Number Theory and Advanced Cryptography 3. Quadratic Residues and Rabin Public key Cryptosystem Part I: Introduction to Number Theory Part II: Advanced Cryptography Chih-Hung Wang Sept. 2012 1 Quadratic Residues 2 Quadratic Residues 3 Quadratic Residuosity Problem (1) Proof: see page 188 4 Quadratic Residuosity Problem (2) Important! 5 Quadratic Residuosity Problem (3) 6 Legendre-Jacobi Symbols 7 Jacobi Symbol Properties 8 Algorithm for Computing Jacobi Symbol 9 Notes of Jacobi Symbol n 0 if m | n m Note that the Jacobi symbol is not defined for m 0 or even. Testing web-site http://mathworld.wolfram.com/JacobiSymbol.html http://www.math.fau.edu/Richman/jacobi.htm http://wwwmaths.anu.edu.au/DoM/thirdyear/MATH3301/j acobi.html 10 4432 1 (443 1)(443 1) Jacobi Examples (1) 444 442 8(111)(221) 111 221 is an odd number Jacobi(384,443)=-Jacobi(192,443) =Jacobi(96,443) =-Jacobi(48,443) =Jacobi(24,443) =-Jacobi(12,443) =Jacobi(6,443) =-Jacobi(3,443) 1) 4(221) 221 (odd number) ] =Jacobi(2,3) [ (3 1)(443 4 4 =-Jacobi(1,3) [(32-1)/8=1 odd number] =-1 11 Jacobi Examples (2) Jacobi(1368/24571) = -Jacobi(684/24571) = Jacobi(342/24571) = -Jacobi(171/24571) = Jacobi(118/171) = -Jacobi(59/171) = Jacobi(53/59) =Jacobi(6/53) = -Jacobi (3/53) =-Jacobi(2/3) =Jacobi (1/3) = 1 12 Square Root Modulo Integer(1) Modulo prime Algorithm 13 Square Root Modulo Integer(2) Modulo prime in General case 14 Square Root Modulo Integer(3) 15 Square Root Modulo Integer(4) Odd number 1 x 16 Square Root Modulo Integer(3) Modulo composite 17 Square Root Modulo Integer(4) Properties of modulo composite 18 Example (1) 19 Example (2) 20 Factoring Problem For a large n with large prime factors, factoring is a hard problem, but not as hard as it used to be. Example: factorize 48770428682337401 => hard problem 1977: three inventors of RSA issue “Mathematical Games” Easy problem: Is 223092871 a factor of 48770428682337401? $100 reward 1994: RSA-129 (428 bits) breaking 21 Progress of Factorization (1) Number of Decimal Digits Approximate Number of bits Date Achieved MIPSYears Algorithms 100 332 April 1991 7 Quadratic sieve 110 365 April 1992 75 Quadratic sieve 120 398 June 1993 830 Quadratic sieve 129 428 April 1994 5000 Quadratic sieve 130 431 April 1996 500 Generalized number field sieve 22 Progress of Factorization (2) 23 Progress of Factorization (3) 24 Blum Integers 25 Properties of Blum Integers (1) 26 Properties of Blum Integers (2) 27 Rabin Encryption Scheme (1) 28 Rabin Encryption Scheme (1) 29 Example of Rabin 30 Insecurity of Rabin CPA (Chosen-plaintext attack) CCA (Chosen-ciphertext attack) 31
© Copyright 2025 Paperzz