Chapter 07.06 Gauss Quadrature Rule for Integration-More Examples Industrial Engineering Example 1 A company advertises that every roll of toilet paper has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is given by P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 Approximating the above integral as 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 a) Use two-point Gauss Quadrature Rule to find the probability. b) Find the absolute relative true error. Solution a) First, change the limits of integration from 250, 270 to 1, 1 using a 250 b 270 b a ba ba ba f ( y )dy f y dy 2 1 2 2 1 gives 270 250 270 250 270 250 250 f ( y)dy 2 1 f 2 y 2 dy 270 1 1 10 f 10 y 260 dy 1 Next, get weighting factors and function argument values for the two point rule, c1 1.0000 y1 0.57735 c2 1.0000 y2 0.57735 Now we can use the Gauss Quadrature formula 1 10 f 10 y 260dy 10c1 f 10 y1 260 c 2 f 10 y 2 260 1 07.06.1 07.06.2 Chapter 07.06 10 f 10 0.57735 260 f 100.57735 260 10 f 254.23 f 265.77 10 0.071407 3.1070 10 32 0.71408 since f 254.23 0.3515e 0.3881254.23252.2 2 0.071407 f 265.77 0.3515e 0.3881265.77 252.2 2 3.1070 10 32 b) The absolute relative true error, t , is (Exact value = 0.97377) True Value Approximat e Value 100 % True Value 0.97377 0.71015 t 100 % 0.97377 26.669 % t Example 2 A company advertises that every roll of toilet paper has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is given by P( y 250) 0.3515 e0.3881( y252.2) dy 2 250 Approximating the above integral as 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 a) Use three-point Gauss Quadrature to find the probability. b) Find the absolute relative true error. Solution a) First, change the limits of integration from 250, 270 to 1, 1 using a 250 b 270 b a ba ba ba f ( y )dy f y dy 2 1 2 2 1 gives 270 250 270 250 270 250 250 f ( y)dy 2 1 f 2 y 2 dy 270 1 1 10 f 10 y 260 dy 1 The weighting factors and function argument values are Gauss Quadrature Rule for Integration-More Examples: Industrial Engineering 07.06.3 c1 0.55556 x1 0.77460 c2 0.88889 x2 0.0000 c3 0.55556 x3 0.77460 and the formula is 1 10 f 10 y 260dy 10c1 f 10 y1 260 c 2 f 10 y 2 260 c3 f 10 y 3 260 1 0.55556 f 10 0.77460 260 10 0.88889 f 100.0000 260 0.55556 f 100.77460 260 0.55556 f 252.25 0.88889 f 260.00 10 0.55556 f 267.75 0.555560.35110 0.888891.9560 10 11 10 42 0.555566.4763 10 1.9509 since f 252.25 0.3515e 0.3881252.25252.2 2 0.35110 f 260.00 0.3515e 0.3881260.00 252.2 2 1.9560 10 11 f 267.75 0.3515e 0.3881267.75 252.2 2 6.4763 10 42 b) The absolute relative true error, t , is (exact value = 0.97377) True Value Approximat e Value 100 % True Value 0.97377 1.9509 t 100 % 0.97377 100.31 % t
© Copyright 2026 Paperzz