CIVET 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. nuc_t1_native skull_masking_native stx_register stx_tal_to_7 stx_tal_to_6 tal_t1 nuc_inorm_t1 skull_removal nlfit mask_classify pve_curvature pve reclassify segment cls_volumes cortical_masking segment_volumes surface_classify artefact 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. create_wm_hemispheres segment_mask extract_white_surface_left extract_white_surface_right slide_left_hemi_obj_back flip_right_hemi_obj_back slide_right_hemi_obj_back calibrate_left_white calibrate_right_white laplace_field gray_surface_left gray_surface_right mid_surface_left mid_surface_right surface_fit_error verify_image_nlfit gyrification_index_left verify_brain_mask classify_qc dataterm_left_surface brain_mask_qc gyrification_index_right dataterm_right_surface surface_registration_left surface_registration_right mean_curvature_20mm_left mean_curvature_20mm_right thickness_tlink_20mm_right thickness_tlink_20mm_left resample_left_mean_curvature resample_right_mean_curvature resample_right_thickness resample_left_thickness lobe_area_right lobe_area_left verify_clasp verify_image 9. nlfit • • • • • Label: "creation of nonlinear transform" 실행명령: best1stepnlreg.pl(s) mincresample (?) inormalize (?) minccalc (?) mincblur (?) Input : civet_NL_19070095061210_t1_final.mnc Output : civet_NL_19070095061210_t1_nlfit_It.xfm best1stepnlreg.pl does hierachial non-linear fitting between two files you will have to edit the script itself to modify the fitting levels themselves Input & output (source.mnc) (target.mnc) 10.Mask_classify • • • • • Label: “tissue classification” 실행명령: classify_clean transform_tags Cleantag classify Input : civet_NL_19070095061210_t1_final.mnc civet_NL_19070095061210_skull_mask.mnc Output : civet_NL_19070095061210_clean.mnc 의존성: nlfit classify_clean is used to classify stereotaxic MINC volumes. It uses the classify program (with mind-dist) and a set of standard sample points to compute an initial volume classification. This classification is then optionally used to purge incorrect tag points from the standard set, thus yielding a custom set of labels for the particular subject. The tag point set is then used by an ANN classifier to classify the volume. 10.Mask_classify classify_clean [options] <in.mnc> [<in.mnc> ...] <classified.mnc> classify_clean -clobber -clean_tags -mask_classified -mask_tag -mask civet_NL_19070095061210_skull_mask.mnc -tag_transform civet_NL_19070095061210_nlfit_It.xfm civet_NL_19070095061210_t1_final.mnc civet_NL_19070095061210_cls_clean.mnc <option> – – – – -clean_tags clean tag file using mindist pre-classification [default is -noclean_tags] -mask <mask.mnc> specify a mask volume -maskbinvalue value of mask foreground [default: assume a binary mask] -mask_tag apply mask to foreground tags prior to classification(s) [default: - – -tag_transform non-linear transformation to map the tags from stereotaxic space to subject nomask_tag] Input & output civet_NL_19070095061210_cls_clean.mnc Sub-routine • transform_tags – Transforms the input tags by the input transform. If a fourth argument is present, then the inverse of the transform is used. The transformed tags are written to output.tag if specified, otherwise input.tag is overwritten. Usage : transform_tags input.tag input.xfm [output.tag] [invert] transform_tags [invert] ntags_1000_prob_90_nobg.tag civet_NL_19070095061210_nlfit_It.xfm nltransf_tag.tag (TEMP) transform_tags [invert] ntags_1000_bg.tag civet_NL_19070095061210_nlfit_It.xfm nltransf_bgtag.tag (TEMP) Input & output Input & output Sub-routine • Cleantags Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...] cleantag -oldtag nltransf_tag.tag -newtag masked_standard.tag (TEMP) -mask civet_NL_19070095061210_skull_mask.mnc -maskbinvalue 1 < Option > – oldtag : Specify the tag file to be cleaned – newtag : Specify the file name of the clean set of tag points – mask : Specify a mask to apply to the tag points – maskbinvalue : Value of mask foreground Default value: 1 Input & output Sub-routine • Classify Usage: classify <options> <infile1> [infile2] ... <outfile> classify -verbose -clobber -mask civet_NL_19070095061210_skull_mask.mnc -user_mask_value 0.5 -min -tagfile masked_standard.tag -fuzzy all -fpath ./tmp/ -fprefix civet_NL_19070095061210_t1_final_fuzzy civet_NL_19070095061210_t1_final.mnc civet_NL_19070095061210_t1_final_fuzzy.mnc (TEMP) < Option > – – – – Min : Use the 'Minimum Distance' classifier. user_mask_value: Specify the mask value. (If the mask is a classified volume) tagfile: Input training points as tag file (.tag) fuzzy: Specify a string ex. '011...' to indicate classes for fuzzy classification. Input & output Sub-routine • Cleantags Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...] cleantag -oldtag masked_standard.tag -newtag civet_NL_19070095061210_t1_final_fuzzy_cleaned.tag (TEMP) -mode 110 -threshold 0.7 -difference 0.3 -comment '-mode 110 -threshod 0.7 -difference 0.3‘ civet_NL_19070095061210_t1_final_fuzzy_1.mnc 1 civet_NL_19070095061210_t1_final_fuzzy_2.mnc 2 civet_NL_19070095061210_t1_final_fuzzy_3.mnc 3 < Option > – oldtag : Specify the tag file to be cleaned – newtag : Specify the file name of the clean set of tag points – Mode : Specify a quoted string 'xyz' to denote tag rejection mode. Each of x,y,z being 0 or 1, effects are additive. x = 1, if tag class label <> voxel class (highest fuzzy voxel class), y = 1, if fuzzy voxel class < threshold, z = 1, if diff. between 2 highest fuzzy voxel classes < diff. threshold, – threshold: Set the fuzzy threshold rejection criterion (applies to 'y' under –mode) difference: Set the difference threshold rejection criterion (applies to 'z' under –mode) Input & output Sub-routine • Cleantags Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...] cleantag -oldtag civet_NL_19070095061210_t1_final_fuzzy_cleaned.tag -newtag masked_custom.tag -mask civet_NL_19070095061210_skull_mask.mnc -maskbinvalue 1 < Option > – oldtag : Specify the tag file to be cleaned – newtag : Specify the file name of the clean set of tag points – mask : Specify a mask to apply to the tag points – maskbinvalue : Value of mask foreground Default value: 1 Input & output Sub-routine • Classify Usage: classify <options> <infile1> [infile2] ... <outfile> classify -verbose -clobber -mask civet_NL_19070095061210_skull_mask.mnc -user_mask_value 0.5 -ann -tagfile masked_custom (civet_NL_19070095061210_t1_final_fuzzy_custom.tag) civet_NL_19070095061210_t1_final.mnc civet_NL_19070095061210_cls_clean.mnc < Option > – – – ann : Use the 'Artificial Neural Network' classifier. user_mask_value: Specify the mask value. (If the mask is a classified volume) tagfile: Input training points as tag file (.tag) Input & output
© Copyright 2026 Paperzz