civet

CIVET
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
nuc_t1_native
skull_masking_native
stx_register
stx_tal_to_7
stx_tal_to_6
tal_t1
nuc_inorm_t1
skull_removal
nlfit
mask_classify
pve_curvature
pve
reclassify
segment
cls_volumes
cortical_masking
segment_volumes
surface_classify
artefact
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
create_wm_hemispheres
segment_mask
extract_white_surface_left
extract_white_surface_right
slide_left_hemi_obj_back
flip_right_hemi_obj_back
slide_right_hemi_obj_back
calibrate_left_white
calibrate_right_white
laplace_field
gray_surface_left
gray_surface_right
mid_surface_left
mid_surface_right
surface_fit_error
verify_image_nlfit
gyrification_index_left
verify_brain_mask
classify_qc
dataterm_left_surface
brain_mask_qc
gyrification_index_right
dataterm_right_surface
surface_registration_left
surface_registration_right
mean_curvature_20mm_left
mean_curvature_20mm_right
thickness_tlink_20mm_right
thickness_tlink_20mm_left
resample_left_mean_curvature
resample_right_mean_curvature
resample_right_thickness
resample_left_thickness
lobe_area_right
lobe_area_left
verify_clasp
verify_image
9. nlfit
•
•
•
•
•
Label: "creation of nonlinear transform"
실행명령:
 best1stepnlreg.pl(s)
 mincresample (?)
 inormalize (?)
 minccalc (?)
 mincblur (?)
Input : civet_NL_19070095061210_t1_final.mnc
Output : civet_NL_19070095061210_t1_nlfit_It.xfm
best1stepnlreg.pl does hierachial non-linear fitting between two files
you will have to edit the script itself to modify the fitting levels
themselves
Input & output
(source.mnc)
(target.mnc)
10.Mask_classify
•
•
•
•
•
Label: “tissue classification”
실행명령:
 classify_clean
 transform_tags
 Cleantag
 classify
Input : civet_NL_19070095061210_t1_final.mnc
civet_NL_19070095061210_skull_mask.mnc
Output : civet_NL_19070095061210_clean.mnc
의존성: nlfit
classify_clean is used to classify stereotaxic MINC volumes. It uses the classify
program (with mind-dist) and a set of standard sample points to compute an initial
volume classification. This classification is then optionally used to purge incorrect
tag points from the standard set, thus yielding a custom set of labels for the
particular subject. The tag point set is then used by an ANN classifier to classify the
volume.
10.Mask_classify
classify_clean [options] <in.mnc> [<in.mnc> ...] <classified.mnc>
classify_clean -clobber -clean_tags -mask_classified -mask_tag
-mask civet_NL_19070095061210_skull_mask.mnc
-tag_transform civet_NL_19070095061210_nlfit_It.xfm
civet_NL_19070095061210_t1_final.mnc
civet_NL_19070095061210_cls_clean.mnc
<option>
–
–
–
–
-clean_tags
clean tag file using mindist pre-classification [default is -noclean_tags]
-mask <mask.mnc> specify a mask volume
-maskbinvalue value of mask foreground [default: assume a binary mask]
-mask_tag
apply mask to foreground tags prior to classification(s) [default: -
–
-tag_transform non-linear transformation to map the tags from stereotaxic space to
subject
nomask_tag]
Input & output
civet_NL_19070095061210_cls_clean.mnc
Sub-routine
• transform_tags
– Transforms the input tags by the input transform. If a fourth argument is present, then
the inverse of the transform is used. The transformed tags are written to output.tag if
specified, otherwise input.tag is overwritten.
Usage : transform_tags input.tag input.xfm [output.tag] [invert]
transform_tags [invert]
ntags_1000_prob_90_nobg.tag
civet_NL_19070095061210_nlfit_It.xfm
nltransf_tag.tag (TEMP)
transform_tags [invert]
ntags_1000_bg.tag
civet_NL_19070095061210_nlfit_It.xfm
nltransf_bgtag.tag (TEMP)
Input & output
Input & output
Sub-routine
• Cleantags
Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...]
cleantag
-oldtag nltransf_tag.tag
-newtag masked_standard.tag (TEMP)
-mask civet_NL_19070095061210_skull_mask.mnc
-maskbinvalue 1
< Option >
– oldtag : Specify the tag file to be cleaned
– newtag : Specify the file name of the clean set of tag points
– mask : Specify a mask to apply to the tag points
– maskbinvalue : Value of mask foreground Default value: 1
Input & output
Sub-routine
• Classify
Usage: classify <options> <infile1> [infile2] ... <outfile>
classify -verbose -clobber
-mask civet_NL_19070095061210_skull_mask.mnc
-user_mask_value 0.5
-min
-tagfile masked_standard.tag
-fuzzy all -fpath ./tmp/ -fprefix civet_NL_19070095061210_t1_final_fuzzy
civet_NL_19070095061210_t1_final.mnc
civet_NL_19070095061210_t1_final_fuzzy.mnc (TEMP)
< Option >
–
–
–
–
Min : Use the 'Minimum Distance' classifier.
user_mask_value: Specify the mask value. (If the mask is a classified volume)
tagfile: Input training points as tag file (.tag)
fuzzy: Specify a string ex. '011...' to indicate classes for fuzzy classification.
Input & output
Sub-routine
• Cleantags
Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...]
cleantag
-oldtag masked_standard.tag
-newtag civet_NL_19070095061210_t1_final_fuzzy_cleaned.tag (TEMP)
-mode 110 -threshold 0.7 -difference 0.3
-comment '-mode 110 -threshod 0.7 -difference 0.3‘
civet_NL_19070095061210_t1_final_fuzzy_1.mnc 1
civet_NL_19070095061210_t1_final_fuzzy_2.mnc 2
civet_NL_19070095061210_t1_final_fuzzy_3.mnc 3
< Option >
–
oldtag : Specify the tag file to be cleaned
–
newtag : Specify the file name of the clean set of tag points
–
Mode : Specify a quoted string 'xyz' to denote tag rejection mode.
Each of x,y,z being 0 or 1, effects are additive.
x = 1, if tag class label <> voxel class (highest fuzzy voxel class),
y = 1, if fuzzy voxel class < threshold,
z = 1, if diff. between 2 highest fuzzy voxel classes < diff. threshold,
–
threshold: Set the fuzzy threshold rejection criterion (applies to 'y' under –mode)
difference: Set the difference threshold rejection criterion (applies to 'z' under –mode)
Input & output
Sub-routine
• Cleantags
Usage: cleantag [options] <fuzzy_class.mnc> <class_id> [<fuzzy_class.mnc> <class_id> ...]
cleantag
-oldtag civet_NL_19070095061210_t1_final_fuzzy_cleaned.tag
-newtag masked_custom.tag
-mask civet_NL_19070095061210_skull_mask.mnc
-maskbinvalue 1
< Option >
– oldtag : Specify the tag file to be cleaned
– newtag : Specify the file name of the clean set of tag points
– mask : Specify a mask to apply to the tag points
– maskbinvalue : Value of mask foreground Default value: 1
Input & output
Sub-routine
• Classify
Usage: classify <options> <infile1> [infile2] ... <outfile>
classify -verbose -clobber
-mask civet_NL_19070095061210_skull_mask.mnc
-user_mask_value 0.5
-ann
-tagfile masked_custom (civet_NL_19070095061210_t1_final_fuzzy_custom.tag)
civet_NL_19070095061210_t1_final.mnc
civet_NL_19070095061210_cls_clean.mnc
< Option >
–
–
–
ann : Use the 'Artificial Neural Network' classifier.
user_mask_value: Specify the mask value. (If the mask is a classified volume)
tagfile: Input training points as tag file (.tag)
Input & output