Approximation algorithms for the maximum Hamiltonian Path

Approximation algorithms for the maximum
Hamiltonian Path Problem with specified endpoint(s)
Jérôme Monnot
To cite this version:
Jérôme Monnot. Approximation algorithms for the maximum Hamiltonian Path Problem with
specified endpoint(s). European Journal of Operational Research, Elsevier, 2005, 161, pp.721735.
HAL Id: hal-00004071
https://hal.archives-ouvertes.fr/hal-00004071
Submitted on 26 Jan 2005
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
!""!#
$% &'#( %))*
∗
+,-./01.
234567689 :87;5<4=3 =3869>?;8@>A B>C5=9DB=4CEF7@4;=>C47C67=35>A >6=4@7;<84E3=G B7;;8:
HII 4A =38 =<> 8C:6>4C=5 798 568B4J8:G HII 4A >C;K >C8 8C:6>4C= 45 568B4J8:L M8 53>< =37=
HII 45 N:4O898C=47; 7669>P4@7?;8 7C: HII 45 N:4O898C=47; 7669>P4@7?;8L Q>98>R89G <8
>?589R8 =37= =3858 69>?;8@5 B7C C>= ?8 :4O898C=47; 7669>P4@7?;8 ?8==89 =37C L
S758: D6>C =3858 985D;=5G <8 >?=74C C8< ?>DC:5 A>9 TUVWXVYX YVUZ[\ 7 N5=7C:79: 7669>P4@7N
=4>CA>9 ]^_ HII 7C:7 A>9 ]^_ HII G <34B3 B7C?84@69>R8: => A>9 ]^_ HII [a, 2a]
`7;; =38 8:E8 <84E3=5 798 <4=34C 7C 4C=89 7; G => A>9 ]^_ HII [a, 2a] 7C: => A>9 ]ab
HII [a, 2a] G => A>9 ]ab HII [a, 2a]RL [a, 2a])
cd [YXT\ g669>P4@7=8 7;E>94=3@5h i4O898C=47; 97=4>h j>@6;8P4=K =38>9Kh j>@?4C7=>947;
>6=4@4efk7=4>Ch
l89A>9@7CB8 97=4>h gC7;K545 >A g;E>94=3@5h F7@4;=>C47C 67=35L
m nopqrstupvro
wxyz{|} ~€{}| ‚xƒ„…€ †‚ x‡ † …†ˆx‚ {…x‚z†|‰ {| ‰x…ƒ{|†zx‚{†„ xz{…{Іz{x|‹ †|~ zŒ …x€z {…
x‚z†|z {~†€ x‡ †„}x‚{zŒ…{‰ Œ†Ž ƒ| †„{~ zx zŒ… ~y‚{|} zŒ „†€z z|z †‚€‹ € ‘Œ‚{€zx’~€
“”• ‹ –{€Œ‚ z †„— “˜™• ‹ š†{…xŽ{‰Œ †|~ w{||xx ›†| “˜œ• ‹ ›x€†‚†ˆy z †„— “™• ‹ š†€€{| †|~ wyƒ{|€z{|
“˜• †|~ ž†Š}†| z †„— “™• — Ÿ {„„ ƒ ‰x|‰‚|~ {zŒ €x… ‚xƒ„…€ ‰„x€„ ‚„†z~ zx zŒ †¡{…y…
¢‚†Ž„{|} £†„€…†| ‚xƒ„…‹ |†…„‹ zŒ ‚xƒ„… x‡ ’|~{|} † ¤¥¦§¨©ª«§¥«¬¥©­ x‡ …†¡{…y… {}Œz—
Ÿ {„„ €zy~ zx ކ‚{†|z€ ~|~{|} x| zŒ |y…ƒ‚ x‡ €‰{’~ |~x{|z€ ®x| x‚ zx¯ x‡ zŒ †zŒ—
°±² ³´´ †|~ °±² ³´´ ‚€‰z{Ž„ ~|xz zŒ š†…{„zx|{†| †zŒ ‚xƒ„… {zŒ x| ’¡~
|~x{|z s ∈ V †|~ zx ’¡~ |~x{|z€ s, t ∈ V — ¢x xy‚ µ|x„~} †|~ ‡‚x… †‚x¡{…†z{x| x{|z
x‡ Ž{‹ zŒ€ zx „†zz‚ ‚xƒ„…€ Œ†Ž |xz ƒ| €zy~{~ ƒ‡x‚‹ Œ‚†€ zŒ{‚ …{|{…{Іz{x| Ž‚€{x|€
Œ†Ž ƒ| €zy~{~ ƒ šxx}Ž| “• †|~ ¶yzz…†||ž‰µ z †„— “˜·• ®{| †‚z{‰y„†‚‹ {z {€ „„ µ|x|
zŒ†z zŒ …{|{…{Іz{x| ‚xƒ„…€ †‚ ¸¹º»¼½¾¯— Ÿ †„€x ~†„ {zŒ † ކ‚{†|z ‰†„„~ ³´´ [a, 2a] ‹
Œ‚ zŒ ~}{}Œz€ †‚ {| zŒ €z {a, a + 1, . . . , b − 1, b} — žxzŒ M in− †|~ °±² ³´´ †‚ ¸¹º
»“¿¼½¾• x‹ މŒ| {|x ŒzŒ—{‚ ‚€z‚{‰z~ Ž‚€{x|€ {zŒ b > a ‹ €{|‰ zŒ †‚ x„|x…{†„z{… ›†‚‚~y‰{ƒ„
z † z ‚
ÀÁÂÂÁÃÄÅÆÀÇÆÈÉÊÈÆËÌÍÎÂÉÊÏÐÑ ÒÓÔÕÖרÙÕØÚÛÑÜÙÔ Ñ ÜÂÎÝÉÐÇÎÃÞ ßÆÐÎÇÖÚÆËÌÍÎÂÉÑ àÐÆÂáÉ
˜
s,t
s,t
s
1
2
s
2
3
741
742
1
2
s,t
2
3
2
3
s
5
6
s,t
s
3
4
s
s,t
2
3
s
s,t
s,t
s,t
∗
7024
¢Œ …†¡{…y… š†…{„zx|{†| †zŒ ‚xƒ„… …†{|„ Œ†€ zŒ €†… †„{‰†z{x|€ †€ zŒ …†¡{…y…
z‚†Ž„{|} €†„€…†| ‚xƒ„… €{|‰ †| xz{…y… š†…{„zx|{†| †zŒ {€ †€{„ ‰x|Ž‚z~ zx †| xz{…y…
z‚†Ž„{|} €†„€…†| ƒ †~~{|} x| ®x‚ zx¯ ~y…… Ž‚z¡ ®Ž‚z{‰€¯ {zŒ †‚x‚{†z ~{€z†|‰ zx †„„
xzŒ‚ Ž‚z{‰€‹ Œ‚ zŒ €‰{’‰†z{x| x‡ ↁ‚x‚{†zâ ~|~€ x| zŒ |y…ƒ‚ x‡ |~x{|z€ zŒ†z Œ†Ž
ƒ| ’¡~— ¢Œy€‹ ‡x‚ {|€z†|‰‹ {z {€ µ|x| zx ƒ † ‚„ކ|z …x~„ ‡x‚ €‰Œ~y„{|} † €{|}„ ‚x‰€€x‚
{zŒ €zy€ †‚{€{|} {| …†|y‡†‰zy‚{|}‹ ‰x…yz{|}‹ ãä£å ~€{}| †|~ …†| xzŒ‚ †„{‰†z{x|€‹ 䆏„‚
z †„— “”• — šxŽ‚‹ zŒ{€ ‚xƒ„… †„€x Œ†€ €‰{’‰ †„{‰†z{x|€ zx 檦¬çèé駪« ꥩ¥‹ ¢†‚Œ{x †|~
ëµµx|| “ì¿• x‚ ꥩ¥ ¥çç¥í æ¨îé©èç§«ï {| ðñò x‚ …†‚µz{|} ƒy~}z€‹ š†‚z{}†| “˜• — –x‚ ¡†…„‹
zŒ ¦¥ó§¦¥¨ 檦¬çèé駪« ¬çªô¨è¦ Œ{‰Œ †‚{€€ {| ކ‚{xy€ ‰x…‚€€{x| ~†z† ‚xƒ„…€ ‰†| ƒ ~’|~
†€ ‡x„„x€õ }{Ž| † ‰x„„‰z{x| x‡ €z‚{|}€ s , . . . , s ‹  €µ † €z‚{|} S €y‰Œ zŒ†z Ž‚ €z‚{|} {|
zŒ ‰x„„‰z{x| {€ † €yƒ€z‚{|} x‡ S †|~ zŒ†z …†¡{…{Š€ P |s | − |S| — å| zŒ €zz{|}‹ zŒ Ž‚z{‰€
‚‚€|z €z‚{|}€ †|~ zŒ {}Œz x‡ †| ~} ƒz| zx â€z‚{|}€â {€ €z zx zŒ †…xy|z x‡ …†¡{…y…
xŽ‚„† ƒz| zŒ€ €z‚{|}€— ¢Œ xz{…†„ ‰x…‚€€{x| {€ öy{ކ„|z zx zŒ {}Œz x‡ † …†¡{…y…
š†…{„zx|{†| †zŒ— ò|xzŒ‚ †„{‰†z{x| zx …†¡{…y… š†…{„zx|{†| †zŒ {zŒ zx €‰{’~ |~x{|z€
{€ }{Ž| ƒ zŒ ‡x„„x{|} ¡†…„‹ ¶†‚’|µ„ “˜÷• õ €yx€  †‚ }{Ž| † ~†z† †‚‚† {| zŒ ‡x‚… x‡ †|
z{
zŒ z ‰x|€{€z€ x‡ „…|z€ zŒ†z †‚ {zŒ‚ ˜ {‡ {z ¡{€z€ † ‚„†z{x| ƒz| ‚x
m × n …† ‚ ¡ A = (a ) †
| ‰x„y…| j ¡{€z€ x‚ ø {‡ {z ~x€ |xz— Ÿ †‚ {|z‚€z~ {| }‚xy{|} ‚x€ †|~ ‰x„y…|€ zx}zŒ‚
i† ~
{| €y‰Œ † † zŒ†z zŒ €Œx €{…{„†‚ ‚„†z{x|€— –x‚ {|€z†|‰‹ ‰x|€{~‚ † |y…ƒ‚ x‡ m …†‚µz{|}
z‰Œ|{öy€ †|~ n ‚x~y‰z€— å‡ † …†‚µz{|} z‰Œ|{öy i x‚µ€ xyz €y‰‰€€‡y„„ x| † ‚x~y‰z j ‹ zŒ|
z zŒ „ ˜‹ | xzŒ‚{€— £{…{„†‚ …†‚µz{|} z‰Œ|{öy€ †‚ €yx€~ zx ƒ €y‰‰€€‡y„ x|
a } €  ކ y † ~ ø
€{…{„†‚ ‚x~y‰z€— ¢Œ‚‡x‚‹ ‰„y€z‚{|} zŒ z‰Œ|{öy€ †|~ zŒ ‚x~y‰z€ }{Ž€ {|€{}Œz {| zŒ ‚„†z{x|€
x‡ zŒ …†‚µz{|} z‰Œ|{öy€ †|~ zŒ ‚x~y‰z€—
¢x ‡x‚…†„{Š zŒ{€‹  {|z‚x~y‰ zŒ …†€y‚ x‡ ù‰z{Ž|€€ me = a (a + a + a +
‡x ‰Œ „ |z — ¢x |€y‚ zŒ{‚ ¡{€z|‰‹  †~~ zx zŒ …†z‚{¡ A †‚z{’‰{†„ ‚x€ x‡ {|~¡
a
) ‚ †  … a
ø †|~ …ú˜ †|~ †‚z{’‰{†„ ‰x„y…|€ x‡ {|~¡ ø †|~ |ú˜û zŒ€ ‚x€ †|~ ‰x„y…|€ ‰x|z†{| Š‚x€ x|„—
¢Œ zxz†„ …†€y‚ x‡ ù‰z{Ž|€€ x‡ zŒ …†z‚{¡ A ‹ ~|xz~ ƒ tme(A) ‹ {€ ‰x…yz~ ƒ €y……{|} zŒ
…†€y‚ x‡ ù‰z{Ž|€€ xŽ‚ †„„ „…|z€ x‡ zŒ …†z‚{¡ ¡‰z ‡x‚ zŒ †‚z{’‰{†„ ‚x€ †|~ ‰x„y…|€—
¢Œy€‹ zŒ }x†„ {€ zx ’|~ † …†z‚{¡ A ‰x|€z‚y‰z~ ‡‚x… A ƒ ‚…yz{|} €x… ‚x€ †|~ €x… ‰x„y…|€
…†¡{…{Š{|} tme(A ) —
–x‚ †‚ƒ{z‚†‚ ‚…yz†z{x|€ ρ †|~ σ x‡ zŒ ‚x€ †|~ ‰x„y…|€ ®‚‚€|z{|} zŒ …†z‚{¡ A ¯‹ zŒ
zxz†„ …†€y‚ x‡ ù‰z{Ž|€€ x‡ zŒ …†z‚{¡ A {€ tme(A ) = tme (A ) + tme (A ) Œ‚ tme (A ) =
P P
P P
|
(a
×a
+a
×a
) † ~ tme (A ) =
(a
×
P
P
—
„
w
{
{|
{
z
‚
}

~€õ

2a
×
a
+a
×a
)
tme
tme (A ) =
Œ
Œ
Œ
Œ
Œ
—
x|
x|
x|
x
{|‰
|
‹
{

{x|
|
|
‹
z
z
z
z
z
€



†
~
€
†
‚…y
†
†
~

‚
†
~
a
ρ
a
=a
=0
¢Œy€‹{‡  ~’| zŒ ~{€z†|‰ d(i, j) ƒz| ‰x„y…|€ i †|~ j †€ d(i, j) = 2 P a × a ‹ zŒ| 
xƒz†{| zŒ ‚xƒ„… x‡ ’|~{|} †…†¡{…y… š†…{„zx|{†| †zŒ ‡‚x… ‰x„y…| ø zx ‰x„y…| |ú˜— £{…{„†‚„‹
 ‰†| ƒ ‚‚{z{|} tme (A ) xƒz†{| zŒ ‚xƒ„… x‡ ’|~{|} † …†¡{…y… š†…{„zx|{†| †zŒ ‡‚x… ‚x
ø zx ‚x …ú˜‹ Œ‚ zŒ{€ z{… zŒ ~{€z†|‰€ †‚ ~’|~ ƒ d(i, j) = 2 P a × a — –{|†„„‹ 
€ zŒ†z ‚xƒ„… x‡ ‰„y€z‚{|} † ~†z† †‚‚† ‰†| ƒ ~‰x…x€~ {|zx zx …†¡{…y… š†…{„zx|{†| †zŒ
‚xƒ„…€‹ x| ~’|~ x| zŒ ‚x€ †|~ x| ~’|~ x| zŒ ‰x„y…|€—

1
n
i
i
i,j
i,j
i,j
i,j+1
i,j
i−1,j
i+1,j
i,j−1
i,j
0
0
0
0
m
i=1
n
j=1
ρ(i−1),σ(j)
ρ(i),σ(j)
ρ(i),σ(j−1)
ρ(i),σ(j)
ρ(i+1),σ(j+1)
ρ(i),σ(j)
0
ρ(i),σ(j+1)
1
1
0
2
2
1
0
0
k,σ(j+1)
2
0
1
m
i=1
n
j=1
n
j=1 ρ(i),σ(j)
m
k,σ(j)
k=1
k,σ(0)
m
k=1 k,i
k,σ(n+1)
k,j
0
n
k=1
0
i,k
j,k
Ÿ ‡x‰y€ x| zŒ ~€{}| x‡ †‚x¡{…†z{x| †„}x‚{zŒ…€ {zŒ }y†‚†|z~ ‚‡x‚…†|‰ ‚†z{x€‹ zŒ†z
‚y| {zŒ{| x„|x…{†„ z{… †|~ ‚x~y‰ €yƒxz{…†„ €x„yz{x|€— ë€y†„„‹x| ‰x…†‚€ zŒ x‚€z ‰†€
‚†z{x ®‰†„„~ €z†|~†‚~ ‚†z{x¯ x‡ zŒ ‰x€z x‡ zŒ €x„yz{x| }|‚†z~ ƒ zŒ †„}x‚{zŒ… zx zŒ xz{…†„ ‰x€z‹
{| zŒ x‚€z‰†€— šxŽ‚‹  …†{|„ ‚‡‚ {| zŒ{€ †‚z{‰„ zx †|xzŒ‚ ‚†z{x ‰†„„~ ê§ü èçè«©§¥¨ 祩§ª
Œ{‰Œ …†€y‚€ zŒ x‚€z ‚†z{x x‡‹ x| zŒ x| Œ†|~‹ zŒ ~{ù‚|‰ ƒz| zŒ ‰x€z x‡ zŒ €x„yz{x|
}|‚†z~ ƒ zŒ †„}x‚{zŒ… †|~ zŒ x‚€z ‰x€z‹ †|~ x| zŒ xzŒ‚ Œ†|~‹ zŒ ~{ù‚|‰ ƒz| zŒ
xz{…†„ ‰x€z †|~ zŒ x‚€z ‰x€z— ¢Œ{€ …†€y‚‹ €zy~{~ ƒ ò{„„x z †„— “• ‹ òy€{„„x z †„— “¿• ‹
‘x‚|yˆx„€ z †„— “÷• ‹ ㆎ†€{€ “왕 ®{| zŒ ‰x|z¡z x‡ |x|„{|†‚ ‚x}‚†……{|}¯‹ ý…„ “씕 †|~ …x‚
‚‰|z„ ƒ ð…†|} †|~ þ†€‰Œx€ “˜ì• †|~ š†€€{| †|~ ›Œy„„‚ “ø• ‹ „†~€ zx | †„}x‚{zŒ…€ z†µ{|}
{|zx †‰‰xy|z zŒ ¡z‚… €x„yz{x|€ x‡ zŒ {|€z†|‰‹ †|~ ‚xŽ{~€ zŒ xx‚zy|{z zx ƒzz‚ y|~‚€z†|~
zŒ€ ‚xƒ„…€— ¢Œ‚ †‚ }‚†z ~{ù‚|‰€ ƒz| €z†|~†‚~ †|~ ~{ù‚|z{†„ †‚x¡{…†z{x| ‡x‚ zŒ
…†¡{…y… š†…{„zx|{†| †zŒ ‚xƒ„…€— –x‚ {|€z†|‰‹  ‰†| †€{„ ‚xŽ zŒ†z zŒ ÿè¥çèé© ÿè§ï­ôªç
¤èîç§é©§æ ®€ –{€Œ‚ z †„— “˜™• x‚ x||xz “œ•¯ {€ €z†|~†‚~ †‚x¡{…†ƒ„ ‡x‚ °±² ³´´ †|~ {€
x‚ zŒ†z  Œ†Ž † z‚{Ž{†„ €z†|~†‚~ †‚x¡{…†z{x| €‰Œ…
‡x €z°†|~†‚~ †‚x¡{…†ƒ„ ‡xŒ‚ °±²‹ ³´´
‚ ±² ³´´ [n; n + 1]  ‚†€ zŒ ÿè¥çèé© ÿè§ï­ôªç ¤èîç§é©§æ{€ |xz † ~{ù‚|z{†„ †‚x¡{…†z{x|
{zŒ †| ‰x|€z†|z ‚†z{x ‡x‚ °±² ³´´ †|~ °±² ³´´ [n; n + 1] {€ |xz ~{ù‚|z{†„ †‚x¡{…†z
{zŒ ‚†z{x }‚†z‚ zŒ†| —
Ÿ |x }{Ž €x… €z†|~†‚~ ~’|{z{x|€õ
« ¬çªô¨è¦ π §é ¥ è©î¬ ¨è (I, sol, m, T riv, goal) éîæ­ ©­¥©
§ I §é ©­è éè© ª §«é©¥«æèé ¥«ê §é çèæªï«§¥ô¨è §« ¬ª¨í«ª¦§¥¨©§¦è
§§ §è« ¥« §«é©¥«æè I ∈ I sol[I] §é ©­è éè© ª è¥é§ô¨è 骨ª«é ª I ¦ªçèªèç ©­èçè èó§é©é
¥ ¬ª¨í«ª¦§¥¨ P éîæ­ ©­¥© ªç ¥«í x ∈ sol[I] |x| ≤ P (|I|) îç©­è禪çè §© §é êèæ§ê¥ô¨è §«
¬ª¨í«ª¦§¥¨ ©§¦è ­è©­èç x ∈ sol[I] ªç ¥«í I ¥«ê ªç ¥«í x éîæ­ ©­¥© |x| ≤ P (|I|) §«¥¨¨í
©­èçè §é ¥ è¥é§ô¨è 骨ª« T riv(I) 檦¬î©¥ô¨è §« ¬ª¨í«ª¦§¥¨©§¦è ªç ¥«í I §§§ §è« ¥« §«é©¥«æè I ¥«ê ¥ 骨ª« x ª I m[I, x] ê諪©èé ©­è «ª««è數§è §«©èïèç ¥¨îè ª x ­è î«æ©§ª« m §é 檦¬î©¥ô¨è §« ¬ª¨í«ª¦§¥¨ ©§¦è ¥«ê §é ¥¨éª 楨¨èê ©­è ªô èæ©§è î«æ©§ª«
§ goal ∈ {M ax, M in} ♦
Ÿ ‰†„„ π zŒ ¸¹ ‚xƒ„… (I, sol, m, T riv, goal) Œ‚ goal {€ ~’|~ †€ ‡x„„x€õ {‡ goal = M ax ‹
zŒ| goal = M in †|~ goal = M ax — ¢Œ }x†„ x‡ †| ¸¹xz{…{Іz{x| ‚xƒ„… {zŒ ‚€‰z zx †|
{|€z†|‰ I {€ zx ’|~ †| ª¬ ©§¦î¦ 骨ª« x €y‰Œ zŒ†z opt(I) = m[I, x ] = goal{m[I, x] : x ∈ sol[I]} —
ò|xzŒ‚ {…x‚z†|z €x„yz{x| x‡ π {€ † ªçé© éª¨î©§ª« x ~’|~ ƒõ wor(I) = m[I, x ] = goal{m[I, x] :
— ò x‚€z €x„yz{x| ‡x‚ π {€ †| xz{…†„ €x„yz{x| ‡x‚ π †|~ Ž{‰ Ž‚€†— å| òy€{„„x z †„— “¿• ‹
x ∈ sol[I]}
zŒ z‚… ©ç§§¥¨ 骨ª«‚‡‚‚~ zx †€ ªçé© éª¨î©§ª« †|~ †„„ zŒ ¡x€~ ¡†…„€ Œ†Ž zŒ ‚x‚z
zŒ†z † x‚€z €x„yz{x| ‰†| ƒ z‚{Ž{†„„ ‰x…yz~ {| x„|x…{†„z{…— –x‚ ¡†…„‹ zŒ{€ {€ zŒ ‰†€ x‡
zŒ …†¡{…y… ‘yz ‚xƒ„… Œ‚‹ }{Ž| † }‚†Œ‹ zŒ x‚€z €x„yz{x| {€ zŒ …z ~}€z }{Ž| ƒ
ÍÉ áÁÀÀÁ ÈÉ!ÂÎÃÎÁ ÁÏ áÅÆÇÇ "#$ ÈÁÉÇ ÂÁà ÐÉ%ËÎÐÉ ÃÍÉ É&ÎÇÃÉÂáÉ ÁÏ Æ ÃÐÎÝÎÆÅ ÇÁÅËÃÎÁÂÊ
1
2
1
3
s
s,t
s,t
s
s,t
741
742
∗
∗
∗
ì
∗
zŒ †‚z{z{x| (V, ∅) ‹ x‚ zŒ ž{|þ†‰µ{|} ‚xƒ„… Œ‚  ‰†| z‚{Ž{†„„ yz zŒ {z…€ y€{|} † ~{€z{|‰z
ƒ{| ‚ {z…— '| zŒ ‰x|z‚†‚‹ €{|‰ † x‚€z €x„yz{x| x‡ zŒ …†¡{…y… {}Œz š†…{„zx|{†| †zŒ ‡‚x…
zx t {€ †| xz{…†„ €x„yz{x| x‡ zŒ …{|{…y… {}Œz š†…{„zx|{†| †zŒ ‡‚x… s zx t ‹ zŒ ‰x…yz†z{x|
s
x‡ €y‰Œ † €x„yz{x| {€ ¸¹º»¼½¾— ¢Œy€‹ ‰x…yz{|} † x‚€z €x„yz{x| x‡ ³´´ ®x‚ ³´´ x‚ ³´´
‚€‰z{Ž„¯ {€ †€ Œ†‚~ †€ ‰x…yz{|} †| xz{…†„ x| x‡ ³´´ ®x‚ ³´´ x‚ ³´´ ‚€‰z{Ž„¯—
ñxz zŒ†z zŒ €†… ‚x‚z x‰‰y‚€ ‡x‚ † „†‚} ‰„†€€ x‡ ‚xƒ„…€‹ x||xz “÷• —
s
s
s,t
s,t
()( *++,-./0123 145-,/2607 189 ,39:;2/-87
å| x‚~‚ zx €zy~ †„}x‚{zŒ… ‚‡x‚…†|‰€‹ zŒ‚ †‚ zx µ|x| …†€y‚€õ é©¥«ê¥çê 祩§ª “˜”• ‹ “ì• ‹
“·• †|~ ê§ü èçè«©§¥¨ 祩§ª “˜ì• ‹ “¿• ‹ “ø• †|~ “÷• —
< =è© π ôè ¥« ¬çªô¨è¦ ¥«ê x ∈ sol[I] >è êè «è ©­è ¬èç ªç¦¥«æè 祩§ªé ª x
§©­ çèé¬èæ© ©ª ©­è §«é©¥«æè I ¥é
½
¾
m[I, x] opt(I)
@
¼
A
¾¼½¾
½¼
• ?
ρ (I, x) = M in
,
π
•
opt(I) m[I, x]
− m[I, x]
?¾B½¼C ½¼A δπ (I, x) = wor(I)
wor(I) − opt(I)
♦
¢Œ ‚‡x‚…†|‰ ‚†z{x {€ † |y…ƒ‚ „€€ zŒ†| x‚ öy†„ zx 1 ‹ †|~ {€ öy†„ zx 1 {‡ †|~ x|„ {‡ m[I, x] =
— ñxz zŒ†z‹ ‰x…†‚~ zx €x… ~’|{z{x|€‹  Œ†Ž {|Ž‚z~ zŒ €z†|~†‚~ ‚‡x‚…†|‰ ‚†z{x
opt(I)
{| zŒ ‰†€ x‡ …{|{…{Іz{x| ‚xƒ„…€ €x zŒ†z zŒ ‚†z{x ކ„y {€ †„†€ ƒz| 0 †|~ 1 — äz π
ƒ †| ¸¹ ‚xƒ„…— –x‚ †| {|€z†|‰ I x‡ π ‹ † x„|x…{†„ z{… †„}x‚{zŒ… A ‚zy‚|€ † ‡†€{ƒ„
€x„yz{x| x — ¢Œ ‚‡x‚…†|‰ x‡ A {zŒ ‚€‰z zx R ∈ {δ, ρ} x| zŒ {|€z†|‰ I {€ zŒ öy†|z{z
— Ÿ €† zŒ†z A {€ †| 奬¬çªó§¦¥©§ª« ¥¨ïªç§©­¦ {zŒ ‚€‰z zx R {‡ ‡x‚ †|
R [π](I) = R (I, x )
{|€z†|‰ I ‹  Œ†Ž R (I) ≥ ε —
D ªç ¥«í ¬èç ªç¦¥«æè 祩§ª R ∈ {δ, ρ}
ªô¨ ô ¨ª ©ª ©­è 樥éé APX(R) § ©­èçè èó§é©é ¥« 奬¬çªó§¦¥©§ª« §©­ çèé¬èæ©
• ¥« ¬ç è¦ è «ïé
©ª R ªç éª¦è æª«é©¥«© ε ∈]0; 1] ªô¨ ô ¨ª ©ª ©­è 樥éé PTAS(R) § ©­èçè èó§é©é ¥« 奬¬çªó§¦¥©§ª« A ªç ¥«í
• ¥« ¬ç è¦ è «ïé
檫驥«© ε ∈]0; 1[ ­è ¥¦§¨í {A } §é é¥§ê ©ª ôè ¥ ¬ª¨í«ª¦§¥¨ ©§¦è ¥¬¬çªó§¦¥©§ª« éæ­è¦è ♦
‘„†‚„‹ zŒ ‡x„„x{|} {|‰„y€{x| Œx„~€ ‡x‚ †| …†€y‚ R ∈ {δ, ρ} õ PTAS(R) ⊆ APX(R) — ò€ {z {€
y€y†„„ ~x|‹  {„„ ~|xz ƒ APX †|~ PTAS ‹ ‚€‰z{Ž„‹ zŒ ‰„†€€€ APX(ρ) †|~ PTAS(ρ) —
Ÿ ‰xy„~ †‚}y ŒzŒ‚ zŒ ~{ù‚|z{†„ ‚†z{x {€ ‚†„„ ‚z{||zõ zŒ †yzŒx‚€ x‡ “˜ì• †|~ “¿• †|€‚~
x€{z{Ž„ zx zŒ†z öy€z{x| †|~ ‰x|‰„y~~ zŒ†z zŒ{€ …†€y‚ {€ ‰x…„…|z†‚ {zŒ zŒ €z†|~†‚~
‚†z{x— ò€ €Œx| {| “˜˜• ‹ …†| ‚xƒ„…€ ‰†| Œ†Ž ~{ù‚|z ƒŒ†Ž{x‚ †zz‚|€ ~|~{|} x| ŒzŒ‚
zŒ ~{ù‚|z{†„ x‚ €z†|~†‚~ ‚†z{x {€ ‰Œx€|õ ‰x|€{~‚ ‡x‚ {|€z†|‰ ã‚z¡ ‘xŽ‚{|} x‚ ðx…{|†z{|}
£z ‚xƒ„…€— '| zŒ xzŒ‚ Œ†|~‹ zŒ‚ †‚ ‚xƒ„…€ zŒ†z €z†ƒ„{€Œ €x… ‰x||‰z{x|€ ƒz|
zŒ ~{ù‚|z{†„ †|~ zŒ €z†|~†‚~ ‚†z{x€‹ „{µ ž{| þ†‰µ{|} “˜• x‚ …†¡{…y… {}Œz ƒxy|~~~zŒ
€†||{|} z‚ “·• †|~ € ý…„ “씕 ‡x‚ …xz{ކz{x|€ †|~ ‰x…„…|z†‚{z „{|µ€ ƒz| zŒ zx
¿
A
A
π
A
A
ε
ε 0<ε<1
…†€y‚€— ž€{~€‹  €Œx zŒ†z zŒ‚ †‚ z{}Œz „{|µ€ ƒz| ƒxzŒ …†€y‚€ ‡x‚ zŒ ‚xƒ„…€ ~†„z
{zŒ {| zŒ ‰†€ Œ‚ zŒ ~}{}Œz€ Œ†Ž „x‚ †|~ y‚ ƒxy|~€—
ñx‹ ‰x|€{~‚ zŒ ‡x„„x{|} †‚x¡{…†z{x| ‚€‚Ž{|} ‚~y‰z{x|€ ƒz| †{‚€ (π, R) —
E ªç π ∈ N P O ¥«ê R ∈ {δ, ρ} i = 1, 2
æ©§ª« 窦 (π , R ) ©ª (π , R ) ê諪©èê ôí (π , R ) ≤ (π , R )
• ¥« A çèêî
§é ¥ ©ç§¬¨è© (∝, f, c) éîæ­ ©­¥©
§ ∝: I 7−→ I ©ç¥«é ªç¦é ¥« §«é©¥«æè ª π §«©ª ¥« §«é©¥«æè ª π §« ¬ª¨í«ª¦§¥¨©§¦è
§§ f : sol [∝ (I)] 7−→ sol [I] ©ç¥«é ªç¦é 骨ª«é ªç π §«©ª 骨ª«é ªç π §« ¬ª¨í«ª¦§¥¨
©§¦è
§§§ c : [0; 1] 7−→ [0; 1] 楨¨èê è󬥫駪« ª ©­è çèêîæ©§ª« §é ¥ î«æ©§ª« 饩§é í§«ï c (0) ⊆ {0}
¥«ê ∀ε ∈ [0; 1], ∀I ∈ I , ∀x ∈ sol [∝ (I)] R [π ](∝ (I), x) ≥ ε =⇒ R [π ](I, f (x)) ≥ c(ε)
æ©§ª« 窦 ©­è¬¥§ç (π , R ) ©ª ©­è¬¥§ç (π , R ) ê諪©èê ôí (π , R ) ≤ (π , R )
• ¥« A∗P çèêî
§é ¥« Açèêîæ©§ª« 窦 (π , R ) ©ª (π , R ) éîæ­ ©­¥© ©­è çèé©ç§æ©§ª« ª î«æ©§ª« c ©ª éª¦è §«©è票
§ ô§ æ©§
ô ª ª
[a; 1] é è è ¥«ê c(1) = 1 (c(0) ¦¥í è « « èç ♦
ò| A‚~y‰z{x| ‚€‚Ž€ ‰x|€z†|z †‚x¡{…†z{x| Œ{„ A ∗ P ‚~y‰z{x| ‚€‚Ž€ †‚x¡{…†z{x|
€‰Œ…€— ¢Œ †‚ † |†zy‚†„ }|‚†„{Іz{x| x‡ zŒx€ ~€‰‚{ƒ~ ƒ '‚x|| †|~ †||{„† “ìø• †|~
‘‚€‰|Š{ †|~ þ†|‰x|€{ “œ• —
F G (π , R ) ≤ (π , R ) ¥«ê (π , R ) ≤ (π , R ) §©­ c(ε) = ε è é¥í ©­¥©
§ § ¨ © ©ª (π , R ) (π , R ) é èHî ¥ è«
♦
¢Œ ~{ù‚|z{†„ ‚†z{x …†€y‚€ Œx zŒ ކ„y x‡ †| †‚x¡{…†z €x„yz{x| m[I, x] {€ „x‰†z~ {|
zŒ {|z‚ކ„ ƒz| opt(I) †|~ wor(I) — x‚ ¡†‰z„ {z {€ öy{ކ„|z ‡x‚ † …†¡{…{Іz{x| ‚xƒ„…
zx ‚xŽ δ (I, x) ≥ ε †|~ m[I, x] ≥ εopt(I) + (1 − ε)wor(I) — '| zŒ xzŒ‚ Œ†|~‹ zŒ €z†|~†‚~ ‚†z{x
…†€y‚€ ®‡x‚ † …†¡{…{Іz{x| ‚xƒ„…¯ Œx zŒ ކ„y x‡ †| †‚x¡{…†z €x„yz{x| {€ „†‰~ {| zŒ
{|z‚ކ„ ƒz| 0 †|~ opt(I) — š|‰‹  Œ†Ž †| A ∗ P ‚~y‰z{x| ‡‚x… zŒ €z†|~†‚~ ‚†z{x zx zŒ
~{ù‚|z{†„ ‚†z{xõ
IJJ¼ K G π = (I, sol, m, T riv, M ax) ∈ ©­è« (π, ρ) ≤ (π, δ) §©­ c(ε) = ε ¹½L M äz I ƒ †| {|€z†|‰ x‡ π †|~ x ƒ † ‡†€{ƒ„ €x„yz{x|— å‡ m[I, x] ≥ εopt(I) + (1 − ε)wor(I)
zŒ|  Œ†Ž †„„ zŒ …x‚ €x m[I, x] ≥ εopt(I) €{|‰ wor(I) ≥ 0 —
ñxz zŒ†z‹ {| }|‚†„‹ zŒ‚ {€ |x Ž{~|z z‚†|€‡‚ x‡ † x€{z{Ž x‚ |}†z{Ž ‚€y„z ‡‚x… x|¤
‡‚†…x‚µ zx zŒ xzŒ‚ ‡x‚ † …{|{…{Іz{x| ‚xƒ„…— –x‚ {|€z†|‰‹  Œ†Ž ‚xŽ~ {| ð…†|} z †„—
“˜ø• zŒ†z † Ž‚€{x| x‡ {}Œz~ …{|{…y… ‰x„x‚{|} †~…{z€ † €z†|~†‚~ |x|†‚x¡{…†z{x| zŒ‚€Œx„~
öy†„ zx {| ƒ{†‚z{z }‚†Œ€ Œ‚†€  Œ†Ž ƒy{„z † ~{ù‚|z{†„ †‚x¡{…†z{x| €‰Œ…û {| zŒ{€
‰x„x‚{|} Ž‚€{x|‹ zŒ ‰x€z x‡ † €z†ƒ„ €z {€ }{Ž| ƒ zŒ …†¡{…y… x‡ zŒ Ž‚z¡ {}Œz€ {| zŒ{€ €z†ƒ„
€z—
™
i
i
1
π1
1
2
2
π2
1
A
1
1
π2
2
2
2
π1
2
1
−1
π1
π2
2
1
1
1
1
1
1
A∗P
1
2
1
2
2
2
1
2
2
1
2
2
2
2
A∗P
1
2
π
A∗P
7
8
1
1
1
A∗P
2
2
N OPQ RSTvUprovSo VSpP VqrWUQT
¢Œ š†…{„zx|{†| †zŒ ‚xƒ„…‹ †„€x ‰†„„~ zŒ ç¥è¨§«ï X¥¨è馥« Y¥©­ ¬çªô¨è¦‹ {€ ‡x‚…†„„ ~’|~
†€ ‡x„„x€—
< Zª«é§êèç ¥ 檦¬ ¨è©è ï祬 ­ K §©­ «ª««è數§è æªé©é d(x, y) ªç è¥æ­ èç©èó ¬¥§ç
>è ¥«© ©ª «ê ¥« ª¬ ©§¦¥¨æªé© ¤¥¦§¨©ª«§¥« ¬¥©­ ­èçè ©­è æªé© ª ¥ ¬¥©­ §é ©­è éî¦ ª ©­è è§ï­©é
ª« §©é èêïèé >è çè èç ©­§é ¬çªô¨è¦ ¥é ³´´ >­è« ª«è è«ê¬ª§«© s çèé¬ ©ª è«ê¬ª§«©é s ¥«ê t ª
¤¥¦§¨©ª«§¥« ¬¥©­ ¥çè é¬èæ§ èê è îéè ©­è «ª©¥©§ª« ³´´ çèé¬ ³´´ G goal = M ax ©­è ¬çªô¨è¦ §é 楨¨èê °±² ³´´ è¨éè °[\ ³´´ >è îéè «ª©¥©§ª« ³´´ ³´´
ªç ³´´ §©­ «ª ¬çèó ­è« è æª«é§êèç §©­ªî© ê§é©§«æ©§ª« ©­è æ¥éè goal = M ax ªç goal = M in n
s
s,t
s
s,t
♦
£z†|~†‚~ ‚†z{x †‚x¡{…†z{x| ‚€y„z€ ‰†| ƒ ~‚{Ž~ ‡x‚ ³´´ ƒ y€{|} z‚{Ž{†„ ‚~y‰z{x| zx ]^´õ
zŒ ’‚€z |}†z{Ž †‚x¡{…†z{x| ‚€y„z ®zŒ†z  ‰†| ~~y‰ ‡‚x… “ì앯 €z†z€ zŒ†z {z {€ |xz x€€{ƒ„ zx
†‚x¡{…†z °[\ ³´´ {zŒ{| 1/f (|I|) Œ‚ ‡ {€ †| {|z}‚ ‡y|‰z{x| ‰x…yz†ƒ„ {zŒ{| x„|x…{†„
z{… y|„€€ ¹_¸¹— '| zŒ xzŒ‚ Œ†|~‹ metric` °[\ ³´´ {€ †‚x¡{…†ƒ„ {zŒ{| 2/3 “”• †|~ °[\
³´´[1, 2] {€ a¹bºcJdC ®~~y‰~ ‡‚x… þ††~{…{z‚{xy †|~ e†||†µ†µ{€ “옕¯— –x‚ °±² ³´´‹
zŒ ‚€y„z€ †‚ …x‚ xz{…{€z{‰ €{|‰ zŒ{€ ‚xƒ„… {€ {| a¹b—¢Œ ƒ€zµ|x| €z†|~†‚~ ‚†z{x {€ öy†„
zx †|~ ‰†| ƒ ~~y‰~ ‡‚x… š†€€{| †|~ wyƒ{|€z{| “˜• —
°[\ °fgh[i ³´´ {€ †€ Œ†‚~ zx †‚x¡{…†z †€ °[\ °fgh[i ³´´ — å€ °[\ °fgh[i ³´´
‚†„„ …y‰Œ Œ†‚~‚ zx †‚x¡{…†z zŒ†| °[\ °fgh[i ³´´ j ¢Œ{€ {|z‚€z{|} öy€z{x| ‚†{€~ zŒ
’‚€z z{… ƒ kxŒ|€x| †|~ þ††~{…{z‚{xy “ì• x| zŒ ‚„†z{Ž Œ†‚~|€€ x‡ zŒ zx €‰{’~ |~x{|z€
Ž‚€{x| ‰x…†‚~ zx zŒ x| €‰{’~ |~x{|z {€ €z{„„ x| zx~†— šxŽ‚ ‹ zŒ x€{z{Ž ‚€y„z€
}{Ž| x| zŒ€ ‚xƒ„…€ „†~ zx † x€{z{Ž †|€‚ zx zŒ öy€z{x| €{|‰ zŒ ƒ€zµ|x| €z†|~†‚~
‚†z{x€ †‚ ‡x‚ °[\ °fgh[i ³´´ ‹ šxx}Ž| “• †|~ ‡x‚ °[\ °fgh[i ³´´ šxx}Ž|
“• ‹ ¶yzz…†||ž‰µ z †„— “˜·• — –{|†„„‹ {‡  ‰x|€{~‚ zŒ ‰†€ a ≤ d(e) ≤ 2a zŒ‚ †‚ |x €‰{’‰
‚€y„z€— –x‚ ¡†…„ ‘Œ‚{€zx’~€l …x~{’‰†z{x| †„}x‚{zŒ… “• ‚…†{|€ † 2/3€z†|~†‚~ ‚†z{x ‡x‚ °[\
³´´ [a; 2a] — ¢x xy‚ µ|x„~}‹ |x €z†|~†‚~ †‚x¡{…†z{x| ‚€y„z Œ†€ ƒ| ‡xy|~ ‡x‚ °±² ³´´
†|~ °±² ³´´ —
Ÿ €Œx zŒ†z ³´´ {€ †‚x¡{…†ƒ„ †|~ ³´´ {€ †‚x¡{…†ƒ„ y|~‚ zŒ ~{ù‚|z{†„
‡‚†…x‚µ— Ÿ ‰†| ~~y‰ ‡‚x… ä……† ˜—” † €z†|~†‚~ †‚x¡{…†z{x| ‡x‚ °±² ³´´ †|~ † 
€z†|~†‚~ †‚x¡{…†z{x| ‡x‚ °±² ³´´ — x‚xŽ‚‹ xy‚ z‰Œ|{öy †„„x€ zx Œ†|~„ zŒ ‰†€ Œ‚
†„„ zŒ ~} {}Œz€ †‚ {zŒ{| †| {|z‚ކ„ [a, 2a] ‡x‚ †| x€{z{Ž a €{|‰ ‡‚x… ‚Ž{xy€ ‚€y„z€‹ 
~~y‰ † ®‚€— ¯€z†|~†‚~ †‚x¡{…†z{x| ‡x‚ °[\ ³´´ [a, 2a] ®‚€— °[\ ³´´ [a, 2a]¯ †|~
† ®‚€— ¯€z†|~†‚~ †‚x¡{…†z{x| ‡x‚ °±² ³´´ [a, 2a] ®‚€— °±² ³´´ [a, 2a]¯— ¢Œy€ ‡x‚
zŒ€ ‚€z‚{‰z{x|€‹  {…‚xŽ zŒ ƒ€zµ|x| ƒxy|~€ x‡ ®‚€— ¯ ‡x‚ …{|{…{Іz{x| Ž‚€{x|€ }{Ž|
ƒ šxx}Ž| “• ®‚€— ¶yzz…†||ƒ‰µ z †„— “˜·• x‚ “•¯—
m ÕÆÃÎÇÏnÎÂo ÏÁÐ ÆÅÅ ÝÉÐÃÎáÉÇ
ÃÍÉ ÎÂÉ%ËÆÅÎÃnp
Ê
25
33
s,t
s
s,t
s
2
3
3
5
s
s,t
s
s
s,t
s
2
3
s,t
1
2
2
3
s
s,t
3
4
5
6
2
3
s
3
4
s,t
s
s,t
2
3
x, y, z
d(x, y) ≤ d(x, z) + d(z, y)
”
3
5
1
2
q rUQTQopSqs VqrV QqpvQt
äz y€ ’‚€z €z†ƒ„{€Œ €x… ‚„†z{x|€ ƒz| ³´´‹ ³´´ ‹ ³´´ †|~ ~{ù‚|z €yƒ‰†€€— Ÿ ‚xŽ
zŒ†z ³´´ {€ zŒ …x€z }|‚†„ ‚xƒ„…— ò€ † €‰x|~ €z‹  €z†ƒ„{€Œ ‡x‚ †‰Œ ‚xƒ„… €x…
‰x||‰z~ ‚„†z{x|€ ƒz| ~{ù‚|z{†„ †|~ €z†|~†‚~ ‚†z{x€— å| zŒ ‡x„„x{|} †‚†}‚†Œ‹ {zŒxyz
€‰{’‰†z{x|‹ zŒ ‚x‚z{€ zŒ†z  ‚€|z ‡x‚ ³´´ †‚ †„€x z‚y ‡x‚ ³´´ †|~ ³´´—
³´´ {€ †€ Œ†‚~ †€ ³´´ ®Œ{‰Œ {€ {z€„‡ †€ Œ†‚~ †€ ³´´¯ zx †‚x¡{…†z ‡x‚ ƒxzŒ ‚‡x‚…†|‰
‚†z{x€— x‚xŽ‚‹ ‡‚x… † ~{ù‚|z{†„ †‚x¡{…†ƒ{„{z x{|z x‡ Ž{‹ zŒ€ ~{ù‚|z Ž‚€{x|€ †‚ Ž‚
‰„x€ zx zŒ ]^´‹ Ž| {‡  ‰x|€{~‚ zŒ ‚€z‚{‰z{x| a ≤ d(e) ≤ b —
IJJ¼ D ªç ¥«í goal ∈ {M in, M ax} è ­¥è
]^´[a, b] δ) ≤ (goal ³´´ [a, b] δ) §©­ c(ε) = ε (i) (goal
³´´[a, b]δ) ≤ (goal ]^´[a, b]δ) §©­ c(ε) = ε (ii) (goal
¹½LM Ÿ x|„ €Œx zŒ ‰†€ goal = M ax —
–x ä z
{zŒ a ≤ d(e) ≤ b ƒ †| {|€z†|‰ x‡ °±² ]^´[a, b] — ‘Œxx€ † Ž‚z¡ s
• ‚ (i) õ  I = (n, d) 
{| K †|~ ~’| I = (n, s, v, d) †| {|€z†|‰ x‡ °±² ³´´ [a, b] ‡x‚ Ž‚ v ∈ V \ {s} — äz µ ƒ
† š†…{„zx|{†| †zŒ ‡‚x… s zx v x‡ I Œ{‰Œ {€ †| ε~{ù‚|z{†„ †‚x¡{…†z{x| ‡x‚ °±² ³´´ [a, b] —
£x‹ ‡x‚ Ž‚ v ∈ V \ {s}  Œ†Žõ
®ì—˜¯
m[I , µ ] ≥ εopt uvw xyy (I ) + (1 − ε)wor uvw xyy (I )
–‚x… µ {zŒ v ∈ V \{s} ‹  ‰x|€z‚y‰z zŒ š†…{„zx|{†| ‰‰„ Γ = argmax{m[I, Γ ] : v ∈ V \{s}}
Œ‚ Γ = µ ∪ {(s, v)} —
ñx‹ ‰x|€{~‚ v €y‰Œ zŒ†z †| xz{…†„ š†…{„zx|{†| ‰‰„ x‡ I = (n, d) ‰x|z†{|€ ~} (s, v ) û zŒy€‹
 Œ†Žõ
®ì—¯
opt uvw xyy (I ) + d(s, v ) = opt uvw z{y(I)
äz µ ƒ † x‚€z š†…{„zx|{†| †zŒ ‡‚x… s zx v û µ ∪ {(s, v )} {€ †| š†…{„zx|{†| ‰‰„ †|~ 
~~y‰õ
®ì—ì¯
wor uvw xyy (I ) + d(s, v ) ≥ wor uvw z{y(I)
‘x…ƒ{|{|} {|öy†„{z{€ ®ì—˜¯‹ ®ì—¯ †|~ ®ì—쯋  xƒz†{|õ m[I, Γ] ≥ m[I, µ ] + d(s, v ) ≥
—
εopt uvw z{y(I) + (1 − ε)wor uvw z{y(I)
–x {{¯ ä z
{zŒ a ≤ d(e) ≤ b ƒ †| {|€z†|‰ x‡ °±² ³´´[a, b] — Ÿ z‚†|€‡x‚… I
• ‚ ® õ  I = (n, d) 
{|zx {|€z†|‰ ∝ (I) = (n+1, d ) †€ ‡x„„xõ †~~ † | Ž‚z¡ s zx }‚†Œ K †|~ ~’| d (s, v) = a, ∀v ‹
‡x xzŒ‚ ~}€—
d (e) = d(e) ‚
¤
'ƒ€‚Ž zŒ†z zŒ ‚xx‡ x‡ {z… (ii) †„€x Œx„~€ ‡x‚ zŒ €z†|~†‚~ ‚†z{x {zŒ goal = M ax ‹ ƒyz {|
zŒ{€ ‰†€‹  …{}Œz Œ†Ž a = 0 — £x‹  ~~y‰ ‡‚x… zŒ ‚€y„z x‡ š†€€{| †|~ wyƒ{|€z{| “˜• ‡x‚ °±²
÷
s
s,t
s,t
s,t
s,t
s
s
A∗P
s,t
A∗P
n
s,v
v
v
v
v
s,v
v
s,v
v
s,v
v
v
v
v
v
∗
∗
s,v ∗
∗
v∗
∗
∗
∗
∗
s,v ∗
v∗
∗
∗
v∗
0
0
n
0
]^´ zŒ†z °±² ³´´ {€ 25 €z†|~†‚~ †‚x¡{…†ƒ„ — '| zŒ xzŒ‚ Œ†|~ ‹ ‡‚x… zŒ ‚€y„z x‡ £†Œ|{
†|~ ¶x|І„Š “ìì•  µ|x33 zŒ†z °[\ ³´´s,t {€ |xz {| a¹b y|„€€ ¹_¸¹— ¢Œ{€ †€……z‚ {|
zŒ †‚x¡{…†ƒ{„{z x‡ ƒxzŒ Ž‚€{x|€ ®°±² ³´´s,t {€ {| a¹b †€ „†z‚ ‚xŽ~¯ ‰†| ƒ ‰x|€{~‚~ †€
€x…Œ†z €z‚†|} }{Ž| zŒ €z‚y‰zy‚†„ €……z‚ ¡{€z{|} ƒz| zŒ…— £{|‰ ~{ù‚|z{†„ †‚x¡
{…†z{x| {€ €z†ƒ„ y|~‚ †|| z‚†|€‡x‚…†z{x| x‡ zŒ xƒˆ‰z{Ž ‡y|‰z{x| ®€ ‡x‚ {|€z†|‰ š†€€{| †|~
›Œy„„‚ “ø• x‚ ð…†|} †|~ þ†€‰Œx€ “˜ì•¯‹ °±² ³´´ †|~ °[\ ³´´ †‚ ~{ù‚|z{†„öy{ކ„|z
®€ ð’|{z{x| ˜—™¯—
¹½d@ D< ­è ª¨¨ª§«ï ¥ééèç©§ª«é ­ª¨ê
°[\ ³´´ §é ê§ü èçè«©§¥¨èHî§¥¨è«© ©ª °±² ³´´ (i)
§ §ü ©§ ¨ § ¨ © ©ª M axHP P [a, b] (ii) M inHP P [a, b] é ê èçè« ¥ èHî ¥ è«
³´´ §é ê§ü èçè«©§¥¨èHî§¥¨è«© ©ª ¦è©ç§æ ³´´ (iii)
³´´ [a, b] §é ê§ü èçè«©§¥¨èHî§¥¨è«© ©ª ³´´ [a + t, b + t] ªç ¥«í t (iv)
¹½L M äz d = max d(e) †|~ d = min d(e) — ¶{Ž| †| {|€z†|‰ {zŒ ~{€z†|‰ ‡y|‰
z{x| d x‡ zŒ „‡z ‚xƒ„… {| {z…€ (i) − (iv) ‹  ‰x|€z‚y‰z † ~{€z†|‰ ‡y|‰z{x| d zx †| {|€z†|‰ x‡
zŒ ‰x‚‚€x|~{|} ‚{}Œz ‚xƒ„… {| {z…€ (i) − (iv) †€ ‡x„„x€õ (i) d (e) = d + d − d(e) ‹ (ii)
— {|‰ {ù |z{ „ z{x {€ €z†ƒ„
‹
‹
d (e) = a + b − d(e) (iii) d (e) = d
+ d(e) (iv) d (e) = t + d(e) £  ~ ‚ † ‚†
y|~‚ †|| z‚†|€‡x‚…†z{x| x‡ zŒ xƒˆ‰z{Ž ‡y|‰z{x| ®€ ð…†|} †|~ þ†€‰Œx€ “˜ì• x‚ š†€€{| †|~
›Œy„„‚ “ø•¯‹ zŒ{€ ‰x|‰„y~€ zŒ ‚xx‡—
¤
'ƒ€‚Ž zŒ†z zŒ (iv) x‡ zŒ{€ ‚xx€{z{x| †„„x€ zx ~†„ {zŒ zŒ ‰†€ Œ‚ zŒ ~{€z†|‰€ †‚
|}†z{Ž— ¢Œ ‡x„„x{|} †€ zŒx‚… Œx„~€‹ zŒy€ }{Ž{|} † ƒ‚{~} ƒz| ~{ù‚|z{†„ †|~ €z†|~†‚~
‚†z{x€ ‡x‚ goal = M ax †|~ goal = M in ‹ {| zŒ ‰†€ Œ‚ ~} {}Œz€ ƒ„x|} zx †| {|z‚ކ„ [a, b] —
}»½J DD (goal ³´´ [a, b] ρ) ≤ (goal ³´´ [a, b] δ) §©­ ©­è è󬥫駪« 饩§é í§«ï (b − a)ε a §
• c (ε) =
goal = M ax
+
b
b
a
§ goal = M in
• c (ε) =
s,t
s,t
s,t
s,t
s,t
s,t
s,t
s,t
s,t
s,t
max
min
e∈E
e∈E
0
0
0
0
max
A∗P
s,t
max
min
0
s,t
1
2
b − (b − a)ε
¹½L M Ÿ x|„ ‚xŽ zŒ goal = M ax ‰†€— äz I ƒ †| {|€z†|‰ †|~ µ ƒ † š†…{„zx|{†| †zŒ
‡‚x… s zx t — å‡ m[I, µ] ≥ εopt(I)+(1−ε)wor(I) ‹ zŒ| m[I, µ] ≥ c (ε)opt(I) €{|‰ wor(I) ≥ opt(I) —¤
¢Œ þ‚xx€{z{x| 엝 †|~ zŒ ¢Œx‚… ì—ì †„€x Œx„~ ‡x‚ ³´´ †|~ …x‚ }|‚†„„‹ zŒ€ ‚€y„z€
x‚µ ‡x‚ …†| €‰{’‰ xz{…{Іz{x| ‚xƒ„…€ ‡‚x… }‚†Œ zŒx‚‹ zŒx€ ‡x‚ Œ{‰Œ †„„ ‡†€{ƒ„ €x„yz{x|€
Œ†Ž †| öy†„ €{Š zŒ†z ~|~€ x| zŒ {|€z†|‰ €{Š ®€ x||xz “÷•¯—
°±² ³´´ [a, b] †|~ °[\ ³´´ [a, b] ®‡x‚ a †|~ b |xz ~|~{|} x| zŒ {|€z†|‰¯ †‚ z‚{Ž{†„„
{| a¹b Œ| a > 0 €{|‰ †| €x„yz{x| {€ †z „†€z † a/b€z†|~†‚~ †‚x¡{…†z{x| ®z†µ ε = 0 {|
·
a
b
1
s
s,t
s,t
¢Œx‚… ì—ì¯û {| zŒ{€ ‰†€‹ zŒ €z†|~†‚~ ‚†z{x …† |xz ƒ zŒ†z …†|{|}‡y„ €{|‰ Ž| † x‚€z €x„yz{x|
{„~€ † ‰x|€z†|z €z†|~†‚~ †‚x¡{…†z{x|— ñŽ‚zŒ„€€‹  ‰†| ~~y‰ ‡‚x… zŒ{€ zŒx‚… zŒ†z zŒ
Œ†‚~|€€ zŒ‚€Œx„~€ ‡x‚ €z†|~†‚~ †|~ ~{ù‚|z{†„ ‡‚†…x‚µ †‚ {~|z{‰†„ €{|‰ °[\ ³´´ [a, b] {€
a¹bºcJdC —
~½CC¼½ DE ªç ¥¨¨ b > a ≥ 0 ³´´ [a, b] ∈/ PTAS(δ) èéé €
Ÿ ‰†| †„€x €z†ƒ„{€Œ † „{…{z x| {z€ ~{ù‚|z{†„ †‚x¡{…†z{x| ‡x‚ €x… ކ„y€ x‡ a †|~ b — w‰†„„ zŒ
|}†z{Ž ‚€y„z x‡ |}ƒ‚z€| †|~ ›†‚{|€µ{ “˜¿• ‡x‚ °[\ ]^´[1, 2] õ ‡x‚ †| ² > 0 ‹ |x x„|x…{†„
z{… †„}x‚{zŒ… ‰†| }y†‚†|z † €z†|~†‚~ †‚x¡{…†z{x| ‚†z{x }‚†z‚ zŒ†|‹ x‚ öy†„ zx‹ + ² —
åz {€ †€ zx xƒ€‚Ž zŒ†z °[\ ³´´ [1, 2] †|~ °[\ ³´´ [1, 2] †‚ ®†€…zxz{‰†„„¯ öy{ކ„|z
zx †‚x¡{…†z °[\ ]^´[1, 2] — ¢Œy€‹  ‰†| ~~y‰ zŒ†z °[\ ³´´ [1, 2] †|~ °[\ ³´´ [1, 2]
†‚ |xz €z†|~†‚~ †‚x¡{…†ƒ„ {zŒ ‚†z{x }‚†z‚ zŒ†| — –{|†„„‹ y€{|} ¢Œx‚… ì—ì †|~ (iv) x‡
þ‚xx€{z{x| 엝‹  xƒz†{|õ
¹½d@ DF ªç ¥¨¨ a ³´´ [a, a+1] ¥«ê ³´´ [a, a+1] ¥çè «ª© ¥¬¬çªó§¦¥ô¨è §©­ ê§ü èçè«©§¥¨
祩§ª ïç襩èç ©­¥« èéé €
‚ ƒVVqr„vTSpQ SU…rqvpPTt †rq pPQtQ VqrWUQTt
å| zŒ{€ €‰z{x|‹  ‚xx€ zx z€ x‡ †„}x‚{zŒ…€ Œ{‰Œ {„~ ‰x|€z†|z ~{ù‚|z{†„‚†z{x— –x‚ °±²
³´´ ‹ zŒ †„}x‚{zŒ… {€ xƒz†{|~ ƒ }zz{|} €Ž‚†„ ‡†€{ƒ„ €x„yz{x|€ †|~ ƒ ‰Œxx€{|} zŒ ƒ€z
x| †…x|} zŒ…— †‰Œ x‡ zŒ€ {|~{Ž{~y†„ €x„yz{x|€ Œ†€ † ~{ù‚|z{†„ †‚x¡{…†z{x| ‚†z{x z|~{|}
zx†‚~€ Š‚x {zŒ zŒ €{Š x‡ zŒ {|€z†|‰— –x‚ °±² ³´´ ‹ zŒ †„}x‚{zŒ… {€ Ž‚ ~{ù‚|z †|~ z†µ€
{|zx †‰‰xy|z zŒ ¡z‚… €x„yz{x|€— £x‹ x| zŒ x| Œ†|~‹ zŒ †„}x‚{zŒ… z‚{€ zx ƒ zŒ |†‚€z ‡‚x…
zŒ ƒ€z €x„yz{x| ކ„y †|~ x| zŒ xzŒ‚ Œ†|~‹ z‚{€ zx ƒ zŒ ‡y‚zŒ€z ‡‚x… zŒ x‚€z €x„yz{x| ކ„y—
å| x‚~‚ zx ~x zŒ†z‹ {z {z‚†z{Ž„ ‚xŽ{~€ † €x„yz{x| x‡ ކ„y }‚†z‚ zŒ†| (wor(I ) + opt(I ))/2 ‹
Œ‚ I {€ zŒ €yƒ}‚†Œ ƒy{„z †z €z j —
s,t
s,t
740
741
s,t
s
s
s,t
740
741
s,t
s
741
742
s
s,t
j
j
j
‡ )( ˆ63 145-,/260 ‰-, 2Š- 7+3;/‹39 389+-/827 Œ3,7/-8
°±² ³´´ ‰†| †„€x ƒ ‚}†‚~~ †€ zŒ ‚xƒ„… x‡ ~z‚…{|{|} † š†…{„zx|{†| ‰‰„ zŒ†z ‰x|z†{|€
~} (s, t) — ¢Œ †„}x‚{zŒ… x‚µ€ ƒ ’|~{|} † …†¡{…y… {}Œz 2…†z‰Œ{|} †…x|} 2…†z‰Œ{|}€
‰x|z†{|{|} (s, t) †|~ †z †‰Œ €z‹ …‚}{|} zŒ ‰‰„€ zx ƒ zx— ¢Œ …†{| {~† ‰x|€{€z€ {| x{|z{|}
xyz zŒ†z  ‰xy„~ Œ†Ž „x€z …y‰Œ …x‚ ƒ …‚}{|} zŒ zx ‰‰„€ {| † ~{ù‚|z †— ¢Œy€‹  {„„
ƒy{„~ ~|†…{‰†„„ †|xzŒ‚ €x„yz{x| Œ{‰Œ †‚x¡{…†z zŒ x‚€z €x„yz{x|û zŒ{€ €x„yz{x| {„„ †‰zy†„„
~|~€ x| zŒ ‰Œx{‰€ …†~ ƒ zŒ †„}x‚{zŒ… †z †‰Œ {z‚†z{x|—
‘x|€{~‚ zx ‰‰„€ C †|~ zx ~}€ (x , x ) ∈ C †|~ (y , y ) ∈ C ‹  ‰†„„ localchange ‡x‚
zŒ ‡x„„x{|} ‚x‰€€õ
i = 1, 2 
s,t
i
1
2
1
1
2
2
i
localchangei [(C1 , (x1 , x2 )), (C2 , (y1 , y2 ))] = {(x1 , y3−i ), (x2 , yi )} ∪ (C1 ∪ C2 \ {(x1 , x2 ), (y1 , y2 )})
œ
¢Œ€ zx ‚x‰€€€ …‚} zŒ ‰‰„€ C †|~ C {|zx † €{|}„ ‰‰„ ®€ zŒ –{}y‚ ˜ ‡x‚ †| {„„y€z‚†
z{x|—¯— ñxz zŒ†z zŒ Ž‚z¡ x‚~‚ {€ {…x‚z†|z {| zŒ ‚x‰€€€û zŒy€‹ ~}€ (x , x ) x‚ (y , y )
1
2
1
C1
6
1
1
2
2
6
1
1
2
2
3
3
4
4
1
1
6
2
2
5
3
3
4
4
5
5
5
5
3
3
4
4
1
2
localchange2
localchange1
C2
2
5
–{}y‚ ˜õ ¢Œ localchange ‚x‰€€€ ƒz| zŒ ~} (2, 3) x‡ C †|~ zŒ ~} (2, 3) x‡ C —
i
1
2
†‚ {…„{‰{z„ }{Ž| †€ ~{‚‰z~ ~}€ †|~  Œ†Žõ localchange [(C , (x , x )), (C , (y , y ))] =
— x x ‹ Œ|
{ |xz †~ˆ †‰|z
|
localchange [(C , (x , x )), (C , (y , y ))] ‚ Ž‚   C = C † ~ (x , x ) €
zx (y , y ) ‹ zŒ€ ‚x‰€€€ €{…„ †…xy|z zx „x‰†„ ~} €†€— Ÿ †€€x‰{†z {zŒ localchange †
‡y|‰z{x| cost zŒ†z ‚‚€|z€ zŒ „x€€ {| …‚}{|} zx ‰‰„€õ
1
2
1
1
1
2
2
1
2
1
1
2
2
1
1
2
1
2
2
2
i
i
costi [(x1 , x2 ), (y1 , y2 )] = d(x1 , x2 ) + d(y1 , y2 ) − d(x1 , y3−i ) − d(x2 , yi )
“LocalchangeHP P •
d õ ò| {|€z†|‰ (n, s, t, d) û
d õ ò š†…{„zx| †zŒ sol ‡‚x… s zx t û
‘Œ†|} zŒ ‰x€z x‡ (s, t) {|zx |V |d + 1 — ‘†„„ zŒ{€ ‡y|‰z{x| d û
‘x…yz † …†¡{…y… {}Œz 2…†z‰Œ{|} M = {C , i = 1, . . . , k} x‡ (n, d ) û
£yx€ zŒ†z (s, t) ∈ C
‘Œxx€  ‰x|€‰yz{Ž ~}€ (x , x ) †|~ (x , x ) {| C ~{ù‚|z ‡‚x… (s, t) û
û
‹
|
sol = C \ {(s, t)} e = (x , x ) † ~ e = (x , x )
–x‚ {Ž zx µ ~x
‘Œxx€  ‰x|€‰yz{Ž ~}€ (x , x ) †|~ (x , x ) {| C û
å‡ cost [e , (x , x )] ≤ cost [e , (x , x )] zŒ|
û
sol = localchange [(sol , e ), (C , (x , x ))]
£yx€ e = (x, y) ‹ †|~ x {€ zŒ xzŒ‚ |{}Œƒx‚ x‡ x {| C
£z e = (y, x ) †|~ e = (x , x ) û
„€
û
sol = localchange [(sol , e ), (C , (x , x ))]
£yx€ e = (x, y) ‹ †|~ x {€ zŒ xzŒ‚ |{}Œƒx‚ x‡ x {| C
£z e = (y, x ) †|~ e = (x , x ) û
|~ {‡ û
|~ ‡x‚ { û
û
sol = sol
˜ø
s,t
0
max
0
i
1
1
1
1
1
1
1
1
1
1
2
i−1
1
1
1
2
1
2
1
2
i
1
i
i
2
1
i−1
1
i
1
i
1
i
1
2
i−1
i−1
2
k
i
3
1
1
3
i
i
1 2
i−1
2 2
i−1
i−1 1
i
0
i
i
i
2
1 0
2
i
1
1
3
i
2
i−1
2
i
4
i
i
3 4
i
2
i
2
i
3
i
1
i
2
i
i
3
i
i
i
2
i
1
i
i
3
i
i
3
ò€ zŒ{€ †„}x‚{zŒ… {€ x„|x…{†„‹ „z y€ zŒ| €Œx zŒ†z sol {€ †| š†…{„zx|{†| †zŒ— –{‚€z„‹ |xz zŒ†z
ƒ ‰x|€z‚y‰z{x|‹ (s, t) ƒ„x|}€ zx Ž‚ …†¡{…y… {}Œz …†z‰Œ{|} x‡ (n, d ) — x‚xŽ‚‹ e †|~ e
xƒŽ{xy€„ ƒ„x|} zx sol ‡x‚ Ž‚ {z‚†z{x| i ≤ k x‡ zŒ †„}x‚{zŒ…— ¢Œ€ zx ‡†‰z€ „†~ zx zŒ ‚€y„z—
ò ~€‰‚{z{x| x‡ zŒ †„}x‚{zŒ… {€ }{Ž| {| zŒ –{}y‚  Œ| M = {C : i = 1, 2, 3} {zŒ |C | = 6 ‹
—
|
|C | = 4 † ~ |C | = 5
i
1
0
i
2
i
i
2
1
2
C3
1
0
4
0
1
3
2
1
1
s
0
t
2
2
1
e2
3
3
3
0
1
1
C2
2
2
1
e1
C1
t
3
2
0
0
s
4
3
sol 1
M
4
0
1
0
3
2
1
2
4
3
0
0
2
e2
s
1
t
2
1
2
0
2
e1
s
1
1
t
2
2
3
3
3
3
0
sol
sol 2
–{}y‚ õ ¢Œ  †z‰Œ{|} M †|~ zŒ ~{ù‚|z {z‚†z{x|€ x‡ †„}x‚{zŒ… Œ| k = 3 —
}»½J E ­è ¥¨ï ªç§©­¦ LocalchangeHP Ps,t §é ¥ 1 ê§ü èçè«©§¥¨ ¥¬¬çªó§¦¥©§ª« ªç °±² ³´´s,t
2
¥«ê ©­§é 祩§ª §é ©§ï­©
¹½LM ¶{Ž| I = (n, s, t, d) ‹ †| {|€z†|‰ x‡ °±² ³´´s,t ‹  ~|xz (i2, . . . , ik) {zŒ ij ∈ {1, 2} zŒ
€öy|‰ x‡ ‰Œx{‰€ ‚x~y‰~ ƒ zŒ †„}x‚{zŒ… €y‰Œ zŒ†z‹ ‡x‚ j ∈ {2, . . . , k} õ
solj = localchangeij [(solj−1 , eij−1
), (Cj , (xjij , xjij +1 ))]
j
¢Œy€‹ d(sol ) = d(sol
j
j−1 ) + d(Cj ) − costij (j)
{zŒ cost (j) = cost [e
ij
˜˜
ij
j−1
j
j
ij , (xij , xij +1 )]
— £y……{|}
y zŒ€ öy†„{z{€ ‡x‚ j = 2 zx k ‹ †|~ €{|‰ d(sol ) = d(C ) − d(s, t) †|~ d(sol) = d(sol ) ‹  xƒz†{|õ
X
®¿—˜¯
d(sol) = d(M ) − d(s, t) −
cost (j)
¢Œ …†{| {~† {€ zx |xz zŒ†z ~}€yƒ€z {e , (x , x ) : j = 2, . . . , k} ƒ„x|}€ zx €x„yz{x|
— š|‰‹  ‰†| âꥦ¥ïèâ zŒ ‰y‚‚|z €x„yz{x| ƒ „x‰†„ ~}€€† ‡‚x… zŒ{€ ~}€yƒ€z— x‚
sol
‡x‚…†„„‹ ‰x|€{~‚ €x„yz{x|€ sol ~’|~ ƒ sol = sol †|~ ‡x‚ j = 2, . . . , k ‹
1
1
k
k
ij
j=2
j−1
3−ij
j
3−ij
j
4−ij
k
0
j
0
1
k
j−1
0
0
solj0 = localchange3−ij [(solj−1
, e3−i
), (solj−1
, (xj3−ij , xj4−ij ))]
j
ò| {„„y€z‚†z{x| x‡ €x„yz{x|€ sol {zŒ i ≤ k {€ ~{‰z~ {| zŒ –{}y‚ ì ‡x‚ zŒ ¡†…„ ~€‰‚{ƒ~ {|
–{}y‚ —
0
i
0
1
2
4
4
0
3
1
0
3
2
0
s
1
1
t
2
2
3
3
0
s
1
1
t
2
2
3
3
0
sol 3'
sol 2'
–{}y‚ ìõ ¢Œ €x„yz{x|€ sol †|~ sol —
0
2
0
3
䆀z„‹‚x‰~{|} †€ ‚Ž{xy€„‹  xƒz†{| d(sol ) = d(M )−d(s, t)−P (cost (j)+cost
ž ‰x|€z‚y‰z{x|‹ cost (j) + cost (j) ≥ 2cost (j) †|~ wor(I) ≤ d(sol ) — š|‰õ
k
j=2
0
k
ij
3−ij
ij
3−ij (j))
—
0
k
ij
®¿—¯
{ | xz{…†„ {}Œz 2…†z‰Œ{|} †…x|} zŒ 2…†z‰Œ{|} x‡ (n, d) ‰x|z†{|{|} zŒ ~} (s, t) û zŒy€
M ۠
®¿—ì¯
opt(I) ≤ d(M ) − d(s, t)
ž ‰x…ƒ{|{|} ¡‚€€{x|€ ®¿—쯋®¿—¯ †|~ ®¿—˜¯‹  xƒz†{|õ
wor(I) ≤ d(M ) − d(s, t) − 2
k
X
costij (j)
j=2
1
1
d(sol) ≥ opt(I) + wor(I)
2
2
Jn = (n, s, t, d)
V =
j
j
j+1
j
j+1
( {xi , 1 ≤ i ≤ 3 , 2 ≤ j ≤ 2n + 1} ∪ {s, u, t}) d(x1 , x1 ) = d(x1 , x2 ) = 1 ∀j = 2, . . . , 2n
Ÿ |x €Œx zŒ†z zŒ{€ ‚†z{x {€ z{}Œz— äz
‹
˜
ƒ †| {|€z†|‰ ~’|~ ƒõ
‹
‹
x‡ †„„ xzŒ‚ ~}€ ƒ zx— ¢Œ …†z‰Œ{|} {€ ‰x…x€~ x‡
— ¢Œ ~}€ ‚x~y‰~ ƒ zŒ †„}x‚{zŒ… †‚õ
‹
†|~
—
†|~
†|~ „z zŒ ‰x€z
2
2
2
2
d(xj1 , xj+2
2 ) = 1 ∀j = 2, . . . , 2n − 1 dn (s, x2 ) = dn (u, x1 ) = d(u, x2 ) = d(t, x3 ) = 1
2
C1 = {s, u, t}
Cj = {xj1 , xj2 , xj3 } j =
e11 = (s, u), e12 = (u, t) e12 = (u, x21 ), e22 =
2, . . . , 2n + 1
(x21 , x23 ) ej1 = (x1j−1 , xj1 ), ej2 = (xj1 , xj3 ) j = 3, . . . , 2n + 1
cost1 (2) = cost2 (2) = 2, cost1 (j) =
cost2 (j) = 1 j = 3, . . . , 2n + 1
‹
d(sol) = 10n + 4, wor(J2n+1 ) = 8n + 3, opt(J2n+1 ) = 12n + 4
¢Œy€‹  xƒz†{| zŒ†z δ
x zx {|’|{z—
 x ‰Œ
¤
(J
) † ‚ † € †€ n } €
–x‚ zŒ €z†|~†‚~ ‚†z{x‹  ~~y‰ zx | {…‚xŽ~ ‚€y„z€ ƒ y€{|} ä……† ˜—” ‡‚x… zŒ }|‚†„
‰†€ †|~ ¢Œx‚… ì—ì {zŒ b = 2a ‡x‚ zŒ ‰†€ Œ‚ zŒ {}Œz€ x‡ zŒ }‚†Œ †‚ ƒxy|~~ ƒz|
zŒ ކ„y€ a †|~ 2a —
~½CC¼½ E< >è ­¥è ©­è ª¨¨ª§«ï çèéé
°±² ³´´ §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è ¥«ê M ax HP P [a, 2a] §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è
•
°[\ ³´´ [a, 2a] §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è
•
LocalchangeHP Ps,t
s,t
1
2
2n+1
1
2
3
4
s,t
2
3
s,t
‡ )‘ ˆ63 145-,/260 ‰-, -83 7+3;/‹39 389+-/82 Œ3,7/-8
Ÿ ‚xx€ †| †„}x‚{zŒ… Œ{‰Œ ~{ù‚€ ‡‚x… zŒ x| ‚Ž{xy€„ €zy~{~ €{|‰  ¡„{‰{z„ ‰x…yz
€Ž‚†„ €x„yz{x|€— 'y‚ †„}x‚{zŒ… {€ ƒ†€~ yx| † €{…„ {~† †|~ y€€ €z‚y‰zy‚†„ ‚x‚z{€ x‡
€x„yz{x|€— åz €z{„„ x‚µ€ ƒ ’|~{|} † …†¡{…y… {}Œz 2…†z‰Œ{|} ‰x|z†{|{|} €‰{’~ ~}€ †|~
zŒ| ~{€‰†‚~{|} €x… ~}€ †|~ †‚ƒ{z‚†‚{„ ‰x||‰z{|} zŒ ‚€y„z{|} †zŒ€ zx ‡x‚… †| š†…{„zx|{†|
†zŒ ‡‚x… s — ¢Œ ‚{|‰{„ x‡ xy‚ †„}x‚{zŒ… {€ zx }|‚†z |xz x|„ x| ƒyz €Ž‚†„ ‡†€{ƒ„ €x„yz{x|€
‡x„„x{|} zŒ{€ …zŒx~—
‘x|€{~‚ † …†¡{…y… {}Œz 2 ¦¥©æ­§«ï M †…x|} zŒx€ ‰x|z†{|{|} (s, r) ‹ {|‰„y~{|} „…|z†‚
‰‰„€ C , i = 1, . . . , k — å| x‚~‚ zx ~x zŒ†z‹  €yƒ€z{zyz |V |d + 1 ‡x‚ zŒ ‰x€z x‡ (s, r) †|~ 
‰x…yz † …†¡{…y… 2…†z‰Œ{|} {| zŒ{€ | {|€z†|‰— 䆀z„‹ ‡x‚ †‰Œ ‰‰„ C ‹  ‰x|€{~‚ ‡xy‚
‰x|€‰yz{Ž Ž‚z{‰€ x ‹x ‹x ‹x — ñxz zŒ†z  Œ†Ž |y…ƒ‚~ Ž‚z{‰€ €y‰Œ zŒ†z x = r †|~ x = s —
x‚xŽ‚‹ {‡ |C | = 3 zŒ| x = x — –x‚ zŒ „†€z ‰‰„ C ‹  ‰x|€{~‚ †| †~~{z{x|†„ Ž‚z¡ y Œ{‰Œ
{€ zŒ xzŒ‚ |{}Œƒx‚ x‡ x {| C — ¢Œy€‹ {‡ |C | = 4 zŒ| y = x Œ{„ y {€ † | Ž‚z¡ {| zŒ xzŒ‚
‰†€—
“P atching 2 − matching•
d õ ò| {|€z†|‰ (n, s, d) û
d õ ò š†…{„zx|{†| †zŒ sol ‡‚x… s û
–x‚ Ž‚ r ∈ V \ {s} ~x
‘Œ†|} zŒ ‰x€z x‡ (s, r) {|zx |V |d + 1 — ‘†„„ zŒ{€ ‡y|‰z{x| d û
‘x…yz † …†¡{…y… {}Œz 2…†z‰Œ{|} M = {C , i = 1, . . . , k} x‡ (n, d ) û
{‡ k = 1 zŒ| sol = M \ {(s, r)} û
{‡ k {€ Ž| zŒ|
˜ì
r
i
max
i
i
1
i
2
i
i i
3 4
i
4
k
1
1
1
i
1
k
k
k
4
k
0
max
r
r
r
i
0
1
2
û
žy{„~ sol = (M \ S ) ∪ {(x , x ), (x , x )} ∪ {(x , x ), (x , x )} û
{ š {„zx|{†| †zŒ ‡‚x… s zx r)
(sol € † †…
û
S = ∪ {(x , x )} ∪ {(y, x ), (s, r)}
žy{„~ sol = (M \ S ) ∪ {(x , x )} ∪ {(x , x ), (x , x )} û
{ š {„zx|{†| †zŒ ‡‚x… s zx y)
(sol € † †…
û
S = ∪ {(x , x )} ∪ {(x , x ), (s, r)}
žy{„~ sol = (M \ S ) ∪ {(x , x ), (x , x )} ∪ {(x , x ), (x , x )} û
{ | š†…{„zx|{†| †zŒ ‡‚x… s zx r)
(sol € †
|~ {‡ û
{‡ k {€ x~~ zŒ|
û
S = ∪ {(x , x )} ∪ {(s, r)}
žy{„~ sol = (M \ S ) ∪ {(x , x )} ∪ {(x , x )(x , x )} û
{ | š†…{„zx|{†| †zŒ ‡‚x… s zx r)
(sol € †
û
S = {(s, r)} ∪
{(x , x )}
žy{„~ sol = (M \ S ) ∪ {(x , x ), (x , x )} û
{ š {„zx|{†| †zŒ ‡‚x… s zx x )
(sol € † †…
û
S = ∪ {(x , x )} ∪ {(s, r)}
žy{„~ sol = (M \ S ) ∪ {(x , x )} ∪ {(x , x ), (x , x )} û
{ š {„zx|{†| †zŒ ‡‚x… s zx r)
(sol € † †…
|~ {‡ û
û
sol = argmax{d(sol ), d(sol ), d(sol )}
|~ ‡x‚ ‚ û
û
sol = argmax{d(sol ) : r ∈ V \ {s}}
'ƒ€‚Ž zŒ†z ‡x‚ Ž‚ r ‹ zŒ €x„yz{x|€ sol ‹ sol †|~ sol †‚ š†…{„zx|{†| †zŒ€ ®‡‚x… s zx ~{ù‚|z
|~x{|z€¯ €{|‰ zŒ †~~{z{x|†„ ~}€ †‚ †~ˆ †‰|z zx zŒ x|€ €yƒ€z{zyz~— ò ~€‰‚{z{x| x‡ €x„yz{x|€
‹ ‹ { { | {| zŒ –{}y‚ ¿ Œ| M = {C : i = 1, 2, 3} {zŒ |C | = |C | = 6 †|~
sol sol sol € } Ž
—
|C | = 3
¢Œ z{…‰x…„¡{z x‡ zŒ{€ †„}x‚{zŒ… ‚…†{|€ x„|x…{†„ €{|‰ zŒ ‰x…yz†z{x| x‡ zŒ 2
…†z‰Œ{|} ‚xƒ„… {€ x„|x…{†„—
}»½J ED ­è ¥¨ï ªç§©­¦ P atching 2 − matching §é ¥ ê§ü èçè«©§¥¨ ¥¬¬çªó§¦¥©§ª« ªç °±²
³´´ ¥«ê ©­§é 祩§ª §é ©§ï­©
¹½LM äz I = (n, s, d) ƒ †| {|€z†|‰ †|~ „z sol ƒ †| xz{…†„ š†…{„zx|{†| †zŒ ‡‚x… s zx r —
Ÿ ~|xz loss , i = 1, 2, 3 ‹ zŒ öy†|z{z d(sol ) − d(M ) + d(s, r ) — 'ƒŽ{xy€„‹ loss ≤ 0 †|~ 
Œ†Ž
1
®¿—¿¯
d(sol) ≥ d(sol ) ≥ d(M ) − d(s, r ) + (loss + loss + loss )
x‚xŽ‚‹ zŒ ‡x„„x{|} €z‚y‰zy‚†„ ‚x‚z Œx„~€õ 3
{ š {„zx|{†| †zŒ €z†‚z{|} ‡‚x… s
sol = ∪
(sol \ M ) ∪ M \ (S ∪ S ∪ S ) € † †…
˜¿
j
j
k k
S1 = ∪k−1
j=1 {(x2 , x3 )} ∪ {(x1 , x2 ), (s, r)}
1
r
(k−2)/2
j=1
1
k
1
1
3
1
2
2
2
2
k
1
1
1
2
1
(k−2)/2
j=1
2j
3
2j+1
3
2j+1
2
2j+2
2
1
k−1
j=2
2
j
1
j
2
2
r
2j
2
2j+1
2
2j+1
1
2j+2
1
2
k−1
j=1
3
j
3
j
4
3
k
2
r
3
k
3
k 1
2
4
1
3
1
k
2
(k−1)/2
j=1
(k−2)/2
j=1
2
3
2j
4
2j+1
4
2j+1
3
2j+2
3
3
k
j=1
1
j
2
j
3
1
r
1
3
2j−1
2
2j
2
2j
3
2j+1
3
1
j
1
k
j=2
2
2
r
j
2
(k−1)/2
j=1
2
2j−1
1
2j
1
2j
2
2j+1
2
k
1
2
k
j=1
3
j
3
j
4
3
r
k
3
3
(k−1)/2
j=1
1
4
2j−1
3
2j
3
2j
4
2j+1
4
3
r
1
2
3
r
1
1
2
2
3
3
r
i
1
3
2
2
3
s
∗
i
i
∗
r
∗
j=1,2,3
∗
j
r∗
∗
r∗
r∗
1
2
∗
r∗
3
1
i
2
3
Mr
sol1
r
1
1
6
s
2
2
6
5
3
3
3
5
C1
4
C2
C3
r
1
1
6
s
2
2
6
5
3
3
3
5
4
4
4
r
1
1
r
1
1
6
s
2
2
6
6
s
2
2
6
5
3
3
3
5
5
3
3
3
5
4
4
4
4
sol3
sol2
–{}y‚ ¿õ ¢Œ  †z‰Œ{|} M †|~ zŒ €x„yz{x|€ sol ‹ sol †|~ sol Œ| k = 3 —
r
1
2
3
ò ~€‰‚{z{x| x‡ €x„yz{x| sol {€ ~{‰z~ {| zŒ –{}y‚ ™ ‡x‚ zŒ ¡†…„ ~€‰‚{ƒ~ {| –{}y‚ ¿—
∗
sol *
r
1
1
6
s
2
2
6
5
3
3
3
5
4
4
–{}y‚ ™õ ¢Œ €x„yz{x| sol —
∗
€{|‰
†|~
— š|‰‹  ~~y‰
d(sol∗ ) = d(Mr∗ ) − d(s, r∗ ) + loss1 + loss2 + loss3
d(solj \ Mr∗ ) = lossj + d(Sj ) − d(s, r∗ )
d(Mr∗ \ (S1 ∪ S2 ∪ S3 )) = d(Mr∗ ) − d(S1 ) − d(S2 ) − d(S3 ) + 2d(s, r∗ )
£{|‰ sol
wor(I) ≤ d(Mr∗ ) − d(s, r∗ ) + loss1 + loss2 + loss3
∗
∪ (s, r∗ )
{€ † †‚z{‰y„†‚ 2…†z‰Œ{|} ‰x|z†{|{|} (s, r ) ‹  Œ†Žõ
®¿—™¯
∗
opt(I) ≤ d(Mr∗ ) − d(s, r∗ )
䆀z„‹ ‰x…ƒ{|{|} ®¿—¿¯‹®¿—™¯ †|~ ®¿—”¯  xƒz†{|õ
˜™
®¿—”¯
1
2
d(sol) ≥ wor(I) + opt(I)
3
3
¢x €Œx zŒ†z zŒ ƒxy|~ {€ †‚x†‰Œ†ƒ„‹ ‰x|€{~‚ zŒ ‡x„„x{|} {|€z†|‰€— äz I = (n, s, d) ƒ
†| {|€z†|‰ ~’|~ ƒõ V = {x : 1 ≤ i ≤ 3 , 1 ≤ j ≤ 2n + 1} {zŒ x = s ‹ d(x , x ) = d(x , x ) =
‹
|
d(x , x ) = 2, ∀j = 1, . . . , 2n + 1 d(x , x ) = 2, ∀j = 1, . . . , 2n † ~ d(x , x ) = d(x , x ) =
— ä z zŒ ‰x€z x‡ †„„ xzŒ‚ ~}€ ƒ x|— Ÿ Œ†Žõ
2, ∀j = 2, . . . , 2n + 1 
n
j
1
j
i
j
3
j
1
1
2
j
1
j+1
3
1
1
j
3
j
2
j
3
1
1
d(sol) ≤ 10n + 4, opt(In ) = 12n + 4, wor(In ) = 6n + 2
j
2
j
2
„†~{|} zx zŒ ‰x|‰„y€{x| zŒ†z δ
x zx {|’|{z—
 x ‰Œ
(I ) † ‚ † € †€ n } €
¤
ò€ ‚Ž{xy€„‹  ~~y‰ zx | {…‚xŽ~ €z†|~†‚~ †‚x¡{…†z{x| ‚€y„z€ ƒ y€{|} ä……† ˜—”
‡‚x… zŒ }|‚†„ ‰†€ †|~ ¢Œx‚… ì—ì {zŒ b = 2a Œ| a ≤ d(e) ≤ 2a —
~½CC¼½ EE >è ­¥è ©­è ª¨¨ª§«ï çèéé
°±² ³´´ §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è ¥«ê °±² ³´´ [a, 2a] §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è
•
°[\ ³´´ [a, 2a] §é é©¥«ê¥çê ¥¬¬çªó§¦¥ô¨è
•
’ “rouUttvro Sos rV Qo VqrWUQTt
å| zŒ{€ †‚‹  Œ†Ž…†{|„ ‚xŽ{~~ | ‚€y„z€ ‰x|‰‚|{|} zŒ †‚x¡{…†ƒ{„{z x‡ zŒ š†…{„zx|{†|
†zŒ ‚xƒ„… {| zŒ ‰†€ {| Œ{‰Œ x| x‚ zx |~x{|z€ †‚ €‰{’~— x‚xŽ‚‹  Œ†Ž ¡x€~
€x… ƒ†€{‰ ‚x‚z{€ ®…†{|„ ƒ y€{|} ‚~y‰z{x|€ ‚€‚Ž{|} ~{ù‚|z{†„ †‚x¡{…†z{x|¯ ƒz|
zŒ€ ‚xƒ„…€ †|~ €x… ކ‚{†|z€ x‡ zŒ…—
ò„zŒxy}Œ {| {|z‚x~y‰z{x|  Œ†Ž x{|z~ xyz €x… }‚†z ~{ù‚|‰ ƒz| zŒ ~{ù‚|z{†„ †|~
€z†|~†‚~ †‚x¡{…†ƒ{„{z x‡ zŒ€ ‚xƒ„…€‹ Œ|  y€ ƒxy|~~ …z‚{‰ †|~ €‰{†„„‹ Œ| zŒ
{}Œz€ {| zŒ }‚†Œ †‚ ƒz| zŒ ކ„y€ a †|~ 2a ‹‡‚x… ~{ù‚|z{†„ †‚x¡{…†z{x| ‚€y„z€  ‰†|
~‚{Ž | €z†|~†‚~ †‚x¡{…†z{x| ‚€y„z€—
ò| {|z‚€z{|} x| ‚xƒ„… y|~‚ ~{ù‚|z{†„ ‡‚†…x‚µ {€ zx µ|x {‡ zŒ zx€‰{’~ |~x{|z€
Ž‚€{x| {€ ‚†„„ …x‚ ~{|‰y„z zx †‚x¡{…†z zŒ†| zŒ x|€‰{’~ |~x{|z Ž‚€{x| ® x|„ µ|x
zŒ†z ³´´ {€ †z „†€z †€ Œ†‚~ †€ ³´´ ) — ¢Œ{€ öy€z{x| {€ €z{„„ x| y|~‚ €z†|~†‚~ ‡‚†…x‚µ—
¢Œ x€{z{Ž †‚x¡{…†z{x| ‚€y„z€ {|~{‰†z † x€{z{Ž †|€‚ ƒyz {z {€ |xz † ‡x‚…†„ ‚xx‡— ò ‡x‚…†„
‚xx‡ xy„~ €Œx zŒ†z zŒ ~{ù‚|z{†„ |x|†‚x¡{…†z{x| zŒ‚€Œx„~ ‡x‚ ³´´ {€ €z‚{‰z„ ƒzz‚ zŒ†|
zŒ ~{ù‚|z{†„ |x|†‚x¡{…†z{x| zŒ‚€Œx„~ ‡x‚ ³´´ — å| x‚~‚ zx ‚xŽ zŒ†z‹ † y€‡y„ z‰Œ|{öy
{€ zx ‚xŽ zŒ†z † ‚xƒ„… {€ |xz simple — w‰†„„ zŒ†z †| ¸¹ ‚xƒ„… {€ ‰†„„~ simple ƒ þ†Š
†|~ x‚†| “읕 {‡ {z€ ‚€z‚{‰z{x| zx {|€z†|‰€ €†z{€‡{|} ‡x‚ †| ’¡~ {|z}‚ k ‹ opt(I) ≤ k ‹ ‰†| ƒ
‚€x„Ž~ {zŒ{| x„|x…{†„ z{…— £x‹  ‰†| †„€x ‚xŽ † €z†|~†‚~ |x|†‚x¡{…†z{x| zŒ‚€Œx„~
öy†„ zx ‡x‚ zŒ ž{|þ†‰µ{|} ‚xƒ„… ƒ‰†y€ {z€ ‚€z‚{‰z{x| zx {|€z†|‰€ Ž‚{‡{|} opt(I) ≤ 2 {€
€z{„„ † ¸¹º»¼½¾ ‚xƒ„…— £{…{„†‚„‹  {„„ €† zŒ†z π {€ δ − simple {‡ {z€ ‚€z‚{‰z{x| π zx {|€z†|‰€
Ž‚{‡{|} ‡x‚ †| {|z}‚ ’¡~ k ‹ |wor(I) − opt(I)| ≤ k ‰†| ƒ €x„Ž~ {| x„|x…{†„ z{…— ¢Œy€‹ {‡
zŒ €yƒ‚xƒ„… Ž‚{‡{|} |wor(I) − opt(I)| ≤ k {€ ¸¹º»¼½¾ ®{| xzŒ‚ x‚~€‹ π {€ |xz δ − simple)
˜”
P atching 2−matching
s
s
s,t
2
3
n
2
3
s
5
6
3
4
s
s,t
s
2
3
k
0
zŒ| ‡x‚ †| ² > 0 ‹ |x x„|x…{†„ z{… †„}x‚{zŒ… ‰†| }y†‚†|z † ~{ù‚|z{†„ †‚x¡{…†z{x| ‚†z{x
}‚†z‚ zŒ†|‹ x‚ öy†„ zx + ² — Ÿ ‰x|ˆ‰zy‚ zŒ†z ³´´ †|~ ³´´ †‚ |xz δ − simple †|~
zŒ ކ„y k ‡xy|~ ‡x‚ ³´´ {€ €…†„„‚ zŒ†z zŒ k ‡xy|~ ‡x‚ ³´´ —
ac”•C¾–J@ †| zŒ†|µ€ zx zŒ‚ †|x|…xy€ ‚‡‚€ ‡x‚ ‚z{||z †|~ y€‡y„ ‰x……|z€
†|~ €y}}€z{x|€—
—Q†QqQouQt
“˜• k— ò—³±hg[˜±\— Z¨îé©èç§«ï ¥¨ïªç§©­¦é— ñ ex‚µ‹ Ÿ{„‹ ˜œ÷™—
“• ò— ™[fšš›‹ — œh±gg[\[‹ — °±žž±h›gg[‹ †|~ –— Ÿf\gh[˜š[±— ò | ކ„y†z{x| ‡y|‰z{x|
‡x‚ †‚x¡{…†z{x|— Xè¦ G G‹ ˜œ÷÷—
“ì• ¶— ™ž[fšš›‹ þ— ¡hfžif\¢[‹ †|~ — ´h›g±ž[— ò‚x¡{…†z €x„yz{x|€ x‡ ñþxz{…{Іz{x|
‚xƒ„…€— ­èªç詧楨 Zª¦¬î©èç Xæ§è«æè‹ ˜™øõ˜£™™‹ ˜œœ™—
“¿• ¶— ™ž[fšš›‹ ò— ¤¥™gh[‹ †|~ — ´h›g±ž[— £z‚y‰zy‚ ‚€‚Ž{|} ‚~y‰z{x|€ †…x|} ‰x|Ž¡
xz{…{Іz{x| ‚xƒ„…€— ¦ ª Zª¦¬î©èç ¥«ê Xíé©è¦ Xæ§è«æè‹ ˜õ˜ì”£ ˜™ì‹ ˜œ·ø—
“™• ‘— œ±¢˜±\‹ w— ³±žž[\‹ †|~ k— °›\\›g— ð{ù‚|z{†„ †x¡{…†z{x| ‡x‚ €x… ‚xyz{|} ‚xƒ„…€
®¡z|~~ †ƒ€z‚†‰z¯— Yçªæ ZGZ §¨ =ÿ ZX ©ª«¨‹ †}€ ÷÷£··‹ øøì—
“”• ñ— ¡¬h[žg›­[®fž— Ÿx‚€z‰†€ †|†„€{€ x‡ † | Œy‚{€z{‰ ‡x‚ zŒ z‚†Ž„{|} €†„€…†| ‚xƒ„…—
¢‰Œ|{‰†„ ‚x‚z ì췋 ¶‚†~— £‰Œxx„ x‡ å|~y€z‚{†„ ò~…{|{€z‚†z{x|‹ ‘ ë‹ ˜œ÷”—
“÷• ¶— ¡›h\f¯›šž‹ —ä— °[ž¬fh‹ †|~ ¶—ä— ±f²¬±žfh— äx‰†z{x| x‡ ƒ†|µ †‰‰xy|z€ zx xz{…{Š
³x†z õ ò| †|†„z{‰ €zy~ x‡ ¡†‰z †|~ †‚x¡{…†z †„}x‚{zŒ…€ — ´¥«¥ïè¦è«© Xæ§è«æè‹ìõ÷·œ£·˜ø‹
˜œ÷÷—
“·• þ— ¡hfžif\¢[ †|~ 㗠µ±\\— ò ‰x…|~{y… x‡ ñþxz{…{Іz{x| ‚xƒ„…€— òކ{„†ƒ„ x| 
†~~‚€€õ Œzzõ¶¶—|†~†—µzŒ—€¶∼Ž{}}x¶‚xƒ„…„{€z¶‰x…|~{y… —Œz…„‹ øøø—
“œ• þ— ¡hfžif\¢[ †|~ ò— ´±\i›\fž[— ‘x…„z|€€ {| †‚x¡{…†z{x| ‰„†€€€— G« ªç¦¥©§ª« ¥«ê
Zª¦¬î©¥©§ª«‹ œìõ¿ ˜£”‹ ˜œœ˜—
“˜ø• — ¤f²±\˜f‹ 𗠤f ·fhh±‹ k— °›\\›g‹ †|~ 㗠¢Œ— ´±ži¬›ž— Ÿ{}Œz~ |x~ ‰x„x‚{|}õ
Œ| €z†ƒ„ €z€ †‚ ¡|€{Ž ®¡z|~~ †ƒ€z‚†‰z¯— Yçªæ > §© =ÿ ZX ©«¸¨‹ †}€ ˜˜¿£ ˜™‹
øø—
“˜˜• — ¤f²±\˜f‹ þ— ¹h[ž›\[‹ †|~ 㗠¢Œ— ´±ži¬›ž— ð{ù‚|z{†„ †‚x¡{…†z{x| †„}x‚{zŒ…€ ‡x‚
€x… ‰x…ƒ{|†zx‚{†„ xz{…{Іz{x| ‚xƒ„…€— ­èªç詧楨 Zª¦¬î©èç Xæ§è«æè‹ øœõ˜ø÷£ ˜‹ ˜œœ·—
“˜• — ¤f²±\˜f‹ k— °›\\›g‹ †|~ 㗠¢Œ— ´±ži¬›ž— ž‚{~}{|} }† ƒz| €z†|~†‚~ †|~ ~{‡
‡‚|z{†„ x„|x…{†„ †‚x¡{†…z{x|õ zŒ ‰†€ x‡ ƒ{|†‰µ{|}— ¬¬¨§èê ´¥©­è¦¥©§æé =è©©èçé‹
˜õ˜÷£ ˜ìì‹ ˜œœœ—
˜÷
k0
k0 +1
0
s,t
s,t
0
s
s
“˜ì• — ¤f²±\˜f †|~ 㗢Œ— ´±ži¬›ž— '| †| †‚x¡{…†z{x| …†€y‚ ‡xy|~~ x| zŒ „{|µ€ ƒz|
xz{…{Іz{x| †|~ x„|x…{†„ †‚x¡{…†z{x| zŒx‚— ­èªç詧楨 Zª¦¬î©èç Xæ§è«æè‹ ˜™·õ˜˜÷£ ˜¿˜‹
˜œœ”—
“˜¿• ä— º\˜f»hfgžf\ †|~ — µ±h¼[\ž½[— ò‚x¡{…†z{x| Œ†‚~|€€ x‡ ¢£þ {zŒ ƒxy|~~ …z‚{‰€—
´¥«îéæç§¬ © ¥¥§¨¥ô¨è ª« ¥êêçèéé ­©©¬ ¾¾ «¥ê¥¿©­éè¾∼ è«ïè¾ è«ïèô§ô¾ ‹ øø—
“˜™• — ä— °[ž¬fh‹ ¶— ä— ±f²¬±žfh‹ †|~ ä— ò— ·›šžfÀ— ò| †|†„€{€ x‡ †‚x¡{…†z{x|€ ‡x‚
’|~{|} † …†¡{…y… {}Œz Œ†…{„zx|{†| ‰{‚‰y{z — Á¬è祩§ª«é èéè¥ç歋 ÷®¿¯õ÷œœ£·øœ‹ ˜œ÷œ—
“˜”• — w— ¹±hfÀ †|~ 𗠣— ›¬\ž›\— Zª¦¬î©èçé ¥«ê §«©ç¥æ©¥ô§¨§©í ïî§êè ©ª ©­è ©­èªçí ª
ÿY檦¬¨è©è«èéé— ‘ò— –‚…†|‹ ˜œ÷œ—
“˜÷• w— £— ¹±h­[\½fš— xz{ކz{x| †|~ …x~„{|}— ºÃ Ä Ä±ÅšfhÆ Âà µÃ Äf\žgh± Æ ™Ã ³Ã ¹Ã
Ç[\\››À µ±\ ±\® ¤Ã œÃ ^¬²›Àž Èf®ž ÃÉ ­è ç¥è¨§«ï X¥¨è馥« Yçªô¨è¦ ¥ ïî§êèê ©ªîç ª
Zª¦ô§«¥©ªç§¥¨ Á¬ ©§¦§¥©§ª« >§¨èí Z­§æ­èé©èç‹ †}€ ˜÷£ì”‹ ˜œ·™—
“˜·• ñ— ¹gg²±\\ʜfi½‹ w— ³±žž[\‹ £— µ¬ššfh‹ †|~ ž— DZ˜¬±Ë±i¬±h[— ò‚x¡{…†z{x| †„
}x‚{zŒ…€ {zŒ ƒxy|~~ ‚‡x‚…†|‰ }y†‚†|z€ ‡x‚ zŒ ‰„y€z‚~ z‚†Ž„{|} €†„€…†| ‚xƒ„…—
¨ï ªç§©­¦§æ¥‹ · ®¿¯õ¿£¿ì÷‹ øøø—
“˜œ• — ³±[²›Ë[i¬ †|~ ò— š— ¶— Ç[\\››À µ±\— žxy|~€ †|~ Œy‚{€z{‰€ ‡x‚ ‰††‰{z†z~ ‚xyz{|}
‚xƒ„…€— ´¥©­è¦¥©§æé ª Á¬è祩§ª«é èéè¥ç歋 ˜ø®™¯õ™÷£™¿‹ ˜œ·™—
“ø• w— ³±žž[\ †|~ £— µ¬ššfh— z†‚x¡{…†z{x|€— ¦ ª ¨ïªç§©­¦‹ ¿˜®¯õ¿œ£¿¿‹ øø˜—
“˜• w— ³±žž[\ †|~ £— ǝ»[\žgf[\— žzz‚ †‚x¡{…†z{x| ‡x‚ …†¡ ¢£þ— G« ªç¦¥©§ª« Yçªæèéé§«ï
=è©©èçé‹ ÷™‹ øøø—
“• k— ò— ³››˜fËff\— ò|†„€{€ x‡ ‘Œ‚{€zx’~€l Œy‚{€z{‰õ £x… †zŒ€ †‚ …x‚ ~{|‰y„z zŒ†|
‰‰„€— Á¬è祩§ª«é èéè¥çæ­ =è©©èçé‹ ˜øõœ˜£œ™‹ ˜œœ˜—
“ì• 𗠣— ›¬\ž›\ †|~ ‘— š— ´±¼±®[²[gh[›— Yèç ªç¦¥«æè ïî¥ç¥«©èèé ªç ­èîç§é©§æé— ºÃ Ä
ıŚfhÆ Âà µÃ Äf\žgh± Æ ™Ã ³ à ¹Ã Ç[\\››À µ±\ ±\® ¤Ã œÃ ^¬²›Àž Èf®žÉ ­è ç¥è¨§«ï
X¥¨è馥« Yçªô¨è¦ ¥ïî§êèê ©ªîç ª Zª¦ô§«¥©ªç§¥¨ Á¬ ©§¦§¥©§ª« ·[šfÀ ¡¬[i¬fžgfh 145−180 ‹
˜œ·™—
“¿• w— — µ±h¼— èêîæ§ô§¨§©í ¥¦ª«ï 檦ô§«¥©ªç§¥¨ ¬çªô¨è¦é— w—  °[ššfh †|~ k— Ÿ— ]¬±gi¬fh‹
‘x…„¡{z x‡ ‘x…yz‚ ‘x…yz†z{x|€‹ ·™ ˜øì‹ þ„|y… þ‚€€‹ ñe ‹ ˜œ÷—
“™• w— µ›ž±h±¯‹ k— ´±h½‹ †|~ ‘— ^gf[\— zxy‚€ †|~ €Œx‚z €y‚€z‚{|}€— Yçªæ ÁZX‹ ˜˜®¿¯õ˜””£
˜÷÷‹ ˜œœ¿—
“”• —ä— ıŚfh‹ k— ›— Äf\žgh±‹ ò—š— ¶— Ç[\››À µ±\‹ †|~ 𗠞— ^¬²›Àž Èf®žÃɗ ­è ©ç¥è¨§«ï
饨è馥« ¬çªô¨è¦ ïî§êèê ©ªîç ª 檦ô§«¥©ªç§¥¨ ª¬ ©§¦§¥©§ª«— Ÿ{„‹ ñ ex‚µ‹ ˜œ·™—
˜·
“÷• k— °›\\›g— ð{ù‚|z{†„ †‚x¡{…†z{x| x‡ ñþŒ†‚~ ‚xƒ„…€ {zŒ ‰x|€z†|z €{Š ‡†€{ƒ„ €x„y
z{x|€— G Á¾ Á¬è祩§ª«é èéè¥ç歋 씮¿¯õ÷œ£œ÷‹ øø—
“·• k— °›\\›g— ¢Œ …†¡{…y… f ~zŒ €†||{|} z‚ ‚xƒ„…— G« ªç¦¥©§ª« Yçªæèéé§«ï =è©©èçé‹
·øõ˜÷œ£ ˜·÷‹ øø˜—
“œ• k— °›\\›g— ò‚x¡{…†z{x| ‚€y„z€ zx†‚~ ñ†‚€z ñ{}Œƒx‚ Œy‚{€z{‰— Ìîïªé¨¥ ¦ªîç«¥¨ ª
Á¬è祩§ª«é èéè¥ç歋 ˜ ®˜¯õ˜˜£ ˜”‹ øø—
“ìø• þ— Íh¼›\f\ †|~ š— °±\\[š±— '| †‚x¡{…†z{x| ‚€‚Ž{|} ‚~y‰z{x|€õ ‰x…„z ‚xƒ„…€
†|~ ‚xƒy€z …†€y‚€— ¢‰Œ|{‰†„ ‚x‚z‹ð†‚z…|z x‡ ‘x…yz‚ £‰{|‰‹ë|{Ž‚€{z x‡ š„€{|µ{‹
˜œ·÷—
“옕 ‘— š ´±¼±®[²[gh[› †|~ — α\\±½±½[ž— ¢Œ z‚†Ž„{|} €†„€…†| ‚xƒ„… {zŒ ~{€z†|‰ x|
†|~ zx— ´¥©­è¦¥©§æé ª Á¬è祩§ª«é èéè¥ç歋 ˜·õ˜£ ˜˜‹ ˜œœì—
“읕 ò— ´±¢ †|~ £— °›h±\— ñx| ~z‚…{|{€z{‰ x„|x…{†„ xz{…{€†z{x| ‚xƒ„…€ †|~ zŒ{‚ †‚x¡
{…†z{x|— ­èªç詧楨 Zª¦¬î©èç Xæ§è«æè‹ œ™õ™˜£÷÷‹ ˜œ·˜—
“ìì• £— ^±¬\[ †|~ ¢— ¹›\¢±šf¢— þ‰x…„z †‚x¡{…†z{x| ‚xƒ„…€— ¦ ª Z´‹ ìõ™™™£™”™‹
˜œ÷”—
“ì¿• k— ]±h¬[› †|~ — Ͻ½›\f\— ò }‚~ †‚x¡{…†z{x| †„}x‚{zŒ… ‡x‚ ‰x|€z‚y‰z{|} €Œx‚z€z
‰x……x| €y‚€z‚{|}€— ­èªç詧楨 Zª¦¬î©èç Xæ§è«æè‹ ™÷õ˜ì˜£ ˜¿™‹ ˜œ··—
“왕 £— ò— Ÿ±Ë±ž[ž— ò‚x¡{…†z{x| †„}x‚{zŒ…€ ‡x‚ {|~’|{z öy†~‚†z{‰ ‚x}‚†……{|}— ´¥©­è¦¥©§æ¥¨
Yçªï祦¦§«ï‹ ™÷õ÷œ£ì˜˜‹ ˜œ÷—
“씕 — Ðf²fš— †€y‚{|} zŒ öy†„{z x‡ †‚x¡{…†z €x„yz{x|€ zx Š‚xx| ‚x}‚†……{|} ‚xƒ„…€—
´¥©­è¦¥©§æé ª Á¬è祩§ª«é èéè¥ç歋 ”õ옜£ì읋 ˜œ·˜—
˜œ