for characterization of minerals, organic material and evidence of microbial activity in ADV sediments as potential analogues for the cold, arid environment on Mars. Here, we seek to determine if chemical alteration or microbial activity is taking place in the sediments near the lakes and on top of the ice cover in the ADV. We ......................................................... 60 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 70 chemical index of alteration (CIA) 21 Lake Hoare bottom sediments - Taylor V. (Bishop et al. [24]) Lakes Fryxell - Taylor V., Vanda and Brownworth - Wright V. (Englert et al. [29]) Prospect Mesa Core - Wright V. (Gibson et al. [2]) Barton Peninsula soils - King George ls. (Lee et al. [65]) Antarctic Dry Valley granitoids/basement (Allibone et al. [51]) Antarctic Dry Valley Ferrar dolerite (e.g. Morrison et al. [66]) Barton Peninsula source rocks - King George ls. (Lee et al. [65]) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 and Life’ that partially enabled these analyses. Thanks are due to Brandy Anglen who collected sample LFRA and to W. Hine who provided the image of Lake Brownworth. We are grateful to D. Mader (University of Vienna) for assistance with the INAA work, and to the staff of the Atominstitut (Vienna) for the irradiations. We also thank T. Hiroi at Brown University’s RELAB for assistance with the reflectance spectra used in the study and J. W. Garcia and G. J. Taylor of the Hawaii Institute of Geophysics and Planetology for support of the XRD work. References 1. Bishop JL, Anglen BL, Pratt LM, Edwards HGM, Des Marais DJ, Doran PT. 2003 A spectroscopy and isotope study of sediments from the Antarctic Dry Valleys as analogs for potential paleolakes on Mars. Int. J. Astrobiol. 2, 273–287. (doi:10.1017/S1473550403001654) 2. Gibson EK, Wentworth SJ, McKay DS. 1983 Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of Martian weathering processes. J. Geophys. Res. 88, A912–A928. (doi:10.1029/JB088iS02p0A912) 3. Flamini E, Ori GG, di Pippo S, Osinski GR. 2009 Exploring Mars and its terrestrial analogues. Planet. Space Sci. 57, 509. (doi:10.1016/j.pss.2009.02.004) ......................................................... Acknowledgements. We are grateful to the Helmholz Foundation and the research alliance ‘Planetary Evolution 22 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 used XRD, Raman spectroscopy and reflectance spectroscopy to identify and characterize the mineralogy of these sediments. We used VNIR reflectance spectra to characterize chlorophyll bands in the sediments and to identify CH vibrations owing to organic material. Elemental trends are coordinated with the observed mineralogy and ratios of selected elements were used for assessing the degree of alteration in the sediments. Previous studies of lakebottom sediments have shown that biologic activity was responsible for sulfide formation [1] and that photosynthetic pigments were present in organic mats [25,70]. Raman spectra of these lakebottom sediments revealed the presence of pyrite deposits approximately 5 µm in diameter on quartz grains. These were not observed in this study of surface sediments on top of and at the edges of ADV lakes, although photosynthetic pigments and elevated organic carbon levels were observed in sediments collected from the ice surface on top of the lakes. We have used both normalized K/Th ratios and the CIA approach to evaluate the relationships between the ADV sediments, soils and rocks with rocks and soils from Gusev Crater and Meridiani on Mars. Taylor et al. [13] investigated terrestrial and MOGRS abundances of K and Th and the relation to terrestrial CIAs for neutral and acidic environments, including submarine and hydrothermal alteration conditions, in order to assess general regional and global weathering on Mars. MOGRS K/Th ratios vary from 0.64 to 1.66. The SNC meteorite K/Th ratio range is somewhat lower. MOGRS K abundance data form a cluster at about 3000 ppm [13]. SNC meteorite K abundance data are very low and overlap with the MOGRS range only in a few instances. Based on the ADV provenance model, a major contribution to Mars soil development processes could be explained by mixing of several basic source materials. However, the counterpart to the role that ADV granitoids play for FVB samples, a component with relatively high K/Th ratios and K abundances, is missing on Mars. The small spread of K/Th ratios across the Mars surface observed by MOGRS can be explained by igneous processes and physical weathering and does not require the presence of aqueous alteration to explain the observed variations. The CIAs of Martian rocks and soils are low, similar to the ADV data, indicating that little chemical weathering or predominantly isochemical weathering has taken place, probably in an acidic and dry environment [13]. However, the Martian data are highly dependent on sulfur content and corrections are needed for this. Unfortunately, elemental abundances of both the MER and orbital MOGRS data do not cover all elements needed to provide complete local, regional and global comparisons across Mars or with Mars analogues. For example, Na and Ti are not available from MOGRS, and the MER cannot measure trace elements. Finding new elemental relationships that work in analogues and can be applied to Mars elemental abundance databases is therefore important to assist in evaluating the extent of water-based alteration derived from indicators in the Martian surface. Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 23 ......................................................... rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 4. McKay CP, Clow GD, Wharton Jr RA, Squyres SW. 1985 Thickness of ice in perennially frozen lakes. Nature 313, 561–562. (doi:10.1038/313561a0) 5. Wharton Jr RA, McKay CP, Mancinelli RL, Simmons Jr GM. 1989 Early Martian environments: the Antarctic lake. Adv. Space Res. 9, 147–153. (doi:10.1016/0273-1177(89)90221-4) 6. Doran PT, Wharton Jr RA, Des Marais D, McKay CP. 1998 Antarctic paleolake sediments and the search for extinct life on Mars. J. Geophys. Res. 103, 28–48. (doi:10.1029/98JE01713) 7. Bishop JL et al. 2013 Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA. Icarus 224, 309–325. (doi:10.1016/j.icarus.2012.05.014) 8. Haskin LA, Wang A, Rockow KM, Jolliff BL, Korotev RL, Viskupic KM. 1997 Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: a pointcount method. J. Geophys. Res. 102, 19 293–19 306. (doi:10.1029/97JE01694) 9. Rull F, Maurice S, Diaz E, Tato C, Pacros A, RLS Team. 2011 The Raman laser spectrometer (RLS) on the ExoMars 2018 rover mission. In 42nd Lunar and Planetary Science Conf., The Woodlands, TX, abstract no. 2400. 10. Murchie SL et al. 2009 The Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter’s primary science phase. J. Geophys. Res. 114, E00D07. (doi:10.1029/2009JE003344) 11. Christensen PR et al. 2001 Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23 823–23 871. (doi:10.1029/2000JE001370) 12. Blake DF et al. 2012 Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci. Rev. 170, 341–399. (doi:10.1007/s11214-012-9905-1) 13. Taylor G et al. 2006 Variations in K/Th on Mars. J. Geophys. Res. 111, E03S06. (doi:10.1029/2006JE002676) 14. Hahn BC et al. 2007 Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: implications for Martian crustal evolution. J. Geophys. Res. 112, E03S11. (doi:0.1029/2006JE002821) 15. Hurowitz JA, McLennan SM, Tosca NJ, Arvidson RE, Michalski JR, Ming DW, Schröder C, Squyres SW. 2006 In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 111, E02S19. (doi:10.1029/2005JE002515) 16. Brückner J, Dreibus G, Gellert R, Squyres SW, Wänke H, Yen A, Zipfel J. 2008 Mars exploration rovers: chemical composition by APXS. In The Martian surface: composition, mineralogy, and physical properties (ed. JF Bell III), pp. 58–101. Cambridge, UK: Cambridge University Press. 17. Claridge GGC. 1965 The clay mineralogy and chemistry of some soils from the Ross Dependency, Antarctica. N.Z. J. Geol. Geophys. 8, 186–220. (doi:10.1080/00288306.1965. 10428107) 18. Cameron RE, King J, David CM. 1970 Microbiology, ecology, and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica. In Antarctic ecology, vol. 2 (ed. MW Holdgate), pp. 702–716. New York, NY: Academic Press. 19. Horowitz NH, Cameron RESHJ. 1972 Microbiology of the dry valleys of Antarctica. Science 176, 242–245. (doi:10.1126/science.176.4032.242) 20. Morris EC, Mutch TA, Holt HE. 1972 Atlas of geologic features in the dry valleys of South Victoria Land, Antarctica: possible analogs of Martian surface features. USGS open-file report, 73-196. Reston, VA: US Geological Survey. 21. Campbell IB, Claridge GGC, Campbell DI, Balks MR. 1998 The soil environment of the McMurdo Dry Valleys, Antarctica. In Ecosystem dynamics in a polar desert: the McMurdo dry valleys Antarctic research series (ed. JC Priscu), pp. 297–322. Washington, DC: American Geophysical Union. 22. Claridge GGC, Campbell IB. 1984 Mineral transformation during the weathering of dolerite under cold arid conditions in Antarctica. N.Z. J. Geol. Geophys. 27, 537–545. (doi:10.1080/00288306.1984.10422271) 23. Bockheim JG, McLeod M. 2006 Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma 137, 109–116. (doi:10.1016/j.geoderma.2006.08.028) 24. Bishop JL, Koeberl C, Kralik C, Froeschl H, Englert PAJ, Andersen DW, Pieters CM, Wharton RA. 1996 Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica. Geochim. Cosmochim. Acta 60, 765–785. (doi:10.1016/0016-7037(95)00432-7) 25. Bishop JL, Lougear A, Newton J, Doran PT, Froeschl H, Trautwein AX, Körner W, Koeberl C. 2001 Mineralogical and geochemical analyses of Antarctic sediments: a reflectance and Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. ......................................................... 27. 24 rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 26. Mössbauer spectroscopy study with applications for remote sensing on Mars. Geochim. Cosmochim. Acta 65, 2875–2897. (doi:10.1016/S0016-7037(01)00651-2) Fairén AG et al. 2010 Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821–843. (doi:10.1089/ast. 2009.0440) Edwards HGM, Jorge Villar SE, Bishop JL, Bloomfield M. 2004 Raman spectroscopy of sediments from the Antarctic Dry Valleys; an analog study for exploration of potential paleolakes on Mars. J. Raman Spectrosc. 35, 458–462. (doi:10.1002/jrs.1174) Englert PAJ, Bishop JL, Hunkins LD, Koeberl C. 2011 Martian soil analogs from Antarctic Dry Valleys: elemental abundances and mineralogy signal weathering processes. In 74th Annual Meeting of the Meteoritical Society, London, UK, 8–12 August 2011, abstract no. 5396. Englert P, Bishop JL, Hunkins LD, Koeberl C. 2012 Martian soil analogs from Antarctica: chemical and mineralogical weathering scenarios. In 43rd Lunar and Planetary Science Conf., The Woodlands, TX, abstract no. 1743. Gibson EK, Ransom B. 1981 Soils and weathering processes in the Dry Valleys of Antarctica: analogs of the Martian regolith. In 12th Lunar and Planetary Science Conf., Houston, TX, pp. 342–343. Marchant DR, Head JW. 2007 Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192, 187–222. (doi:10.1016/j.icarus.2007.06.018) McKay CP. 2009 Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarct. Sci. 21, 89–94. (doi:10.1017/S0954102008001508) Nedell SS, Andersen DW, Squyres SW, Love FG. 1987 Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34, 1093–1106. (doi:10.1111/j.1365-3091.1987.tb00594.x) Salvatore MR, Wyatt MB, Mustard JF, Head JW, Marchant DR. 2010 Near-infrared spectral diversity of the Ferrar Dolerite in Beacon Valley, Antarctica: implications for Martian climate and surface compositions. In 41st Lunar and Planetary Science Conf., The Woodlands, TX, abstract no. 2290. Wharton RA, McKay CP, Clow GD, Andersen DT, Simmons G, Love FG. 1992 Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: implications for local climatic change. J. Geophys. Res. 97, 3503–3513. (doi:10.1029/91JC03106) Wynn-Williams DD, Edwards HGM. 2000 Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144, 486–503. (doi:10.1006/icar.1999.6307) Campbell IB, Claridge GGC. 1987 Antarctica: soils, weathering processes and environment. New York, NY: Elsevier. Wentworth SJ, Gibson EK, Velbel MA, McKay DS. 2005 Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus 174, 383–395. (doi:10.1016/j.icarus.2004.08.026) Anderson DM. 1981 Some thermodynamic relationships governing the behavior of permafrost and frozen ground. Planet. Geol. Prog. NASA TM 84211, 292–296. Doran PT, Wharton Jr RA, Lyons WB. 1994 Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol. 10, 85–114. (doi:10.1007/BF00682507) Doran PT, McKay CP, Clow GD, Dana GL, Fountain A, Nylen T, Lyons WB. 2002 Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J. Geophys. Res. 107, 4772. (doi:10.1029/2001JD002045) Squyres SW, Andersen DW, Nedell SS, Wharton Jr RA. 1991 Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover. Sedimentology 38, 363–379. (doi:10.1111/ j.1365-3091.1991.tb01265.x) Spaulding SA, McKnight DM, Stoermer EF, Doran PT. 1997 Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J. Paleolimnol. 17, 403–420. (doi:10.1023/ A:1007931329881) Spigel RH, Priscu JC. 1998 Physical limnology of the McMurdo Dry Valley lakes. In Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica, vol. 72 (ed. JC Priscu), pp. 153– 187. Washington, DC: American Geophysical Union. Doran PT et al. 2002 Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520. (doi:10.1038/nature710) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 25 ......................................................... rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 46. Krissek LA, Kyle PR. 2000 Geochemical indicators of weathering, Cenozoic palaeoclimates, and provenance from fine-grained sediments in CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarct. 7, 589–597. 47. Sheldon ND, Tabor NJ. 2009 Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 95, 1–52. (doi:10.1016/j.earscirev.2009.03.004) 48. Li C, Yang S. 2010 Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Am. J. Sci. 310, 111–127. (doi:10.2475/02.2010.03) 49. Nesbitt HW, Young GM. 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717. (doi:10.1038/299715a0) 50. Fedo CM, Wayne Nesbitt H, Young GM. 1995 Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–924. (doi:10.1130/0091-7613(1995)023<0921: UTEOPM>2.3.CO;2) 51. Allibone AH, Cox SC, Smillie RW. 1993 Granitoids of the Dry Valleys area, southern Victoria Land: geochemistry and evolution along the early Paleozoic Antarctic Craton margin. N.Z. J. Geol. Geophys. 36, 299–316. (doi:10.1080/00288306.1993.9514577) 52. Elliot DH, Fleming TH, Kyle PR, Foland KA. 1999 Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Earth Planet. Sci. Lett. 167, 89–104. (doi:10.1016/S0012-821X(99)00023-0) 53. Olympus Corporation. 2009 Terra rock and mineral analyzer: user guide. Terra user guide 131. Houston, TX: Olympus Corporation. 54. Böttger U, de Vera JP, Fritz J, Weber I, Hübers H-W, Schulze-Makuch D. 2012 Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet. Space Sci. 60, 356–362. (doi:10.1016/j.pss. 2011.10.017) 55. Dieing T, Hollricher O, Toporski J (eds). 2011 Confocal Raman microscopy. Berlin, Germany: Springer. 56. Koeberl C. 1993 Instrumental neutron activation analysis of geochemical and cosmochemical samples: a fast and reliable method for small sample analysis. J. Radioanal. Nucl. Chem. 168, 47–60. (doi:10.1007/BF02040877) 57. Mader D, Koeberl C. 2009 Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: current analytical procedures at the University of Vienna gamma spectrometry laboratory. Appl. Radiat. Isotopes 67, 2100–2103. (doi:10.1016/j.apradiso.2009.04.014) 58. Englert P, Bishop JL, Patel S, Gibson EK, Koeberl C. 2013 Soils and weathering processes in Antarctic Dry Valleys. In European Planetary Science Congress, London, UK, 8–13 September 2013, abstract no. 96. 59. Cloutis EA, Gaffey MJ. 1991 Pyroxene spectroscopy revisited: spectral–compositional correlations and relationships to geothermometry. J. Geophys. Res. 96, 22 809–22 826. (doi:10.1029/91JE02512) 60. Bishop JL, Dyar MD, Sklute EC, Drief A. 2008 Physical alteration of antigorite: a Mössbauer spectroscopy, reflectance spectroscopy and TEM study with applications to Mars. Clay Miner. 43, 55–67. (doi:10.1180/claymin.2008.043.1.04) 61. Bishop JL, Lane MD, Dyar MD, Brown AJ. 2008 Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 43, 35–54. (doi:10.1180/claymin.2008.043.1.03) 62. Mustard JF. 1992 Chemical analysis of actinolite from reflectance spectra. Am. Miner. 77, 345–358. 63. Salisbury JW. 1993 Mid-infrared spectroscopy: laboratory data. In Remote geochemical analysis: elemental and mineralogical composition (ed. CM Pieters, PAJ Englert), pp. 79–98. Cambridge, UK: Cambridge University Press. 64. Salisbury JW, Walter LS. 1989 Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res. 94, 9192–9202. (doi:10.1029/JB094iB07p09192) 65. Lee YI, Lim HS, Yoon HI. 2004 Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochim. Cosmochim. Acta 68, 4319–4333. (doi:10.1016/j.gca.2004.01.020) 66. Morrison AD, Reay A. 1995 Geochemistry of Ferrar Dolerite sills at Terra Cotta Mountain, south Victoria Land, Antarctica. Antarct. Sci. 7, 73–85. (doi:10.1017/S0954102095000113) Downloaded from http://rsta.royalsocietypublishing.org/ on July 31, 2017 26 ......................................................... rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 372: 20140198 67. Lodders K. 1998 A survey of shergottite, nakhlite and chassigny meteorites wholerock compositions. Meteorit. Planet. Sci. 33, A183–A190. (doi:10.1111/j.1945-5100.1998. tb01331.x) 68. Roser BP, Pyne AR. 1989 Wholerock geochemistry. In Antarctic Cenozoic history from CIROS1 drillhole, McMurdo Sound. DSIR bulletin, vol. 245 (ed. P BarrettJ), pp. 175–184. Wellington, New Zealand: DSIR Publishing. 69. Wada K. 1987 Minerals formed and mineral formation from volcanic ash by weathering. Chem. Geol. 60, 17–28. (doi:10.1016/0009-2541(87)90106-9) 70. Hawes I, Schwarz A-M. 1999 Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J. Phycol. 35, 448–459. (doi:10.1046/j.1529-8817.1999.3530448.x) 71. Englert P, Bishop JL, Patel S, Gibson EK, Koeberl C, Tirsch D, Boettger U, Jaumann R. 2014 Sediments and soil profiles of Upper Wright Valley, Antarctica. In 45th Lunar and Planetary Science Conf., The Woodlands, TX, abstract no. 1707.
© Copyright 2026 Paperzz