Rice grain yields (Mg ha

Rice GHG Emissions under varied
Nitrogen, Variety, and Water Management
PAST – WORK
PRESENT – CHALANGES
FUTURE - NEEDS
Merle Anders
Net Profit Crop Consultant PLlc
[email protected]
870-456-8527
PLANTS
DON’T
LIE
V. 2.4
Nitrogen fertility
CLXL 745
Rates: 0, 112, 168, 224 kg N ha-1 as Urea; single pre-flood
kg CO2
eq ha-1
g N2O-N
ha-1
kg CO2
eq ha-1
%
Fert.
Emis.
kg N ha-1
kg CH4C ha-1
112
41 a
1375 a 69 bc
33 bc 0.037
168
46 a
1550 a 161 b
76 b
224
40 a
1336 a 336 a
157 a 0.138
0.080
Nitrogen fertility
N2O emissions
Rice yields
50
g N 2O-N Mg
-1
40
30
20
10
0
-150 -100
-50
0
50
100
150
-1
Yield N surplus (kg N ha )
112 kg N ha-1
Adviento-Borbe, M.A., C.M. Pittelkow, M. Anders, C. Van Kessel,
J.E. Hill, A.M. McClung, J. Six, and B.A. Linquist. 2013.
Optimal fertilizer nitrogen rates and yield-scaled global warming
potential in drill seeded rice. J. Evron. Qual., 42:6: 1623-1634.
Variety
Rice
Variety
CLXL 745
Jupiter
Sabine
Francis
Total CH4
emissions
g CH4-C ha-1
season-1
52874
70411
64499
80980
Total N2O
emissions
g N2O-N ha-1
season-1
20
0
26
23
GWP
kg CO2 eq
ha-1 season-1
1775
2351
2166
2715
Grain Yield
Mg ha-1
9.52
8.18
6.17
7.39
Yield-scaled
GWP
kg CO2 eq Mg-1
season-1
186
287
351
368
Simmonds, M., M. Anders, M.A. Adviento-Bore, C. van
Kessel, A. McClung, B. Linquist. 2015. Seasonal methane and
nitrous oxide emissions of several rice cultivars in directseeded systems. J. Environ. Qual., 44:103-114.
p
p
28
13
29
14
0
28
13
29
14
0
N2O emission, N2O-N g ha-1 d-1
Jupiter
Francis
CLX 745
Sabine
30
20
10
3500
3000
2500
2000
1500
1000
500
0
35
30
25
20
15
10
5
40
35
30
25
20
15
10
5
Air temperature, oC
40
Air temperature, oC
p
Se
p
Se
Au
g
Au
g
Ju
l3
5
30
15
31
16
01
Ju
l1
Ju
n
Ju
n
ay
M
ay
M
ay
M
40
Se
Se
Au
g
Au
g
Ju
l3
5
30
15
31
16
01
Ju
l1
Ju
n
Ju
n
ay
M
ay
M
ay
M
CH4 emission, CH4-C g ha-1 d-1
N2O and CH4 emissions from Southern US rice varieties
(2012 Drill seeded: Arkansas Site)
Variety
50
45
0
4000
45
Water
Study design and data collection
1. Location: Rice Research and Extension Center, Stuttgart AR
a. DeWitt Silty Clay Loam soil (fine, smectitic, thermic, Typic Albaqualf)
b. pH 5.6-6.2, Carbon 8.4g C kg-1 soil, Nitrogen 0.6 g N kg-1 soil
2.
Four replications with 4 water treatments one hybrid (CLXL745)
a. Flood, AWD/40-flood, AWD/60, AWD/40
b. AWD = alternate wetting and drying; /value= percent of saturated soil
c. AWD/40-flood changed at R1-R2; Dynamax probe used
d. Field flooded to 10-cm, natural dry, soil moisture determined when field “dry”
e. Moisture measurements made to 50-mm; 4 plot-1; averaged across reps.
f. N rate of 134 kg ha-1 on all treatments as pre-flood (15-20 day hold)
g. Irrigation water measured with McCrometer flow meter
3.
GHG measurements using 30.48-cm static vented chamber technique
a. Collected at 0, 20, 40, 60-min intervals
b. Frequency dictated by field management activities and weather
Results for grain yield
2012 ,2013 rice soybean
2013 continuous rice
Rice grain yields (Mg ha-1)
Water treatment 2012-RS 2013-RS 2013-RR
Mean
Flood
9.78 a
11.15 a
9.84 a
10.26 a
AWD/40 – Flood
9.27 a
11.15 a
10.33 a
10.17 ab
AWD/60
9.22 a
10.37 b
9.61 a
9.73 b
AWD/40
9.03 a
9.58 c
8.31 b
8.97 c
Results for water use
2012 ,2013 rice soybean
2013 continuous rice
Irrigation water use (m3 ha-1) water use efficiency (WUE = kg rice/m3)
Water treatment
Flood
AWD/40 – Flood
AWD/60
AWD/40
2012-RS
2013-RS
Use WUE Use WUE
7617
7617
1.28
1.46
(718)
(1077)
6602
6475
1.40
1.72
(359)
(538)
6475
5840
1.42
1.78
(180)
(0)
5078
5205
1.78
1.84
(359)
(180)
2013-RR
Use WUE
Mean
Use
WUE
8582
1.15
7939 1.30
6459
1.60
6512 1.58
4040
2.38
5452 1.86
3030
2.74
4438 2.12
Results for gas emissions
2012 ,2013 rice soybean
2013 continuous rice
CH4
Water
management
kg CH4-C ha-1
N2O
GWP
kg N2O-N ha-1 kg CO2 eq ha-1
2012 Rice-soybean
0.031 a
2385 a
Flood
71.0 a
AWD/40–flood
37.2 b
0.104 b
1292 b
AWD/60
2.8 c
0.229 c
201 c
AWD/40
1.7 c
0.137 b
120 c
2013 Rice-soybean
Flood
100 a
0.07 b
3371 a
AWD/40–flood
56.7 b
0.39 a
2076 b
AWD/60
6.04 c
0.40 a
389 c
AWD/40
7.80 c
Flood
144 a
1.05 a
751 c
2013 Rice-rice
-0.008 b
4804 a
AWD/40–flood
71.4 b
0.028 b
2397 b
AWD/60
11.8 c
0.198 ab
486 c
AWD/40
13.7 c
0.329 a
611 c
kg CO2 eq Mg-1
249 a
145 b
23 c
14 c
301 a
181 b
36 c
72 c
476 a
235 b
50 c
69 c
0
A 11
pr 3
1
M 61
ay 3
0
M 11
ay 3
1
M 61
ay 3
3
Ju 1 1
n 3
1
Ju 5 1
n 3
30
Ju 13
l1
5
Ju 13
l3
A 01
ug 3
1
A 41
ug 3
2
S 91
ep 3
1
S 31
ep 3
2
O 81
ct 3
1
O 31
ct 3
28
13
A
pr
CH4 emission, CH4-C g ha-1 d-1
N2O emission, N2O-N g ha-1 d-1
200
100
150
35
Flooded
Intermittent_60
Intermittent_40
Intermittent_40-Flooded
30
-50
4000
3500
3000
1000
500
25
20
10
0
50
5
0
-5
40
35
2500
30
25
2000
20
1500
10
5
-5
0
0
-10
-500
-15
Air temperature, oC
40
Air temperature, oC
0
A 11
pr 3
1
M 61
ay 3
0
M 11
ay 3
1
M 61
ay 3
3
Ju 1 1
n 3
1
Ju 5 1
n 3
30
Ju 13
l1
5
Ju 13
l3
A 01
ug 3
1
A 41
ug 3
2
S 91
ep 3
1
S 31
ep 3
2
O 81
ct 3
1
O 31
ct 3
28
13
A
pr
Results for gas emissions
N2O and CH4 emissions in Rice-Soybean rotation under different water management practices
(Drill seeded: Arkansas Site 2013)
2013 rice soybean
250
45
-10
-15
4500
45
ay
2
Ju 5
n
0
Ju 1
n
0
Ju 8
n
1
Ju 5
n
2
Ju 2
n
2
Ju 9
l0
Ju 6
l1
Ju 3
l2
Ju 0
l
A 27
ug
A 03
ug
1
A 0
ug
A 17
ug
A 24
ug
3
S 1
ep
07
M
3 -3
Soil water content, m m
120
90
0.2
60
30
AWD/60
0.3
20
0.2
10
AWD/40
0.3
20
0.2
10
0.1
0.0
0
Time
kg CO2 eq ha-1 day-1
0.3
kg CO2 eq ha-1 day-1
3 -3
Soil water content, m m
0.4
Soil water content
CH4
kg CO2 eq ha-1 day-1
3 -3
Soil water content, m m
Results for gas emissions
2013 rice soybean
Flooded
180
N2O
150
0.1
0
0.0
0.4
30
0.1
0.0
0
0.4
30
Results
1. Water use efficiency improved 18 to 63%
2. GHG emissions reduced by 48 to 63%
3. Arsenic reduced by 63%
4. GHG emission levels less than reported for corn or wheat
5. Nitrogen efficiency was not reduced
6. Rotation differences in GHG were evident
7. Adoption determined by cost savings and carbon market
Linquist, B.A., M. Anders, M.A. Adviento-Bore, R.L. Chaney, L.L. Nalley, E. da
Rosa, and C. van Kessel. 2014. Reducing greenhouse gas emissions, water use
and grain arsenic levels in rice systems. Global Change Biology, doi:
10.1111/gcb.12701.
Results
Farmer adaptation of intermittent flooding using multiple-inlet rice
irrigation in Mississippi
Joseph H. Massey a,∗, Tim W. Walker a, Merle M. Anders b, M. Cade Smitha, Luis A. Avila c
http://dx.doi.org/10.1016/j.agwat.2014.08.023 0378-3774/Published by Elsevier B.V.
The Economic Viability of Alternative Wetting and Drying Irrigation in
Arkansas Rice Production
Lanier Nalley,* Bruce Lindquist, Kent Kovacs, and Merle Anders
Published in Agron. J. 107:1–9 (2015) doi:10.2134/agronj14.0468
Impact of production practices on physicochemical properties of
rice grain quality
Rolfe J Bryant,a∗ Merle Andersb and Anna McClunga
(wileyonlinelibrary.com) DOI 10.1002/jsfa.4608
Results
Nitrogen uptake under alternate wetting and drying water
management
Anders, M.M. et al.
Water management impacts rice methylmercury and the soil microbiome
Sarah E. Rothenberga,*, Merle Andersb, Nadim J. Ajamic, Joseph F. Petrosinoc, Erika Baloghd
Accepted Science of the Total Environment
The influence of water management on arsenic uptake in rice grain
and aquaporin expression in rice roots
Sarah E. Rothenberg a,*, Merle Anders b, Leah B. Schmalfuss a, Erika Balogh c, William
J. Jones a, Brian Jackson d
Rice grain yield and quality when grown under limited water
conditions.
Anders, M.M., R.J. Bryant, K.M. Yeater, S. Brooks, and A. M. McClung.
Moving forward?
WHAT DO WE KNOW: VERY LITTLE (LESS)
GENETICS:
1. Mechanisms of methane production?
2. Improved drought stress and associated traits?
NUMBER 1 WILL NEVER RESULT IN INCREASED WATER
INVENTORY OF GHG EMISSIONS IN MAJOR VARIETIES/HYBRIDS
Moving forward?
SCALE RESULTS TO COMMERCIAL FIELDS
MANAGEMENT:
1. How dry do we need to be?
2. When do we need to be drier or wetter?
3. How do we measure soil moisture for management?
4. GHG emission levels in row rice?
5. Added N2O measurements to field scale measurements?
6. Include other disciplines such as microbiologists?
RCPP, Climate Change Initiative, NRCS changes
http://www.sustainablerice.org/
QUESTIONS