Anonymous Wireless
Authentication on a Portable
Cellular Mobile System
IEEE TRANSACTIONS ON
COMPUTERS, Vol. 53, NO.
10, OCTOBER 2004
Authors: Shiuh-Jeng Wang,
Member, IEEE
Speaker: Pen-Yi Chang, 2004/10/18
Source:
1
Outline
Introduction
Cryptographic Knapsack System
Call Set-Up Authentication Protocol
Hand-Off Authentication Protocol
Anonymous Conference Call Protocol
Conclusion
2
Introduction
Author have proposed a secure and anonymous
conference call set-up scheme for a group of
mobile units using an identity-based concept as
well as a knapsack-like cipher mechanism.
3
Cryptographic Knapsack System
Without loss of generality, the 0/1 knapsack
problem of larger vector length is subject to the
NP-complete problem
0/1 Knapsack Problem.
C : positive integer
A : a vector (a1, a2, …, an) of positive integer
M : a binary vector
(m1, m2, …, mn)
n
Such that C ai mi
i 1
4
Cryptographic Knapsack Systemcont.1
The knapsack variant incorporated into our
scheme:
Definition1:
A vector A=(a1, a2 , ai, …, an) is said to be
volume-increasing on i, 1≦ i ≦ n iff
ai
1 j n , j i
aj
If the vector A given in the 0/1 knapsack
problem is volume-increasing on i, then
If C≧ai, then mi=1, otherwise, mi=0
5
Cryptographic Knapsack Systemcont.2
Problem1:
Find a vector A=(a1, a2, … ,ai …, an) and a set of n
constant {λ1, λ2, …, λi, …, λn} such that
λ1*A mod p = (λ1* a1 mod p, λ1*a2 mod p, …,
λ1*an mod p)
λ2*A mod p = (λ2* a1 mod p, λ2*a2 mod p, …,
λ2*an mod p)
…
λn*A mod p = (λn* a1 mod p, λn*a2 mod p, …,
λn*an mod p)
are volume-increasing on I for each (λi*A mod p) 1≦i≦n,
where p is a large prime and
6
Cryptographic Knapsack Systemcont.3
n
p ( j a j mod p)
j 1
7
Notations
MUi : the ith mobile unit
BSi : the ith base station
RC : random check number, generate by MSC
Kc : the conference key used by MUi
Ks : the session generate by MUi, used to participate in
the construction of Kc
PKC : public key cryptosystem
h : a secure one-way hash function
Ek : Encryption algorithm with private key k
8
Call Set-Up Authentication Protocol
MUi
BSi
AU MU i
MSC
{ AU MUi , IDBSi }
Compute
ARC
DB
Decrypt ( AU MU i ) d mod n
AU MUi ( IDMUi || RC || Ks )3 mod n
Authenticate IDMU i , RC
Generate RC
Compute NR RC RC '
Generate ri
(0)
{SBS
, NR}
i
(0)
Compute S BS
( h( IDBSi || RC ) RC ) d mod n
i
(0)
Compute X BSi g 3ri mod n and YBSi S BS
g ri mod n
i
{IDBSi , X BSi , YBSi , NR}
Compare
YBS3 i X BSi
RC
? h IDBSi || RC
{ACK}
Compute RC ' NR RC
(0)
BSi
Store V
h IDBSi || RC
{ACK}
RC ' replaces RC
(0)
Store S BS
i
RC ' replaces RC
9
Hand-Off Authentication Protocol
MUi
BSi
{nB }
Prestore VBS(0)i h IDBSi || RC
MSC
{nB }
ARC
Generate nB
DB
(0)
Prestore SBS
i
(1)
Compute S BS
h IDBSinew
i
{EK S nB }
BSi-new
i
(1)
{S BS
, EK S nB }
i
d
i
Compare EK S nB
i
Generate ri '
Compute X BSinew g 3ri ' mod n
(1)
Compute YBSinew S BS
g ri ' mod n
i
{IDBSinew , X BSinew , YBSinew }
Y
Compare
BSi new
3
X BSinew
RC
?VBS(0)i h IDBSinew
Store VBS(1)i VBS(0)i h IDBSinew mod n
(1)
Store SBS
i
10
(0)
S BS
i
Anonymous Conference Call
Protocol
Assume that there are at most m+1 mobile units MU0,
MU1, …, Mum in a communicating group of our system
Let n=m+l, according to Problem 1, it is then solved to
obtain the vector A= (a1, a2, …, an) and the n constants
λis.
yi, 1 ≤ i ≤ n, yi=λiai mod p
A, p : public
ai : the public key of the ith mobile.
(λi, yi) : the private keys for the ith mobile
11
Anonymous Conference Call
Protocol-cont.1
MU0
ARC
Constructs vector R= ri 1i m , ri 0 or 1
Choose a random vector W wi 1i l , wi 0 or 1
m
l
i 1
i 1
DB
If authentication is
successfully completed,
then MSC broadcast Z
Computes Z ai ri ami wi
MSC
{Z , AU MU 0 }
3
AU MU 0 IDMU 0 || IDMU1 || ... || IDMU k || RC0 || K s 0 mod n
MUi
Receiving the broadcast signal, compute
Ri ' i Z mod p
if Ri ' yi , then ri 0; otherwise, ri 1
12
Anonymous Conference Call
Protocol-cont.2
MUi j with ri 1
ID
MU i j
MSC
mod n
3
|| RCi j || K si
j
ARC
DB
Check list
Reconstruct f z via a j , b j , j 1, 2,..., k and his own
pair IDMU , K s .
K c is thus obtained by substituting z 0 into f z
Collects the coordinate
points ()
Collect IDMU0 , K s0 , IDMUi , K si , j 1, 2,..., k
j
j
Construct f z , and then let K c f 0
Select a j , b j , j 1, 2,..., k from the polynomial f z
Broadcast a j , b j , j 1, 2,..., k
13
Example
There are six mobiles in the mobile system
form Problem 1
A=(a1, a2, a3, a4, a5, a6)
=(1341,5239,13954,2490,15341,4662)
p=54401
(λ1, y1)=(37341,25361), (λ2, y2)=(5965,24461)
(λ3, y3)=(52699,23529), (λ4, y4)=(6979,23791)
(λ5, y5)=(11973,20017), (λ6, y6)=(2316,25794)
assume that the participating mobiles in a conference
call are {MU2, MU4, MU6} that is, R=(0,1,0,1,0,1)
14
Example-cont.1
Z=(A)(R)=12391
λ1*Z mod 54401=11826<25361, r1=0
λ2*Z mod 54401=35757>24461, r2=1
λ3*Z mod 54401=18106<23529, r3=0
λ4*Z mod 54401=33600>23791, r4=1
λ5*Z mod 54401=5916<20017, r5=0
λ6*Z mod 54401=28229>25794, r6=1
15
Conclusion
We have proposed an anonymous identitybased mutual authentication scheme for
holding a conference call.
This so-called anonymity is accomplished by
the aspect of a knapsack-like cipher
mechanism among the communicating mobile.
16
© Copyright 2026 Paperzz