Rice GHG Emissions under varied Nitrogen, Variety, and Water Management PAST – WORK PRESENT – CHALANGES FUTURE - NEEDS Merle Anders Net Profit Crop Consultant PLlc [email protected] 870-456-8527 PLANTS DON’T LIE V. 2.4 Nitrogen fertility CLXL 745 Rates: 0, 112, 168, 224 kg N ha-1 as Urea; single pre-flood kg CO2 eq ha-1 g N2O-N ha-1 kg CO2 eq ha-1 % Fert. Emis. kg N ha-1 kg CH4C ha-1 112 41 a 1375 a 69 bc 33 bc 0.037 168 46 a 1550 a 161 b 76 b 224 40 a 1336 a 336 a 157 a 0.138 0.080 Nitrogen fertility N2O emissions Rice yields 50 g N 2O-N Mg -1 40 30 20 10 0 -150 -100 -50 0 50 100 150 -1 Yield N surplus (kg N ha ) 112 kg N ha-1 Adviento-Borbe, M.A., C.M. Pittelkow, M. Anders, C. Van Kessel, J.E. Hill, A.M. McClung, J. Six, and B.A. Linquist. 2013. Optimal fertilizer nitrogen rates and yield-scaled global warming potential in drill seeded rice. J. Evron. Qual., 42:6: 1623-1634. Variety Rice Variety CLXL 745 Jupiter Sabine Francis Total CH4 emissions g CH4-C ha-1 season-1 52874 70411 64499 80980 Total N2O emissions g N2O-N ha-1 season-1 20 0 26 23 GWP kg CO2 eq ha-1 season-1 1775 2351 2166 2715 Grain Yield Mg ha-1 9.52 8.18 6.17 7.39 Yield-scaled GWP kg CO2 eq Mg-1 season-1 186 287 351 368 Simmonds, M., M. Anders, M.A. Adviento-Bore, C. van Kessel, A. McClung, B. Linquist. 2015. Seasonal methane and nitrous oxide emissions of several rice cultivars in directseeded systems. J. Environ. Qual., 44:103-114. p p 28 13 29 14 0 28 13 29 14 0 N2O emission, N2O-N g ha-1 d-1 Jupiter Francis CLX 745 Sabine 30 20 10 3500 3000 2500 2000 1500 1000 500 0 35 30 25 20 15 10 5 40 35 30 25 20 15 10 5 Air temperature, oC 40 Air temperature, oC p Se p Se Au g Au g Ju l3 5 30 15 31 16 01 Ju l1 Ju n Ju n ay M ay M ay M 40 Se Se Au g Au g Ju l3 5 30 15 31 16 01 Ju l1 Ju n Ju n ay M ay M ay M CH4 emission, CH4-C g ha-1 d-1 N2O and CH4 emissions from Southern US rice varieties (2012 Drill seeded: Arkansas Site) Variety 50 45 0 4000 45 Water Study design and data collection 1. Location: Rice Research and Extension Center, Stuttgart AR a. DeWitt Silty Clay Loam soil (fine, smectitic, thermic, Typic Albaqualf) b. pH 5.6-6.2, Carbon 8.4g C kg-1 soil, Nitrogen 0.6 g N kg-1 soil 2. Four replications with 4 water treatments one hybrid (CLXL745) a. Flood, AWD/40-flood, AWD/60, AWD/40 b. AWD = alternate wetting and drying; /value= percent of saturated soil c. AWD/40-flood changed at R1-R2; Dynamax probe used d. Field flooded to 10-cm, natural dry, soil moisture determined when field “dry” e. Moisture measurements made to 50-mm; 4 plot-1; averaged across reps. f. N rate of 134 kg ha-1 on all treatments as pre-flood (15-20 day hold) g. Irrigation water measured with McCrometer flow meter 3. GHG measurements using 30.48-cm static vented chamber technique a. Collected at 0, 20, 40, 60-min intervals b. Frequency dictated by field management activities and weather Results for grain yield 2012 ,2013 rice soybean 2013 continuous rice Rice grain yields (Mg ha-1) Water treatment 2012-RS 2013-RS 2013-RR Mean Flood 9.78 a 11.15 a 9.84 a 10.26 a AWD/40 – Flood 9.27 a 11.15 a 10.33 a 10.17 ab AWD/60 9.22 a 10.37 b 9.61 a 9.73 b AWD/40 9.03 a 9.58 c 8.31 b 8.97 c Results for water use 2012 ,2013 rice soybean 2013 continuous rice Irrigation water use (m3 ha-1) water use efficiency (WUE = kg rice/m3) Water treatment Flood AWD/40 – Flood AWD/60 AWD/40 2012-RS 2013-RS Use WUE Use WUE 7617 7617 1.28 1.46 (718) (1077) 6602 6475 1.40 1.72 (359) (538) 6475 5840 1.42 1.78 (180) (0) 5078 5205 1.78 1.84 (359) (180) 2013-RR Use WUE Mean Use WUE 8582 1.15 7939 1.30 6459 1.60 6512 1.58 4040 2.38 5452 1.86 3030 2.74 4438 2.12 Results for gas emissions 2012 ,2013 rice soybean 2013 continuous rice CH4 Water management kg CH4-C ha-1 N2O GWP kg N2O-N ha-1 kg CO2 eq ha-1 2012 Rice-soybean 0.031 a 2385 a Flood 71.0 a AWD/40–flood 37.2 b 0.104 b 1292 b AWD/60 2.8 c 0.229 c 201 c AWD/40 1.7 c 0.137 b 120 c 2013 Rice-soybean Flood 100 a 0.07 b 3371 a AWD/40–flood 56.7 b 0.39 a 2076 b AWD/60 6.04 c 0.40 a 389 c AWD/40 7.80 c Flood 144 a 1.05 a 751 c 2013 Rice-rice -0.008 b 4804 a AWD/40–flood 71.4 b 0.028 b 2397 b AWD/60 11.8 c 0.198 ab 486 c AWD/40 13.7 c 0.329 a 611 c kg CO2 eq Mg-1 249 a 145 b 23 c 14 c 301 a 181 b 36 c 72 c 476 a 235 b 50 c 69 c 0 A 11 pr 3 1 M 61 ay 3 0 M 11 ay 3 1 M 61 ay 3 3 Ju 1 1 n 3 1 Ju 5 1 n 3 30 Ju 13 l1 5 Ju 13 l3 A 01 ug 3 1 A 41 ug 3 2 S 91 ep 3 1 S 31 ep 3 2 O 81 ct 3 1 O 31 ct 3 28 13 A pr CH4 emission, CH4-C g ha-1 d-1 N2O emission, N2O-N g ha-1 d-1 200 100 150 35 Flooded Intermittent_60 Intermittent_40 Intermittent_40-Flooded 30 -50 4000 3500 3000 1000 500 25 20 10 0 50 5 0 -5 40 35 2500 30 25 2000 20 1500 10 5 -5 0 0 -10 -500 -15 Air temperature, oC 40 Air temperature, oC 0 A 11 pr 3 1 M 61 ay 3 0 M 11 ay 3 1 M 61 ay 3 3 Ju 1 1 n 3 1 Ju 5 1 n 3 30 Ju 13 l1 5 Ju 13 l3 A 01 ug 3 1 A 41 ug 3 2 S 91 ep 3 1 S 31 ep 3 2 O 81 ct 3 1 O 31 ct 3 28 13 A pr Results for gas emissions N2O and CH4 emissions in Rice-Soybean rotation under different water management practices (Drill seeded: Arkansas Site 2013) 2013 rice soybean 250 45 -10 -15 4500 45 ay 2 Ju 5 n 0 Ju 1 n 0 Ju 8 n 1 Ju 5 n 2 Ju 2 n 2 Ju 9 l0 Ju 6 l1 Ju 3 l2 Ju 0 l A 27 ug A 03 ug 1 A 0 ug A 17 ug A 24 ug 3 S 1 ep 07 M 3 -3 Soil water content, m m 120 90 0.2 60 30 AWD/60 0.3 20 0.2 10 AWD/40 0.3 20 0.2 10 0.1 0.0 0 Time kg CO2 eq ha-1 day-1 0.3 kg CO2 eq ha-1 day-1 3 -3 Soil water content, m m 0.4 Soil water content CH4 kg CO2 eq ha-1 day-1 3 -3 Soil water content, m m Results for gas emissions 2013 rice soybean Flooded 180 N2O 150 0.1 0 0.0 0.4 30 0.1 0.0 0 0.4 30 Results 1. Water use efficiency improved 18 to 63% 2. GHG emissions reduced by 48 to 63% 3. Arsenic reduced by 63% 4. GHG emission levels less than reported for corn or wheat 5. Nitrogen efficiency was not reduced 6. Rotation differences in GHG were evident 7. Adoption determined by cost savings and carbon market Linquist, B.A., M. Anders, M.A. Adviento-Bore, R.L. Chaney, L.L. Nalley, E. da Rosa, and C. van Kessel. 2014. Reducing greenhouse gas emissions, water use and grain arsenic levels in rice systems. Global Change Biology, doi: 10.1111/gcb.12701. Results Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi Joseph H. Massey a,∗, Tim W. Walker a, Merle M. Anders b, M. Cade Smitha, Luis A. Avila c http://dx.doi.org/10.1016/j.agwat.2014.08.023 0378-3774/Published by Elsevier B.V. The Economic Viability of Alternative Wetting and Drying Irrigation in Arkansas Rice Production Lanier Nalley,* Bruce Lindquist, Kent Kovacs, and Merle Anders Published in Agron. J. 107:1–9 (2015) doi:10.2134/agronj14.0468 Impact of production practices on physicochemical properties of rice grain quality Rolfe J Bryant,a∗ Merle Andersb and Anna McClunga (wileyonlinelibrary.com) DOI 10.1002/jsfa.4608 Results Nitrogen uptake under alternate wetting and drying water management Anders, M.M. et al. Water management impacts rice methylmercury and the soil microbiome Sarah E. Rothenberga,*, Merle Andersb, Nadim J. Ajamic, Joseph F. Petrosinoc, Erika Baloghd Accepted Science of the Total Environment The influence of water management on arsenic uptake in rice grain and aquaporin expression in rice roots Sarah E. Rothenberg a,*, Merle Anders b, Leah B. Schmalfuss a, Erika Balogh c, William J. Jones a, Brian Jackson d Rice grain yield and quality when grown under limited water conditions. Anders, M.M., R.J. Bryant, K.M. Yeater, S. Brooks, and A. M. McClung. Moving forward? WHAT DO WE KNOW: VERY LITTLE (LESS) GENETICS: 1. Mechanisms of methane production? 2. Improved drought stress and associated traits? NUMBER 1 WILL NEVER RESULT IN INCREASED WATER INVENTORY OF GHG EMISSIONS IN MAJOR VARIETIES/HYBRIDS Moving forward? SCALE RESULTS TO COMMERCIAL FIELDS MANAGEMENT: 1. How dry do we need to be? 2. When do we need to be drier or wetter? 3. How do we measure soil moisture for management? 4. GHG emission levels in row rice? 5. Added N2O measurements to field scale measurements? 6. Include other disciplines such as microbiologists? RCPP, Climate Change Initiative, NRCS changes http://www.sustainablerice.org/ QUESTIONS
© Copyright 2026 Paperzz