Do Interest Groups affect Immigration? Giovanni Facchini University of Illinois and Università degli Studi di Milano Anna Maria Mayda Georgetown University Prachi Mishra Research Department, IMF 1 Motivation • Vast empirical literature on the effects of immigration on outcomes in the US labor market. • Knowledge on the determinants of migration flows limited -- to the supply side (i.e. see Clark, Hatton and Williamson, 2007). • Borjas (1994) “…The literature does not yet provide a systematic analysis of the factors that generate the host country demand for immigrants.” 2 Motivation (contd) • Key factor determining demand for immigrants – migration policy in rich countries • Anecdotal evidence highlights role played by special interest groups – Unions historically supportive of measures restrictive of migration. Eg. Chinese exclusion act (1882), Literacy Test provision (1917), Immigration Control and Reform Act (1986) – Complementarities matter e.g. Silicon Valley excetutives trooped before Congress, warning of a Y2K disaster unless the number of H1-B visas was increased (Goldsborough 2000) 3 Motivation (contd) • Recent theoretical literature has looked at the issue (Facchini and Willmann 2005). • No systematic empirical evidence on the determinants of migration policy and, in particular, on the role played by pressure groups in shaping it. • The purpose of this paper is to help fill this gap. 4 What we do • Develop a simple theoretical model to be used as the basis of our empirical specification. We model migration policy and outcomes as the result of the contributions paid, in each sector, by the pro-migration lobby (the owners of capital) and by the anti-migration lobby (workers). • Evaluate key predictions of the model using a unique, U.S. industry-level dataset that combines information on the number of immigrants with data on the political activities of organized groups, both in favor and against an increase in migration. 5 Main result • Both pro- and anti-immigration interest groups play a statistically significant and economically relevant role in shaping migration across sectors. • Barriers to migration are higher in sectors where (anti-immigration) labor unions are more important, and lower in those sectors in which (pro-immigration) business lobbies are more active. 6 Outline of the presentation • Literature • Theoretical Model • Empirical strategy • Data (CPS and CRP) • Empirical results • Conclusions 7 Related Literature • Theoretical literature: Facchini and Willman (2005): interest-group politics. • Related empirical literature – Hanson and Spilimbergo (2001) – effect of output prices on border enforcement in Mexico-US border states – Works on the political economy of protection in international trade, e.g - Goldberg and Maggi (1999), Gawande and Bandyopadhyay (2000). 8 Protection function model o Following Findlay and Wellisz (1982) and Eicher and Osang (2002), we assume the following protection function: i 1 (CiL ) 2 (1 )(Cik ) 2 where λ represents the the weight of labor in the protection function and (1-λ) the weight of capital. o Notice that the policy function is increasing with the contributions received by the organized workers and decreasing with the contributions received by the owners of the specific factor. 9 o The two lobby play a non-cooperative game where they choose the amount to contribute to the government in order to maximize their net welfare. o Solving simultaneously the system of first-order conditions of the two lobbies gives rise to the following expression: L b 1 1 iL (1 ) CiK mi ( ) ( )li 2 2 iL 2 iL CiL where iL is the share of the population that owns labor used in the production of output i. 10 Empirical specification The empirical specification of the model is: M i C K ,i C L,i X i i . According to the theoretical model, we expect to find: 0 and 0 . 11 Data • Newly available dataset from the Center for Responsive Politics (CRP) that allows us to identify lobbying expenditures associated with targeted policy area. 1998 and 2005 - at the firm level, aggregated to industry by CRP industry classification. • Number of immigrants and natives, union membership rates of native workers, from the Current Population Survey (CPS) (March Annual Demographic File and Income Supplement to the CPS) – Census Bureau classification • H1B visas (number of petitions approved) by industry from DHS • Output, price, capital, FDI – BEA, ACES • Various industry concordances to create the final dataset at industry level at the Census Bureau classification – 130 3-digit industries 12 Appendix 2. Sample Lobbying Report 13 Table 1. Targeted Political Activity Campaign Contributions and Lobbying Expenditures In millions of US Dollars Election cycle 1999-2000 2000-02 2002-04 326 348 461 Overall lobbying exp Of which exp for immigration 2954 32 3333 24 4052 33 Total targeted political activity 3280 3681 4513 Contributions from PACs Source. Center for Responsive Politics 14 Figure 1. Scatter Plots between Lobbying Expenditures and Campaign Contributions from PACs 2 0 -2 -4 -4 -2 0 2 Campaign contributions from PACs (in logs) 4 4 Campaign contributions from PACs and overall lobbying expenditures Campaign contributions from PACs and lobbying expenditures on immigration (in millions of US$) (in millions of US$) -2 0 2 4 6 -4 -3 -2 -1 0 1 Lobbying expenditures for immigration (in logs) Overall lobbying expenditures (in logs) (mean) lgcontributionsfrompacs Fitted values (mean) lgcontributionsfrompacs Fitted values 15 Figure 2. Real lobbying expenditures (in million USD) 2200 25 2000 20 1800 15 1600 10 1400 overall_cont_mnUSD_real cont_imm_mnUSD_real 5 1200 1000 0 1998 1999 2000 2001 2002 2003 2004 2005 16 Figure 3. Share of expenditures for immigration (in percent) 2.0 1.6 1.2 0.8 0.4 0.0 1998 1999 2000 2001 2002 2003 2004 2005 17 Hospitals & Nursing Homes Computers/Internet Misc Issues Oil & Gas Business Services Education Telecom Services & Equipment Defense Aerospace Agricultural Services & Products Automotive In millions of US dollars Figure 4. Top 10 spenders for immigration, 2005 3.0 2.5 2.0 1.5 1.0 0.5 0.0 18 Construction Educational services Eating and drinking places Misc business services Medical and other health services Hospitals Agriculture Misc professional services Food stores Banking and credit agencies In billions Figure 5. Top 10 Sectors with the Highest Number of Immigrants, 2005 25.0 20.0 15.0 10.0 5.0 0.0 19 Figure 6. Scatter plot between lobbying expenditures for immigration and number of immigrants 246 14 679 868 105 869 888 808 8 10 12 636 836 367 826 716 646 816 746 448 626 849 526 698 916 896 399 859 899 609 346 736 406 358 667 386 656 846 898 936 309 376 469 726 578 357 556 659 658 536 817 516 879 377 668669 857 467 807 416 687 408 616 419 696 608 338 617 527 449 856688 439 336 806 607 307 417 308 689 606 586 457 458 317 478 699 316 226 657 418 436 379 546 456 407 489 686 596 337 409 326 378 647 506 438 387 579 476 627 319 348 847 446 488 618 437 468 347318 236 587116 588 858 306 126 637 697 619 598 848 388 426 477 429 206 567 356 487 6 216 0 5 10 15 Lobbying expenditures for immigration (in logs) (mean) lgWGHTimmind1950 Fitted values 20 Figure 7. Scatter plot between lobbying expenditures for immigration and number of immigrants 12 10 348 8 619 216 10 12 14 4 6 8 Lobbying expenditures for immigration (in logs) lgWGHTimmind1950 10 Fitted values lgWGHTimmind1950 888 808 868105 869 836 367 716 816 448 346358 399 609 916 386 667859 357 899 898516 309 556 376 936 879 726 817 536 669 469 377 408 307 668 416 467 419 338 586 607 617 608 457 316478606 418 417 407 456 489 378 226 458 546 409 326 308 319 488 387 476 116 619 618 579 318 206236356 10 12 Number of immigrants (in logs) 348 8 12 6 14 14 808 888 105 868 836 869 367 448 816 399 358716 916 609 667 346 859 726 386 936 376736556 656 309 898357 377 659 899516 668 536 469 658 857 416879 467669 408 307817 419 687 616 807 308 617 688 696 608 338 606 856 657 417226 458 689 686 317607 316 456 647 489 478 326 546 409457 587 418 699 387 476 356 306 579 477 567 697 378 468 488 618 858 206 637 619 388 348 487 318 10 14 Fitted values 2001 246 679 636 646 698 8 12 Lobbying expenditures for immigration (in logs) 2000 Number of immigrants (in logs) 858 619 206 356 618 6 356 6 808 487 206 4 246 888 868 105 836869 367 826 816 399 358 849626 916 667 609 846 346 859 556 898 357 516936 536 377 309 386 817899 469 669 879 376 338 807 467 419 416 607 688 668 307 617 408 527 226 546 608 458 478 417 308457 317 409 326 806 606 476587 489488 456 236 627 596 378 306316 426387 418 468318 847 319 448 896 8 8 647126 697 Number of immigrants (in logs) 12 10 696 689 657 699 686 637 808 246888 868 869105 636 836 367 448 716 646 816 526 399 698 667 736 358 916 346 859376578 609 656 406 386 357 936 309879 469 898 726 377 857 899 659 817 556 658 668 536 416 516 408 467 669 608 439 546 617 687 419 449 308458 338 616 417 307 488 856 226 489 436 478 606 336 379 607 337 326457 378 456 618 387 409 317 319 506 476 418 446 468 318 858 236316 306 437 438 487 587 14 1999 679 6 Number of immigrants (in logs) 14 1998 388 578 426 306 6 4 236 0 5 10 15 4 6 Lobbying expenditures for immigration (in logs) lgWGHTimmind1950 8 Fitted values lgWGHTimmind1950 697 6 888 899 836 12 10 126 348 388 487 426 808 888 868 105 869 836 816 367 746 526 399896 916 448 859 406 609 358 667 578 346 309 516 898 386 376936556 899 469 357 726 817 377 467 857 536 669 879 668 416 338 617 856 419 608 408457 307 226 417 336 546 458 478606 418 316456 326 607 308 489 476 409 319 337 586378 588 579 618 619 318 488 387356 587 206 306 216 8 637 126 426 868 869 105 367 746 859 609 916 346 898 309 358 936 578 399 386 817 357 668 879 467 416 807 377 669 408 419 857 856 617 308236 608 579 456 417 457 316 688 418 348 338 489 618 319 407 478 409 378 458 226 476 546 307 306 488 206 347 587 619 858 318 808 448 406 556 477 236 0 5 216 10 15 6 Lobbying expenditures for immigration (in logs) lgWGHTimmind1950 8 10 Fitted values lgWGHTimmind1950 8 808 15 888 868105 869 899 636 716 836 646 849 746 816367 826 626 916 859609 698 667 406 346 469 386 898448 726 376 846 936 656 879 659 467817399 658 536 807 309 358 516668 357 578 377 556 669 687 416 408 419 696 608 527 806 699 616 579 607606 308617 689 236 418 457 417 348 458 338 478 596 318 688 407 316 347 307456 657 409 546 489 306 618 126 378 686 226587476 326 319 488 858 619 697 426 116 246 679 888 105 868 899 636 836 716 646 816 367859 698 667 916 346936 609 448406 469309 376 726 898 656 399 386 817 659 536 668 807879 658 358 556 696 687 357 467 669 578 377 516 408 419 856 616 608236 606 308 617 316 416 857 688 418 579 689 338348607 457 407 317 478 657 699 417 686 378 307 458 326 618 409 318126 489 488 226 306 456 619 587 546 697 319 476 116 426 347 477 206 567 10 Number of immigrants (in logs) 14 12 10 627 14 Fitted values 2005 679 848 12 Lobbying expenditures for immigration (in logs) 2004 808 869 588 468 5 216 6 Number of immigrants (in logs) 14 2003 246 Number of immigrants (in logs) 14 12 10 696 647 699 657 689 686 8 Number of immigrants (in logs) 646 698 656 658 659 616 687 12 Fitted values 14 2002 679 636 10 Lobbying expenditures for immigration (in logs) 0 5 10 Lobbying expenditures for immigration (in logs) lgWGHTimmind1950 Fitted values 15 5 10 15 Lobbying expenditures for immigration (in logs) lgWGHTimmind1950 Fitted values 21 Figure 8. Scatter plot between union membership rates and number of immigrants 246 14 679 808 105 868 888 8 10 12 869 636 836 367 826 716 646 816 746 448 626 849 526 459 698 916 896 859 899 609 399 346 667 736 358406 846 386 309 656 898 376936 469 726 578 357 568 879 659 516 556 817 658 536 377 668 669 807 467 857 408 416 687 616 419 696 617449 608527 338 688 856 439 336 466 806 607 689308 606307 417 586 457 458 317 478 699 316 657 436226 546 456 379 407 418 597 489 686 596 337 409 326 378 647 438 387579 476 627 319 446 348 488 618 437 318 347 116 236 468 587 588 858 126 637 306 697 619 848 598 388 429 426 477 206 567 356 487 906 506 6 216 0 .2 .4 .6 .8 Union membership rates (in logs) (mean) lgWGHTimmind1950 Fitted values 22 Figure 9. Scatter plot between union membership rates and number of immigrants 14 1999 888 246 12 10 906 Number of immigrants (in logs) 506 8 10 12 636 826448 836 716 816 646746 626 399 526 896 698 667 459 849 736 358 859 346 656846 376 406 609916 578 386 357 936 309 469 898 568 879 726 857 899 659 377 817 556 658 668 536 416 669 516 408 807 467 608 439 687 688 449 696 546 419 458 617616 308 338 417 586 226 307 689 488856 657 436 489 606 527 478 699 336 326 457 379 597 407 378 337 686607806 456 387 409 618 317596 319 858 236 627 476 318 418 316 446 468 477 647697 126 306 437 588 598 438 579 487 587 429 8 679 246 888 808 105 868 836367869 636 826 448646 716 746 816 626 896399 849 526 698 459 358 916 667 609 846 736 346859 406 936 556 898899 357 726 516 656 659 536 377 309 469 386 817 669 376 578 568 879 658 857 338 616 807 688 416 467 419 607 668 449 307 336 408 527 226 439 617 546 657 696 597 687 608 458 478 417586 308 856457 436 689 437 686 409326 587 606 317 476 489 337456 488 806 236 379 699 637 627 116 316 596 378 318 306 418 468 387 407 477 438 869 367 6 619 697 618 647 356 858 356 619 216 0 .2 .4 .6 .8 0 .2 Union membership rates (in logs) lgWGHTimmind1950 .4 lgWGHTimmind1950 14 6 12 14 679 246 808 888 105868 869 836 367 636 826 716 816 646 849 626 896 448 746 346 459 526 358 698 399 406 916 386 667357 859609 736846 899 578 656 898 309 556 516 376 568 936 879 726 817 658 469 536 669 377 408 616 659 307 807 668 416 467 419 338 696 857 687 617 478 457 586 607 608 336597 317606 449 418856 527 316 806 439 407 688 417699 596 647 689 489 378 226 379 458 686 436 546 438 657 326 308 409 319 387 476 337 627 116 619 468 618 126 356 697 579 318 388 206 236 10 906 506 8 Number of immigrants (in logs) 12 10 .8 Fitted values 2001 246 888 868 869 836 636 367 826 816 448 896 746 716646 526 459 626399 916 849 698 667 346 859 846 406 358 609 578 726 736 309 556 386 376 516 656 936 898 357 377 659 899469 536 658 568669 879 668 857 416 408 817 467 687 616 807 419 307 449 439 688 308 527 617 696 336 608 597 856 606 338 657 226686607 417 458 689 317 456 647 436 586 379 316 478 326 546 806 457 337 409 418 407 587 437 699 387 596 116 476 356 306 438 477 697 468 618 378 567 627 858 206 637 619 318 446 679 808 105 8 .6 Union membership rates (in logs) Fitted values 2000 Number of immigrants (in logs) 319 206 446 487 206 906 506 6 Number of immigrants (in logs) 14 1998 679 808 105 868 906 456 588 488 506 426 306 6 4 236 0 .2 .4 .6 0 .2 Union membership rates (in logs) lgWGHTimmind1950 .4 lgWGHTimmind1950 2002 14 12 Number of immigrants (in logs) 906 456 506 6 8 598 10 14 12 10 8 Number of immigrants (in logs) 246 888 808 868 105 899 869 836 636 716 646 367 746 849 826 816 859 609 626459 526 698 916 448 667 346 736 406 898 469 309 358 578 936 399 846 386 656 896 376 726 817 668 357 536 568 659 556 879 658 516 687 467807 416 377 669 408 419 446 527 857 856 806 617 308 236 317 466 608 616 696 579 336586 456 607417 699 457 688 316 439 606 326 418596 348 338 489 689 337 618 686 436 407 438 458 478 319 378 657 409 379 468 588 226 546 437 476 697 307 597 116 627 306 488477 206 347 587 619 858 318 598 848 216429 679 477 236 .2 .4 .6 .8 0 .2 .4 Union membership rates (in logs) lgWGHTimmind1950 15 10 906 Number of immigrants (in logs) 14 12 10 .8 1 2005 869 899836 636 716 646 849 746 816 367 826 626 859 916 459 526 609 698 667 406 346 448 736 386 469 898 726 376 936 846 896 656 879 659 658 817 399 536 807 309 467 358 516 556 668357669 377 578 568 687 416 408 419 696 616 527 699 857 308 806 856608 607 446 617 689 418 579 236 606 336 417348 586 457 338 458 337 438 317 379 478 466 407 318 439 596 688 316 436 347 409 456 307 627 657 468 489 429546 306 378 126 686 618 476 848 226 587 319 326 858 488 437 619 597 588 697 426 477 116 8 426 Fitted values 246 679 808 888 105 868 899 869 636 836 716 646 826 816859 367 526 746 849 698 736 626 459 667 916 936 346 609 448 469 406 376 896 309 726 898 656 399 386 817 846 659 879 536 668658 358 568 807 377 696 687 669 357 467 578 527 408 419 617 616 856 688 308 446 608 236 606 806 857 579 416 689 336 466 586 418316 607 338 439 407 348 457 627 317 379 478 438 417657 699 337 686 378 307 458 326 618 409 318 126 226 489 596456 488 436 619 306 319 587 546 697 476 437 426116 347 429 477 206 567 888 506 906 556 516 597 506 588 848 468 5 216 6 Number of immigrants (in logs) 506 .6 lgWGHTimmind1950 246 808 868 906 Union membership rates (in logs) Fitted values 2004 679 105 .8 Fitted values 2003 246 888 105 868 869 636 836 716 816 367 646 746 826 698 526 916 626 896 849 859 399 448 459406 609 736 846 358 578 346 656 667 309 516 898 386 936376 899 556 357568 469 726 817 658807 467 377 857 669 536 659 879668 416 616 439 687617 338 449 419 688 608 856 307 597 457 696 226527 408 417 336 546 438 806 647 458 407 478 699 607 657 606 418 689 316 326308317 379 436 489 596 476586 409 468 686 337 378319 588 579 618 126 619 627 437 318 116 429 488 446 387 356 697 388 587 487 206 306 426 216 679 808 0 .6 Union membership rates (in logs) Fitted values 0 .2 .4 .6 Union membership rates (in logs) lgWGHTimmind1950 Fitted values .8 0 .2 .4 .6 .8 Union membership rates (in logs) lgWGHTimmind1950 Fitted values 23 15 Figure 10. Scatter plot between lobbying expenditures for immigration and number of H1B visas 10 898 5 899 598 637 647 868 726367 869 399 807 579 357 467716 859 879 806 836 246 376 387 626 669 698 679 358 746 388 617 448 556 588 469386 857 226 586 377 105 856 849 609 616 896 916 636 426656 418 659 356607 606817 309 546 816 667 347 658 526 348 646 236478 696 308 317 668 206 216 468 456 488 316 346 378 408 618 627 687 417 326 476 587 596 477 409 516336 407 337 116 578 527 489 697 936 608338 619 688 567 319 318 406 416 419 657699 126 858 536 458 457 826 487 689 686 307 306 846 808 0 848 888 0 5 10 15 Lobbying expenditures for immigration (in logs) (mean) lgh1b Fitted values 24 Figure 11. Scatter plot between lobbying expenditures for immigration and H1B visas (by year) 899 898 10 12 2002 898 10 2001 Number of H1B visas (in logs) 2 4 348 306 4 6 696 578 637 697 647 699 657 689 686 307 307 8 10 12 14 0 5 Lobbying expenditures for immigration (in logs) lgh1b 467859 879 246 376 836669 387 617 358 746 469 448 386 698388679 226 588 8377 57 105 856 556 609 586 616 896 636 816 426 418 656 659 916 606 546 526607 356 667 658 348 309 817 378 646 308 668 216 236 456 618 316 478 408 346 488 206 326 687 477 476 417 409 337 336 587 608 578 338516 489567 619 936 319 318 406 416457 419 458 858 126 487 536 357 5 6 388 399 808 10 Fitted values lgh1b 12 10 556 627 0 598 2 307 848 306 8 10 12 14 0 Lobbying expenditures for immigration (in logs) lgh1b 888 868 399807 367 869 579 716 357 859 467 879 669 806 836 698 679376 626 358 746 448 469617 386 105 377 556 849226 609 616 636 309 656 418 426 816 916 667 546 658 347 659 478 348 607606 817 646 308 696 488 236 206 408 316456 668 346 326 216 687417 409 618 476 516 407 596 587 378 578 527697 489567 608 619 936 116 318319 406 338 416 419688 657 126 536 858458 826699 457 686 689 307 846 726 8 357 859879 467 836 669 448 617 746358 916 105 386 377 857 609 226 856 418 309 546 347 817 348 478 456 668 236 308 618 206 488408 346 378 216409316 417 407 476 608 578 587 936 489 619 688 406 319 318 416 419 338 567 858 458 457 899 808 6 868 869 367 579 Number of H1B visas (in logs) 807 4 10 5 399 898 888 899 6 Fitted values 2004 898 126 15 Lobbying expenditures for immigration (in logs) 2003 426 868 726869808 579 367 0 8 579 399 367 726 868 869 357 387 716 859 467 879 376 836 377 617 358 226 556 586 105 448 386 669 469 609 817 587 816 606 916 426 236356 418 546 607 309 206 216 667 478 346 488 316 378 308 476 456 408 417 668 516 618 326 489 407 936 116 338 409 619 419 416 608 457458 567536 319318858 888 899 888 5 10 808 15 Lobbying expenditures for immigration (in logs) Fitted values lgh1b Fitted values 15 2005 10 898 5 899 869 808 0 468 888 868 726 367 807 399 716 579 357 467 669 879 376 246859 836 698 358 448 469 386 556 377 617 679226 857 916 105 588 609 856 656 636 309 426616 658 418 546 659478 347 816667 236 606 348607 668 308646 817 346378 317 206 687 696 408 216 316 456 417 488 326 618 407 476 409 489477 587 516 697 319318 936 688 578 338 608 116 406 567619 416419 536 657 686 126 858 699 458 457 689 307 306 5 10 15 Lobbying expenditures for immigration (in logs) lgh1b Fitted values 25 15 Figure 12. Scatter plot between union membership and number of H1B visas 10 898 888 899 506 906 0 5 868 726 808 399 367579869 807 716357 459 736 467 859 879 806 246 376 387836 669 626 568 698 358 746 679 388 617 448 469377 386 105 556 857 588 226 856 586 849 616 896 609 379 449 916 656 816 418426 636 356 659 309 546 667 606 607 347 526 658 817 348478 646 236 466 436 696 308 317 668 216 206 468 456 439 488 316 597 346 378 408 618 627 687 417 326 476 587 598 516 409 596477 446 429 407 337 336 578 437 527 489 116 936 608688 697 619 338 567 318 319 416 406 419 647 438 657 126 858 699 458 457 637 826536 487 686 848689 307 306 846 0 .2 .4 .6 .8 Union membership rates (in logs) (mean) lgh1b Fitted values 26 Figure 13. Scatter plot between union membership rates and H1B visas (by year) 0 .2 .4 .6 10 888 888 888 888 888 579 868 399 808 868 726 726 367 868 869 726 868 869 367 399 726 726 367 808 869 807 807 579 579 808 808 399 807 367 399869 808 459 399 579 807 367 869 716 807 716 579 357 459 716 357 387 459 357 459 459 716 716 736 736 859 467 859 879 467 669 736 879 357 859 467 357 467 736 669 879 467 879 806 879 859 836 806 836 246246 246 376 376 246 376 376 836 698 836 669 698 246 568 626 626 746 746 358 377 679 568 617 568 376 387 679 568 626 448 698 358 568 448 617 746 358 469 679 626 698 679 388 386 669 358 448 226 469 386 105 746 469 358 617 617 556 698 469 856 857 556 226 746 469 588556 679 448 916 617 105 386 857 377 377 105 448 386 388 379 386 669 105 379 377 857 916 857 586586 377 849 586 896 609 556 588 896 105 586588 379 226 616 609 856 849 856 379 857 588588 586 556 616 226 609 379 896 849 226 616 449 609 856 609 616 856 849 896 616 656 636 636 636 449 816 418418 426 656 816 816 587 817 309 309 916 896 656 636 659 667 816 418 606 6 309 67 418 546 426 667 546 656 916 356 347 546 658659 659 347 659 658 606 607 916 656 426 606 607 418 546 478 816 658 526 636 478 236 356 546 607 606 646 667 526 466 526 348 466 309 658 607 817 646 607 236 606 348 309 817 236 817 308 668 817 696 526348 308 216 646 206 668 667 526 378 478 436 646 317 456 488 687 696 317 439 488 696 456 439 468 436 658 308 236 317 346 378 696 308 627 668 206 456 206 316 466 488 468 478 317 408 326 216 216 439 216 378 618 436 346 468 236 627 687 316 468 346 316 618 417 488 206 597 316 326 478 409 468 408 316 456 408 596 346 417 618 408 696 488 439 378 346 206 618 308 317 216 597 578 409 417 597 597 409 476 477 446 627 596 476 439 687 446 407 429 326 477 476 407 326 446 477 618 687 407 476 516 456 598 417 408 417 596 409 516 597 598 668 477 429 587 476 506 429 506 506 378 407 446 506 506 587 437 527 337 336 627 326 596 596 687 446 578 489 337 336 516 437 697 337 337 336 336 608 337 336 587 116 527 407 936 516 598 429 697 567 516 527 527116 936 697 578 936 527 578 578 619 318 699 319 116697 338 587 116 437 936 409 438 608 608 688 116 338 567 489 619 338 688 438 619 319 338 126 419 406 416 697 406 419 318 657 406 419 406 419 416416 936 416 608 567 338 457 318 319 458 318 319 647 688 688 126 438 657 567 567 858 699 686 699 438 536 858 318 419 406 416 319 458 457458 457 826 826 458 826 536 637 657 657 647 689 686 858 826 126 457 686 438 848 487 689 699 536 906 458 457 699 689 686 826 848 689 307 307 307 906906906 906 306 846 846 307307 846306 306 846846 426 5 5 579 868 399 808 868 726 726 367 868 869 726 868 869 367 399 726 726 367 808 807 807 869 579 579 808 808 399 807 367 399869 808 459 399 579 807 367 869 716 807 716 579 357 459 716 357 387 459 357 459 459 716 716 736 736 859 467 859 879 467 669 736 879 357 859 467 357 467 736 669 879 467 879 806 879 859 836 806 836 246246 246 376 376 246 376 376 836 698 836 669 698 246 568 626 626 746 746 358 377 679 568 617 568 376 387 679 568 626 448 698 358 568 448 617 746 358 469 679 626 698 679 388 386 669 358 448 226 469 386 105 746 469 358 617 617 556 698 469 856 857 556 226 746 469 588556 679 448 916 617 105 386 857 377 377 105 448 386 388 379 386 669 105 379 377 857 916 857 586586 377 849 586 896 609 556 588 896 105 586588 379 226 616 609 856 849 856 379 857 588588 586 556 616 226 609 379 896 849 226 616 449 609 856 609 616 856 849 896 616 656 636 636 636 449 816 418418 426 656 816 816 587 817 309 309 916 896 656 636 659 667 816 418 606 6 309 67 418 546 426 667 546 656 916 356 347 546 658659 659 347 659 658 606 607 916 656 426 606 607 418 546 478 816 658 526 636 478 236 356 546 607 606 646 667 526 466 526 348 466 309 658 607 817 646 607 236 606 348 309 817 236 817 308 668 817 696 526348 308 216 646 206 668 667 526 378 478 436 646 317 456 488 687 696 317 439 488 696 456 439 468 436 658 308 236 317 346 378 696 308 627 668 206 456 206 316 466 488 468 478 317 408 326 216 216 439 216 378 618 436 346 468 236 627 687 316 468 346 316 618 417 488 206 597 316 326 478 409 468 408 316 456 408 596 346 417 618 408 696 488 439 378 346 206 618 308 317 216 597 578 409 417 597 597 409 476 477 446 627 596 476 439 687 446 407 429 326 477 476 407 326 446 477 618 687 407 476 516 456 598 417 408 417 596 409 516 597 598 668 477 429 587 476 506 429 506 506 378 407 446 506 506 587 437 527 337 336 627 326 596 596 687 446 578 489 337 336 516 437 697 337 337 336 336 608 337 336 587 116 527 407 936 516 598 429 697 567 516 527 527116 936 697 578 936 527 578 578 619 318 699 319 116697 338 587 116 437 936 409 438 608 608 688 116 338 567 489 619 338 688 438 619 319 338 126 419 406 416 697 406 419 318 657 406 419 406 419 416416 936 416 608 567 338 457 318 319 458 318 319 647 688 688 126 438 657 567 567 858 699 686 699 438 536 858 318 419 406 416 319 458 457458 457 826 826 458 826 536 637 657 657 647 689 686 858 826 126 457 686 438 848 487 689 699 536 906 458 457 699 689 686 826 848 689 307 307 307 906906906 906 306 846 846 307307 846306 306 846846 898 898 898 898 899 899 899 899899 477 0 888 888 888 888 888 Number of H1B visas (in logs) 10 898 898 898 898 899 899 899 899899 0 Number of H1B visas (in logs) 15 2002 15 2001 .8 1 0 .2 Union membership rates (in logs) lgh1b .4 .8 477 1 Union membership rates (in logs) Fitted values lgh1b Fitted values 15 2004 15 2003 0 .2 .4 .6 .8 898 898 898 898 10 5 426 477 1 0 Union membership rates (in logs) lgh1b 888 888 888 899 899 888 899 899899 888 579 868 399 808 868 726 726 367 868 869 726 868 869 367 399 726 726 367 808 869 807 807 579 579 808 808 399 807 367 399869 808 459 399 579 807 367 869 716 807 716 579 357 459 716 357 387 459 357 459 459 716 716 736 736 859 467 859 879 467 669 736 879 357 859 467 357 467 736 669 879 467 879 879 859 806 836 836 246246 246 376 376 246 376 376 806 836 698 836 669 698 246 568 626 626 746 746 358 377 679 568 617 568 376 387 679 568 626 448 698 358 568 448 617 746 358 469 679 626 698 679 388 386 669 358 448 226 469 386 105 746 469 358 617 617 556 698 469 856 857 556 226 746 469 588556 679 448 916 617 105 386 857 377 377 105 448 386 388 379 386 669 105 379 377 857 916 857 609 586586 377 857 849 586 896 556 588 896 105 586588 379 226 616 609 856 849 856 379 588588 586 556 616 226 609 896 849 226 616 449 609 856 616 856 849 896 616 656 609379 636 636 636 449 816 418418 656 816 426 816 587 817 309 309 916 896 656 636 659 667 816 418 606 6 309 67 418 546 426 667 546 656 916 356 546 658659 659 347 659 658 606 607 916 656 347 426 606 607 418 546 478 816 658 526 636 478 236 356 546 607 606 646 667 526 466 526 348 466 309 658 607 817 646 607 236 606 348 309 817 236 817 308 668 817 696 526348 308 216 646 206 668 667 526 378 478 436 646 317 456 488 687 696 317 439 488 696 456 439 468 436 658 308 236 317 346 378 696 308 627 668 206 456 206 316 466 488 468 478 317 408 326 216 216 439 216 378 618 436 346 468 236 627 687 316 468 346 316 618 417 488 206 597 316 326 478 409 468 316 456 408 596 346 417 618 408 696 488 439 378 346 206 618 308 317 216 597 578 409 417 597 409 476 477 446408 516597 627 596 476 439 687 446 407 429 326 477 476 407 326 446 477 618 687 407 476 456 598 417 408 417 596 409 516 597 598 668 477 429 587 476 506 429 506 506 378 407 446 506 506 587 437 527 337 336 627 326 596 596 687 446 578 489 337 336 516 437 697 337 337 336 336 608 337 336 587 116 527 407 936 516 598 429 697 567 516 527 527116 936 697 578 936 527 578 578 619 318 699 319 116697 338 587 116 437 936 409 688 438 608 608 688 116 338 619 567 489 619 338 438 319 338 126 419 406 416 697 406 419 318 657 406 419 406 419 416416 936 416 608 567 338 457 318 319 458 318 319 647 688 688 126 438 657 567 567 858 699 686 699 438 536 858 318 406 416457458 319 457 458 826 826 458 826 536 637 657 657 647 689 686 858 826 419 126 457 686 438 848 487 689 699 536 906 458 457 699 689 686 826 848 689 307 307 307 906906906 906 306 846 846 307307 846306 306 846846 0 5 10 888 888 888 899 899 888 899 899899 888 579 868 399 808 868 726 726 367 868 869 726 868 869 367 399 726 726 367 808 869 807 807 579 579 808 808 399 807 367 399869 808 459 399 579 807 367 869 716 807 716 579 357 459 716 357 387 459 357 459 459 716 716 736 736 859 467 859 879 467 669 736 879 357 859 467 357 467 736 669 879 467 879 879 859 806 836 836 246246 246 376 376 246 376 376 806 836 698 836 669 698 246 568 626 626 746 746 358 377 679 568 617 568 376 387 679 568 626 448 698 358 568 448 617 746 358 469 679 626 698 679 388 386 669 358 448 226 469 386 105 746 469 358 617 617 556 698 469 856 857 556 226 746 469 588556 679 448 916 617 105 386 857 377 377 105 448 386 388 379 386 669 105 379 377 857 916 857 609 586586 377 857 849 586 896 556 588 896 105 586588 379 226 616 609 856 849 856 379 588588 586 556 616 226 609 896 849 226 616 449 609 856 616 856 849 896 616 656 609379 636 636 636 449 816 418418 656 816 426 816 587 817 309 309 916 896 656 636 659 667 816 418 606 6 309 67 418 546 426 667 546 656 916 356 546 658659 659 347 659 658 606 607 916 656 347 426 606 607 418 546 478 816 658 526 636 478 236 356 546 607 606 646 667 526 466 526 348 466 309 658 607 817 646 607 236 606 348 309 817 236 817 308 668 817 696 526348 308 216 646 206 668 667 526 378 478 436 646 317 456 488 687 696 317 439 488 696 456 439 468 436 658 308 236 317 346 378 696 308 627 668 206 456 206 316 466 488 468 478 317 408 326 216 216 439 216 378 618 436 346 468 236 627 687 316 468 346 316 618 417 488 206 597 316 326 478 409 468 316 456 408 596 346 417 618 408 696 488 439 378 346 206 618 308 317 216 597 578 409 417 597 409 476 477 446408 516597 627 596 476 439 687 446 407 429 326 477 476 407 326 446 477 618 687 407 476 456 598 417 408 417 596 409 516 597 598 668 477 429 587 476 506 429 506 506 378 407 446 506 506 587 437 527 337 336 627 326 596 596 687 446 578 489 337 336 516 437 697 337 337 336 336 608 337 336 587 116 527 407 936 516 598 429 697 567 516 527 527116 936 697 578 936 527 578 578 619 318 699 319 116697 338 587 116 437 936 409 688 438 608 608 688 116 338 619 567 489 619 338 438 319 338 126 419 406 416 697 406 419 318 657 406 419 406 419 416416 936 416 608 567 338 457 318 319 458 318 319 647 688 688 126 438 657 567 567 858 699 686 699 438 536 858 318 406 416457458 319 457 458 826 826 458 826 536 637 657 657 647 689 686 858 826 419 126 457 686 438 848 487 689 699 536 906 458 457 699 689 686 826 848 689 307 307 307 906906906 906 306 846 846 307307 846306 306 846846 Number of H1B visas (in logs) 898 898 898 898 0 Number of H1B visas (in logs) .6 426 .2 .4 .6 .8 426 477 1 Union membership rates (in logs) Fitted values lgh1b Fitted values 898 898 898 898 5 10 888 888 888 899 899 888 899 899899 888 579 399 868 808 868 726 726 367 868 869 726 868 869 367 399 726 726 367 808 869 807 807 579 579 808 808 399 807 367 399869 808 459 399 579 807 367 869 716 807 716 579 357 459 716 357 387 459 357 459 459 716 716 736 736 859 467 859 879 467 669 736 879 357 859 467 357 467 736 669 879 467 879 879 859 806 836 836 246246 246 376 376 246 376 376 806 836 698 836 669 698 246 568 626 626 746 746 358 377 679 568 617 568 376 387 679 568 626 448 698 358 568 448 617 746 358 469 679 626 698 679 388 386 669 358 448 226 469 386 105 746 469 358 617 617 556 698 469 856 857 556 226 746 469 588556 679 448 916 617 105 386 857 377 377 105 448 386 388 379 386 669 105 379 377 857 857 609 586586 377916 849 586 896 857 556 588 896 105 586588 379 226 616 609 856 849 856 379 588588 586 556 616 226 609 896 849 226 616 449 609 856 616 856 849 896 616 656 609379 636 636 636 449 816 418418 656 816 426 816 587 817 309 309 916 896 656 636 659 667 816 418 606 6 309 67 418 546 426 667 546 656 916 356 546 658659 659 347 659 658 606 607 916 656 347 426 606 607 418 546 216 478 816 658 526 636 478 236 356 546 607 606 646 667 526 466 526 348 466 309 658 607 817 646 607 236 606 348 309 817 236 817 308 668 817 696 526348 308 646 206 668 667 526 378 478 436 646 317 456 488 687 696 317 439 488 696 456 439 468 436 658 308 236 317 346 378 696 308 627 668 206 456 206 316 466 488 468 478 317 408 326 216 216 439 216 378 618 436 346 468 236 627 687 316 468 346 316 618 417 488 206 316 326 478 409 468 316 456 408 596 346 417 618 408 696 488 439 378 346 206 618 308 317 216 597 578 409 417 597 409 476 477 446408597516597 627 596 476 439 687 446 407 429 326 477 476 407 326 446 477 618 687 407 476 456 598 417 408 417 596 409 516 597 668 477 429 587 476 506 429 506 506 378 407 446 506 506 587 437567 527 337 337 336 627 326 596 578 596 687 598 446 578 489 337 336 516 437 697 337 336 336 608 337 336 587 116 527 407 936 516 598 429 697 516 527 527116 936 697 936 527 578 578 619 318 699 319 116697 338 587 116 437 936 409 688 438 608 608 688 489 116 338 567 619 338 438 319 338 126 419 406 416 619 697 406 419 318 657 406 419 406 419 416416 936 416 608 567 338 457 318 319 458 318 319 647 688 688 126 438 657 567 567 858 536 699 686 699 438 858 318 406 416457458 319 457 458 826 536 826 458 826 536 637 657 657 647 689 686 858 826 419 126 457 686 438 848 487 689 699 536 906 458 457 699 689 686 826 848 689 307 307 307 906906906 906 306 846 846 307307 846306 306 846846 0 Number of H1B visas (in logs) 15 2005 0 .2 .4 .6 Union membership rates (in logs) lgh1b Fitted values .8 426 477 1 27 Table 3. Estimated Effect of Politics on Migration OLS Dependent variable OLS1 log (lobbying exp) OLS2 OLS3 log (number of immigrants) OLS4 OLS5 OLS6 OLS7 OLS8 OLS9 0.398*** 0.427*** 0.397*** 0.413*** 0.414*** 0.399*** 0.407*** 0.379*** 0.415*** 0.462*** [0.047] [0.048] [0.044] [0.045] [0.045] [0.050] [0.052] [0.053] [0.050] [0.119] union membership rate -3.202*** -2.215*** [0.794] [0.804] lg (output) -1.877** [0.837] -1.898** -2.103*** [0.797] [0.799] 0.308*** 0.324*** 0.326*** [0.073] [0.070] [0.072] unemployment rate 7.322 [4.672] log (price) -1.768** [0.804] -2.031** [0.829] -1.244* -3.261*** [0.730] [1.112] 0.277** 0.302*** 0.321*** [0.112] [0.112] [0.106] 0.199* [0.112] 0.073 [0.183] 7.361 [4.771] 6.676 [4.817] 6.519 [4.871] 3.516 [4.844] -1.13 [4.812] 2.899 [6.924] 0.441 [2.598] 0.259 [2.560] 0.209 [2.500] 0.697 [2.359] 0.301 -7.799*** [2.204] [2.459] 0.115 [0.157] 0.148 [0.158] 0.138 [0.142] 0.154 [0.132] 0.284 [0.228] -0.096* [0.055] -0.094 [0.057] -0.009 [0.059] -0.069 [0.117] 5.073** [1.986] 4.523** [1.888] 4.045* [2.320] -9.353*** [3.141] -7.506 [4.684] log (capital) log (FDI) shocks log (lag US wages) log (lag Mexican wages) _cons N OLS10 0.289* [0.164] 6.636*** 6.769*** 3.329*** 2.562*** [0.450] [0.453] [0.900] [0.918] 137 136 136 136 0.492 [12.304] 1.072 [12.145] 1.346 [11.881] -1.701 [11.251] 136 132 130 130 17.782 49.079*** [12.425] [14.992] 28 130 53 Table A1. Estimated Effect of Politics on Migration, Pooled OLS Dependent variable OLS1 log (lobbying exp) OLS2 OLS3 log (number of immigrants) OLS4 OLS5 OLS6 OLS7 OLS8 OLS9 0.389*** 0.404*** 0.367*** 0.376*** 0.375*** 0.339*** 0.362*** 0.362*** 0.379*** 0.297*** [0.023] [0.024] [0.022] [0.022] [0.022] [0.025] [0.026] [0.026] [0.026] [0.089] union membership rate -1.806*** -0.996*** [0.327] [0.328] lg (output) -0.838** [0.332] -0.843** [0.332] -0.816** [0.341] -0.655* [0.358] -0.660* [0.360] -0.634* -2.698*** [0.364] [0.633] 0.288*** 0.297*** 0.301*** 0.273*** 0.281*** 0.282*** 0.210*** [0.036] [0.036] [0.036] [0.052] [0.053] [0.053] [0.053] unemployment rate 4.014** [1.694] log (price) 0.125 [0.139] 3.990** [1.704] 3.706** [1.732] 3.598** [1.775] 3.576* [1.821] 1.97 10.703** [1.892] [4.927] 0.561 [0.581] 0.391 [0.598] 0.395 [0.615] 0.393 [0.619] 0.314 [0.588] 0.205 [1.180] 0.092 [0.059] 0.128** [0.062] 0.128** [0.062] 0.152** [0.060] 0.246 [0.153] -0.080*** -0.081*** [0.030] [0.030] -0.036 [0.031] 0.008 [0.081] log (capital) log (FDI) shocks 0.108 [1.113] log (lag US wages) -0.093 -4.229*** [1.106] [1.369] -4.892*** [1.351] log (lag Mexican wages) _cons OLS10 -2.264 [2.509] 0.172** [0.076] 6.628*** 6.716*** 3.639*** 3.219*** [0.286] [0.298] [0.455] [0.463] 0.589 [2.765] 1.373 [2.866] 1.173 [2.945] 746 620 596 1.152 10.584*** [2.930] [3.804] 6.355 [8.062] 29 N 760 746 746 746 596 589 105 Table A2. Estimated Effect of Politics on Migration OLS, Balanced Number of Observations Dependent variable OLS1 log (lobbying exp) OLS2 OLS3 log (number of immigrants) OLS4 OLS5 OLS6 OLS7 OLS8 0.394*** 0.423*** 0.391*** 0.404*** 0.404*** 0.397*** 0.407*** 0.379*** 0.415*** [0.049] [0.050] [0.045] [0.046] [0.047] [0.051] [0.052] [0.053] [0.050] union membership rate -3.302*** [0.818] lg (output) -2.128** [0.816] -1.809** [0.854] -1.814** [0.806] -2.031** [0.829] -1.244* [0.730] 0.281** 0.302*** 0.321*** [0.112] [0.112] [0.106] 0.199* [0.112] 7.244 [4.772] 6.958 [4.852] 6.519 [4.871] 3.516 [4.844] -1.13 [4.812] 0.078 [2.584] 0.213 [2.562] 0.209 [2.500] 0.697 [2.359] 0.301 [2.204] 0.116 [0.157] 0.148 [0.158] 0.138 [0.142] 0.154 [0.132] -0.096* [0.055] -0.094 [0.057] -0.009 [0.059] 5.073** [1.986] 4.523** [1.888] 0.332*** 0.346*** 0.346*** [0.072] [0.070] [0.072] unemployment rate 7.238 [4.699] log (price) log (capital) -2.019** [0.805] log (FDI) -1.768** [0.804] shocks log (lag US wages) _cons N OLS9 -9.353*** [3.141] 6.654*** 6.791*** 3.070*** [0.464] [0.461] [0.885] 130 130 130 2.345** [0.911] 1.978 [12.266] 1.22 [12.163] 1.346 [11.881] -1.701 [11.251] 17.782 [12.425] 130 130 130 130 130 130 30 Table A3. Estimated Effect of Politics on Migration OLS, Include Sectors with Zero Lobbying Expenditures Dependent variable OLS1 log (lobbying exp) OLS10 0.289*** 0.292*** 0.267*** 0.272*** 0.273*** 0.287*** 0.286*** 0.257*** 0.285*** [0.055] [0.059] [0.056] [0.058] [0.058] [0.058] [0.060] [0.061] [0.063] 0.224** [0.107] -1.849* [1.073] lg (output) OLS3 log (number of immigrants) OLS4 OLS5 OLS6 OLS9 union membership rate OLS2 -0.895 [1.016] OLS8 -0.656 [1.016] -1.956** [0.823] -1.757** [0.828] -2.033** [0.856] 0.339*** 0.349*** 0.348*** [0.078] [0.076] [0.078] 0.204* [0.114] 0.214* [0.114] 0.232** [0.110] 0.123 [0.117] 0.139 [0.205] 4.237 [5.217] 4.066 [5.225] 4.11 [5.311] 1.1 [5.231] -2.946 [5.291] 0.7 [9.054] -0.169 [2.833] -0.114 [2.662] -0.17 [2.636] 0.336 [2.499] -0.086 [2.292] -7.811** [3.017] 0.25 [0.152] 0.269* [0.155] 0.259* [0.144] 0.278** [0.136] 0.436* [0.219] -0.04 [0.061] -0.038 [0.063] 0.039 [0.064] -0.063 [0.111] 5.240** [2.122] 4.638** [2.053] 1.594 [2.125] -8.314** [3.336] -4.625 [5.472] unemployment rate -0.664 [1.045] OLS7 4.251 [5.142] log (price) log (capital) log (FDI) shocks log (lag US wages) -1.349* -4.383*** [0.773] [1.399] log (lag Mexican wages) _cons 0.465** [0.186] 7.759*** 7.980*** 4.133*** 3.710*** [0.535] [0.546] [0.967] [1.047] 142 N 141 141 141 4.504 [13.421] 3.734 [12.634] 3.997 [12.516] 0.84 [11.911] 141 136 134 134 18.516 43.040** [12.997] [18.857] 134 55 31 Table A4. Estimated Effect of Politics on Migration, 1998-2005 Dependent variable log (number of immigrants) 1998 log (lobbying exp) union membership rate 1999 2000 2001 2002 2003 2004 2005 0.389*** [0.057] 0.658*** [0.068] 0.335*** [0.050] 0.576*** [0.085] 0.225*** [0.054] 0.572*** [0.084] 0.391*** [0.067] 0.532*** [0.060] -1.522* [0.821] -1.582** [0.737] -2.724*** [0.847] -1.184 [0.933] -0.849 [1.168] -0.914 [0.736] -1.206 [1.002] -2.904** [1.223] 32 Table A5. Estimated Effect of Politics on Migration Alternative Measure of Lobbying Expenditures log (lobbying exp) union membership rate OLS OLS_cont 0.367*** [0.047] 0.361*** [0.048] -2.998*** [0.814] -1.173 [0.754] lg (output) 0.205* [0.115] unemployment rate -1.064 [5.067] log (price) 1.322 [2.319] log (capital) 0.179 [0.135] log (FDI) -0.019 [0.061] shocks 4.985** [1.930] log (lag US wages) _cons -9.043*** [3.156] 6.514*** [0.535] 11.881 [12.937] 136 130 33 N Table 4. Estimated Effect of Politics on Migration, 1999-2004, Campaign Contributions vs Lobbying Expenditures Dependent variable log (campaign contribution) log (number of immigrants) OLS OLS_cont 0.230* [0.131] 0.043 [0.146] log (lobbying exp) union membership rate -1.365 [1.010] -0.102 [1.125] OLS OLS_cont OLS OLS_cont 0.006 [0.174] -0.092 [0.208] 0.322*** [0.047] 0.346*** [0.047] 0.321*** [0.050] 0.348*** [0.049] -3.231*** [1.023] -0.28 [0.975] -3.168*** [1.086] -0.286 [0.989] lg (output) 0.209 [0.133] 0.279** [0.127] 0.287** [0.127] unemployment rate -3.207 [4.546] -1.823 [3.852] -1.499 [3.883] log (price) -0.266 [1.906] -0.031 [1.632] -0.178 [1.663] log (capital) 0.254 [0.157] 0.129 [0.133] 0.128 [0.142] log (FDI) 0.01 [0.086] -0.059 [0.063] -0.039 [0.068] 5.420** [2.324] 4.062** [1.845] 4.235** [1.833] -4.404 [3.554] -8.713** [3.484] -8.650** [3.513] shocks log (lag US wages) _cons N 7.827*** [2.004] 13.986 [12.140] 8.433*** [0.471] 19.107* [10.703] 8.339*** [2.608] 20.772* [12.464] 134 128 124 118 123 117 34 Table 5. Estimated Effect of Politics on Migration, H1B Visas, 2001-2005 Dependent variable - ln(number of visas) OLS OLS_cont log (lobbying exp) 0.458*** [0.057] 0.428*** [0.061] union membership rate -2.901** [1.268] -3.726** [1.624] lg (output) 0.141 [0.125] unemployment rate 1.235 [4.025] log (price) -0.401 [3.080] log (capital) -0.052 [0.154] log (FDI) 0.161* [0.082] shocks -3.385 [2.493] log (lag US wages) 7.203* [3.667] _cons N 1.029* [0.521] -11.69 [15.859] 126 120 35 Table 6. Estimated Effect of Politics on Migration, 1998-2005, New Immigrants log (lobbying exp) union membership rate OLS OLS_cont 0.383*** [0.043] 0.391*** [0.043] -3.486*** [0.699] -1.591** [0.689] lg (output) 0.234** [0.103] unemployment rate 3.377 [4.136] log (price) 3.03 [2.207] log (capital) 0.076 [0.116] log (FDI) -0.009 [0.058] shocks 3.260* [1.732] log (lag US wages) _cons N -7.676** [3.035] 6.379*** [0.401] 1.839 [12.081] 136 130 36 Endogeneity & reverse causality concerns • Direction of bias – lobbying exp o Sectors with higher number of immigrants close to their optimal level, less incentive to invest in lobbying. o Sectors with higher number of immigrants need to lobby more – to obtain access of immigrant workers and their children to health, education, etc. • Direction of bias – union membership o Higher number of immigrants, increased threat to native workers, raise incentive to join unions. o Higher number of immigrants, reduced bargaining power of unions, lower incentive to join unions 37 Instrumental variables strategy • The IV for lobbying expenditures on immigration is: the sum in a sector of the lobbying expenditures by firms which do not list immigration as an issue in the lobbying report: o Plausible to assume that these are not directly related to immigration policy (exclusion restriction). o Common industry-level variables driving lobbying expenditures on immigration and on any 38 other issue (strong instrument). Instrumental variables strategy (contd) • The IV for union membership rates is: union membership rates in the UK: o Evidence that union membership rates across sectors are correlated across countries. o Assumption – union membership rates in the UK should not be directly related to immigration policy in the US. 39 Table 7. Estimated Effect of Politics on Migration, 1998-2005, Instrumental Variables log (lobbying exp) union membership rate IV IV_cont 0.527*** [0.057] 0.488*** [0.057] -6.610*** [1.709] -3.138* [1.586] lg (output) 0.115 [0.135] unemployment rate -1.694 [5.111] log (price) -1.48 [2.213] log (capital) 0.249 [0.172] log (FDI) -0.014 [0.063] shocks 4.271** [2.031] log (lag US wages) _cons First-stage F for lobbying exp First-stage F for union membership N -9.079*** [3.214] 6.197*** [0.545] 25.287* [13.053] 195.73 30.3271 119 153.52 14.85419 114 40 Does political organization have a greater impact on immigration in skilled-sectors? Table 8. Estimated Effect of Politics on Migration, 1998-2005, Split Samples by Skill Intensity Unskilled-intensive sectors OLS OLS_cont Skilled-intensive sectors OLS OLS_cont log (lobbying exp) 0.469*** [0.076] 0.354*** [0.078] 0.421*** [0.065] 0.396*** [0.072] union membership rate -2.661** [1.064] 0.308 [1.158] -3.915*** [1.225] -3.088** [1.199] lg (output) 0.290* [0.149] 0.098 [0.167] unemployment rate 9.932 [6.928] -9.610* [5.331] log (price) 5.004 [3.561] -0.972 [2.931] log (capital) -0.032 [0.165] 0.323 [0.225] log (FDI) 0.099 [0.093] -0.075 [0.071] shocks 5.197* [2.955] 2.455 [2.802] log (lag US wages) -9.562* [5.220] -8.118** [3.102] _cons N 6.463*** [0.665] -4.286 [21.141] 6.785*** [0.639] 22.852 [14.640] 68 66 68 64 41 Conclusions • Systematic empirical evidence on the political economy of migration policy is scarce in the economics literature. • To the best of our knowledge we are the first ones to empirically investigate the role played by interest groups politics in shaping migration policy. • Main result - barriers to migration are higher in sectors where labor unions are more important, and lower in those sectors in which business lobbies are more active. o Result robust to introducing various industry level controls and using an IV strategy. o Results on unions are stronger for skilled-intensive sectors, no statistically significant difference in the effectiveness of lobbying expenditures. 42
© Copyright 2026 Paperzz