Staging User Feedback toward Rapid Conflict Resolution in Data Fusion Romila Pradhan*, Siarhei Bykau✝, Sunil Prabhakar* *Purdue University, ✝Bloomberg L.P. 1 Fusing data from multiple sources Data Item Zootopia Kung Fu Panda Inside Out Finding Dory Minions Rio S1 S2 Howard Stevenson leFauve S3 Spencer Nelson Docter S4 Spencer Stanton Coffin Jones Renaud Saldanha 2 Data fusion systems Data Item S1 Zootopia Kung Fu Panda S3 S4 Howard Spencer Spencer Stevenson Inside Out ACCU1 S2 Nelson leFauve Docter Finding Dory Stanton Minions Coffin Rio Jones Source accuracy iterative computation Correctness of claims Renaud Saldanha Data Item Correctness of claims Zootopia Howard (0.000) Spencer (1.000) Kung Fu Panda Stevenson (0.015) Nelson (0.985) Inside Out leFauve (0.001) Docter (0.999) Finding Dory Stanton (1.000) Minions Coffin (0.921) Renaud (0.079) Rio Jones (0.015) Saldanha (0.985) Source Accuracy S1 0.317 S2 0.027 S3 0.992 S4 1.000 [1] Xin Luna Dong, Laure Berti-Equille, Divesh Srivastava. Data Fusion: Resolving Conflicts from Multiple Sources. WAIM 2013. 3 Comparison with ground truth Data Item S1 Zootopia Kung Fu Panda S3 S4 Howard Spencer Spencer Stevenson Inside Out ACCU1 S2 Nelson leFauve Docter Finding Dory Stanton Minions Coffin Rio Jones Source accuracy iterative computation Correctness of claims Renaud Saldanha Data Item Truth Data Item Zootopia Howard Zootopia Howard (0.000) Spencer (1.000) Kung Fu Panda Stevenson Kung Fu Panda Stevenson (0.015) Nelson (0.985) Inside Out Docter Inside Out leFauve (0.001) Docter (0.999) Finding Dory Stanton Finding Dory Stanton (1.000) Minions Coffin Minions Coffin (0.921) Renaud (0.079) Rio Saldanha Rio Jones (0.015) Saldanha (0.985) Correctness of claims Source Accuracy S1 0.317 S2 0.027 S3 0.992 S4 1.000 [1] Xin Luna Dong, Laure Berti-Equille, Divesh Srivastava. Data Fusion: Resolving Conflicts from Multiple Sources. WAIM 2013. 4 Involve the User Validate data item D Data Fusion Model Correctness of claims User feedback to fusion model Labels 5 How to be most effective with user feedback? 6 This talk 4 ranking strategies Query-by-committee Maximum Expected Utility Holistic ranking Item-level ranking Uncertainty Sampling Approximate MEU Non-expert • • • Confidence Error-rate Conflicting feedback Evaluation D distance_to_ground_truth (%) Feedback Errors 0 Random QBC US ApproxMEU MEU GUB -20 -40 -60 -80 0 20 40 60 80 100 data items validated (%) 7 item-level ranking holistic ranking feedback errors evaluation Query-by-committee (QBC) most sources agree Data Item S1 S2 S3 S4 Zootopia Howard Spencer Spencer Kung Fu Panda Stevenson Nelson Inside Out leFauve Docter sources disagree Finding Dory Stanton Minions Coffin Renaud Rio Jones Saldanha 8 item-level ranking holistic ranking feedback errors evaluation Uncertainty Sampling (US) Data Item Correctness of claims Howard (0.000) Spencer (1.000) Zootopia Kung Fu Panda Stevenson (0.015) Nelson (0.985) leFauve (0.001) Docter (0.999) Inside Out Stanton (1.000) Finding Dory Minions Coffin (0.921) Renaud (0.079) Rio Jones (0.015) Saldanha (0.985) 9 item-level ranking holistic ranking feedback errors evaluation Implication of a validation Data Item Zootopia Kung Fu Panda Inside Out Finding Dory Minions Rio S1 S2 Howard Stevenson leFauve S3 Spencer Nelson Docter S4 Spencer Stanton Coffin Jones Renaud Saldanha 10 item-level ranking holistic ranking feedback errors evaluation Implication of a validation Data Item Zootopia Kung Fu Panda Inside Out Finding Dory Minions Rio S1 S2 Howard Stevenson leFauve S3 Spencer Nelson Docter S4 Spencer Stanton Coffin Jones Renaud Saldanha 11 item-level ranking holistic ranking feedback errors evaluation Ideal utility function truth truthfunction function? fusion model data Utility Function average correctness of true claims 12 item-level ranking holistic ranking feedback errors evaluation Practical utility function over correctness of all claims entropies of all data items Entropy Utility Function 13 item-level ranking holistic ranking feedback errors evaluation Maximum Expected Utility (MEU) Value of perfect information entropy utility if claim is true Best alternative in the absence of ground truth 14 item-level ranking holistic ranking feedback errors evaluation Approximate-MEU • Key idea: Propagation of changes correctness of claims of validated data item accuracies of sources correctness of claims of unvalidated data items no need to fuse for every claim! removed bottleneck iterative computation of MEU 15 item-level ranking holistic ranking feedback errors evaluation Users can be wrong o Honest but unsure user o Error-rate of user 80% certain about a claim user is correct 85% of the time o Conflicting feedback from a crowd of workers Claim1 Claim2 Claim3 6/10 3/10 1/10 16 item-level ranking holistic ranking feedback errors evaluation Real-world datasets Books1 FlightsDay2 Population3 Flights2 Items 1263 5836 40696 121567 Sources 894 38 2545 38 Claims 24303 80452 46734 1931701 Feedback Simulation o Books: silver standard provided in [4] o Flight information: data provided by carrier websites considered ground truth o Population: manually identified the true claim for data items having multiple claims 1. 2. 3. 4. X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating conflicting data: The role of source dependence. PVLDB, 2009 X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava. Truth finding on the deep web: Is the problem solved? PVLDB, 2012 J. Pasternack and D. Roth. Knowing what to believe(when you already know something). COLING, 2010 http://lunadong.com/fusionDataSets.htm 17 item-level ranking holistic ranking feedback errors evaluation Competing methods o Item-level ranking methods QBC / US o Decision-theoretic ranking methods MEU / Approx-MEU Greedy Upper Bound (GUB) ground-truth-utility-based o Random all data items equally beneficial 18 item-level ranking holistic ranking feedback errors evaluation Large number of sources, few claims: holistic ranking Books 19 item-level ranking holistic ranking feedback errors evaluation Large number of sources, few claims: holistic ranking Population 20 item-level ranking holistic ranking feedback errors evaluation Large number of claims, few sources: either QBC/holistic FlightsDay 21 item-level ranking holistic ranking feedback errors evaluation Large number of claims, few sources: either QBC/holistic Flights 22 Contributions o Integrating user feedback to improve the performance of existing data fusion systems o Designed strategies to generate an effective ordering for validating claims o scalable decision-theoretic solution for iterative fusion o explored imperfect feedback scenarios o Evaluation on real-world datasets confirmed that guided feedback rapidly increases the effectiveness of data fusion 23
© Copyright 2026 Paperzz