Trigonometric Substitution Lecture 9 √ √ √ Section 8.4 Integrals Involving a2 − x 2 , a2 + x 2 , x 2 − a2 Trigonometric Substitutions Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/∼jiwenhe/Math1432 Z p a2 − x 2 dx, Jiwen He, University of Houston Z p a2 + x 2 dx, Z p x 2 − a2 dx Math 1432 – Section 26626, Lecture 9 February 12, 2008 1 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: 1− Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: √ 1 − sin2 u x dx 1 − x2 1 − x2 = cos2 u = sin u = cos u du = cos2 u Example Z p Z √ Z 1 − x 2 dx = cos2 u cos u du = cos2 u du Z 1 1 1 1 = + cos 2u du = u + sin 2u + C 2 2 2 4 1 = (u + sin u cos u) + C 2 p 1 = sin−1 x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 2 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 = sin−1 x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z p Z √ Z 2 2 2 2 2 a − x dx = a cos u a cos u du = a cos2 u du Z 1 1 a2 a2 2 =a + cos 2u du = u + sin 2u + C 2 2 2 4 a2 = (u + sin u cos u) + C 2 p a2 −1 = sin x + x 1 − x 2 + C 2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 3 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Area of a Circle √ Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z r p Z 2 2 r − x dx = π 2 √ r 2 cos2 u r =r 2 = cos2 u = a sin u = a cos u du = a2 cos2 u cos u du = r − π2 −r a2 − x 2 1 1 u + sin 2u 2 4 Z π 2 cos2 u du − π2 π 2 = − π2 2 πr 2 2 = area enclosed by a semicircle of radius r Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 4 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Sine Substitution: p a2 − (x − c)2 1 − sin2 u x −c dx 2 a − (x − c)2 = cos2 u = a sin u = a cos u du = a2 cos2 u Example Z q Z p 2 − x 2 + 4x dx = 2 + 4 − (x 2 + 4x + 4) dx Z q Z 6 = 6 − (x − 2)2 dx = 6 cos2 u du = (u + sin u cos u) + C 2 q x −2 −1 x − 2 √ + = 3 sin 6 − (x − 2)2 + C 6 6 √ √ x − 2 = 6 sin u, dx = 6 cos u du, 6 − (x − 2)2 = 6 cos2 u Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 5 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 √ Trigonometric Substitution Sine Substitution: a2 − Sine Substitution Tangent Substitution Secant Substitution x2 Sine Substitution: 1 − sin2 u x dx a2 − x 2 Example Z √ a2 − x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u Z √ Z 4 cos2 u cos2 u 2 cos u du = 2 du 2 sin u sin u Z Z 1 − sin2 u =2 du = 2 csc u − sin u du sin u = 2 ln | csc u − cot u| + 2 cos u + C √ p 2 4 − x2 = 2 ln | − | + 4 − x2 + C = · · · x x 4 − x2 dx = x Jiwen He, University of Houston √ Math 1432 – Section 26626, Lecture 9 February 12, 2008 6 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 Trigonometric Substitution Tangent Substitution: 1 + x Sine Substitution Tangent Substitution Secant Substitution 2 Tangent Substitution: 1 + x 2 1 + tan2 u x dx 1 + x2 = sec2 u = tan u = sec2 u du = sec2 u Example Z Z Z 1 1 2 dx = sec u du = cos2 u du 4u (1 + x 2 )2 sec Z 1 1 1 1 + cos 2u du = u + sin 2u + C = 2 2 2 4 1 = (u + sin u cos u) + C 2 1 x 1 −1 = tan x + √ ·√ + C = ··· 2 1 + x2 1 + x2 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 7 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 √ Trigonometric Substitution Tangent Substitution: a2 Sine Substitution Tangent Substitution Secant Substitution + x2 Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z √ Z a2 + x 2 dx = a2 sec2 ua sec2 u du = a2 sec3 u du a2 (sec u tan u + ln | sec u + tan u|) + C 2 √ √ ! a2 + x 2 x a2 a2 + x 2 x = + ln + + C = ··· 2 a a a a = Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 8 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx a2 + x 2 Example Z 1 1 dx = 2 x 9 + 4x 2 √ Jiwen He, University of Houston Z √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u 1 q 3 sec2 u du 2 3 9 tan u 4 sec2 u Z 2 Z 1 sec u 1 du = = csc u du 3 tan u 3 1 = ln | csc u − cot u| + C 3 √ 1 9 + 4x 2 − 3 = ln | |+C 3 2x Math 1432 – Section 26626, Lecture 9 February 12, 2008 9 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example Tangent Substitution: 1 + tan2 u x dx 2 a + x2 √ a2 + x 2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z Z Z x2 4 tan2 u 8 tan2 u sec2 u 2 √ √ √ du dx = 2 sec u du = 4 + x2 4 + 4 tan2 u 4 sec2 u Z Z 8 tan2 u sec2 u = du = 4 tan2 u sec u du 2 sec u finish as in Example 12, Section 8.3 substitute in terms of x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 10 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Tangent Substitution: 1 + tan2 u x −c dx 2 a + (x − c)2 p a2 + (x − c)2 = sec2 u = a tan u = a sec2 u du = a2 sec2 u Example Z p Z q 2 x 16 + x − 6x dx = x 16 − 9 + (x 2 − 6x + 9) dx Z q = x 7 + (x − 3)2 dx Z √ √ √ = 7 tan u + 3 7 sec2 u 7 sec2 u du Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 11 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution 2 Secant Substitution: x − 1 Secant Substitution: x 2 − 1 sec2 u − 1 = tan2 u x = sec u dx = sec u tan u du 2 x − 1 = tan2 u Example Z Z Z 1 sec u tan u 1 √ √ dx = du = du 2 2 2 2 sec u x x −1 Z sec u tan u = cos u du = sin u + C √ x2 − 1 = +C x Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 12 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 √ Trigonometric Substitution Secant Substitution: x2 − Sine Substitution Tangent Substitution Secant Substitution a2 Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x = a sec u dx = a sec u tan u du x 2 − a2 = a2 tan2 u Example Z Z 2 sec u tan u 1 1 = du du 2u 2 u)3/2 8 tan 2 sec u(4 tan Z Z 1 1 = cot2 u du = csc2 u − 1 du 8 8 1 = (− cot u − u) + C 8 1 2 −1 √ =− + sec (x/2) + C 8 x2 − 4 1 dx = x(x 2 − 4)3/2 Jiwen He, University of Houston Z Math 1432 – Section 26626, Lecture 9 February 12, 2008 13 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Example: Completing the Square Secant Substitution: √ x 2 − a2 sec2 u − 1 = tan2 u x − c = a sec u dx = a sec u tan u du 2 (x − c) − a2 = a2 tan2 u Example Z Z x x √ p dx dx = 2 2 x + 2x − 3 (x + 2x + 1) − 316 − 1 Z x p = , dx (x + 1)2 − 4 Z 2 sec u − 1 √ = 2 sec u tan u du 4 tan2 u Finish it! Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 14 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Summary a2 − x 2 1 − sin2 u x dx a2 − x 2 a2 + x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u 1 + tan2 u x dx 2 a + x2 x 2 − a2 = sec2 u sec2 u − 1 = tan2 u = a tan u x = a sec u = a sec2 u du dx = a sec u tan u d = a2 sec2 u x 2 − a2 = a2 tan2 u √ x sin u = a √ a2 − x 2 a x tan u = √ a2 − x 2 cos u = Jiwen He, University of Houston x sin u = √ 2 a + x2 a cos u = √ 2 a + x2 x tan u = a Math 1432 – Section 26626, Lecture 9 sin u = cos u = tan u = a x√ x 2 − a2 x x 2 − a2 a February 12, 2008 15 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Summary a2 − x 2 1 − sin2 u x dx a2 − x 2 a2 + x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u 1 + tan2 u x dx 2 a + x2 x 2 − a2 = sec2 u sec2 u − 1 = tan2 u = a tan u x = a sec u = a sec2 u du dx = a sec u tan u d = a2 sec2 u x 2 − a2 = a2 tan2 u √ x sin u = a √ a2 − x 2 a x tan u = √ a2 − x 2 cos u = Jiwen He, University of Houston x sin u = √ 2 a + x2 a cos u = √ 2 a + x2 x tan u = a Math 1432 – Section 26626, Lecture 9 sin u = cos u = tan u = a x√ x 2 − a2 x x 2 − a2 a February 12, 2008 15 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Summary a2 − x 2 1 − sin2 u x dx a2 − x 2 a2 + x 2 = cos2 u = a sin u = a cos u du = a2 cos2 u 1 + tan2 u x dx 2 a + x2 x 2 − a2 = sec2 u sec2 u − 1 = tan2 u = a tan u x = a sec u = a sec2 u du dx = a sec u tan u d = a2 sec2 u x 2 − a2 = a2 tan2 u √ x sin u = a √ a2 − x 2 a x tan u = √ a2 − x 2 cos u = Jiwen He, University of Houston x sin u = √ 2 a + x2 a cos u = √ 2 a + x2 x tan u = a Math 1432 – Section 26626, Lecture 9 sin u = cos u = tan u = a x√ x 2 − a2 x x 2 − a2 a February 12, 2008 15 / 16 Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Outline Trigonometric Substitution Sine Substitution Tangent Substitution Secant Substitution Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 9 February 12, 2008 16 / 16
© Copyright 2026 Paperzz