References,
Aschroft : Solid State Phy. Ch.17
Kaxiras, Ch. 2
Atomic Hatree Unit System
Density
을 구하는 것이 중요하
다!
Manybody Schrődinger Equation
Slater Determinant
Hatree-Fock Non-local, Non
local)
Exchange interaction is only for the same-spin electrons
1
Ex i | j
2 i j
i *(r ) j *(r ) j (r ) i (r )
r r`
d 3 r d 3 r`
1
1
i j j i i j j i
2 i j
2 i j
( spin up )
( spin down)
N
j *(r ) i (r )d 3 r `
j 1
r r`
V x i (r ) i | j j (r )
N
j 1
same spin
j (r )
j *(r ) i (r )d 3 r `
r r`
• Hatree-Fock is non-local
• Let us approximate the exchange
potential with a purely local function
DFT방정식(Kohn-Sham equation)
(r ) 3
2
Vatom (r ) d r Vxc (r ) (r )
| r r |
2m
2
Exchange Potential function
Here it is local function
1 , 1 (r )
2 , 2 (r )
3 , 3 (r )
n , n (r )
n1 , n1 (r )
n 2 , n 2 (r )
n
2
(r ) | i (r ) |
i 1
2 3
| i (r ) | d r 1
3
(
r
)
d
rN
비선형방정식과 SCF 과정
(r ) 3
2
Vatom (r ) d r Vxc i (r ) i i (r )
| r r |
2m
2
Ĥ
n
*
(r ) i (r ) i (r )
i 1
① Ĥ operator 가 방정식의 해 1 (r ), 2 (r ), n (r )
를 내포하고 있는 비선형 방정식.
② 한번 만에 풀 수가 없고 SCF 과정이 필요하다.
• How to find a reasonable local function,
that is a functional of electron density ?
• The most primitive version is “SlaterDirac’s exchange energy” for spinunpolarized
Exchange Energy of the
uniform spin-unpolarized electron gas
Salter and Diract (1928)
E ( r ) [ ]d r
3 3
1/ 3
e (r )
4
SD
x
3
x
1
3
;
Bloch & Dirac (1920 ~ 1930)
2
x
Filatov & Thiel , Molecular Physics, 91, 847(1997)
Dirac, Comb. Phil. Soc. Math. Phys. Sci, 26, 376(1930)
DFT: X-α (spin-unpolarized)
2 2
1
e2 (r ) 3
2
Vatom (r )
d r 1.475 e ( (r )) 3 i (r ) i i (r )
r r
2m
n
(r ) i (r )
i 1
2
Spin-polarized electron density
① Formula for the spin-compensated (
E ( r ) [ ]d r
3 3
1/ 3
e (r )
4
0
x
1
2
)
3
x
;
1
3
Bloch & Dirac (1920 ~ 1930)
2
x
② For spin polarized cases
1
Ex
Dirac LSD
4
4
3 6 3 2
3
3
[ , ] E x [2 ] E x [2 ] e [ 3 ] d r
2
2
4
1
0
1
0
Filatov & Thiel , Molecular Physics, 91, 847(1997)
Dirac, Comb. Phil. Soc. Math. Phys. Sci, 26, 376(1930)
You please understand
Ex
Dirac
[ , ]
1
2
E x [2 ]
0
1
2
E x [2 ]
0
Ex [ , ] ( Exchange between spin up orbitals )
( Exchange between spin down)
ε
ε
1
2
E[ , ]
ε
1
2
Ex 0 [2 ]
up spin 전자숫자
만큼으로 구성된
Spi n- compens at ed
cas e
1
2
Ex 0 [2 ]
down spin 전자숫자
만큼으로 구성된
Spi n- compens at ed
cas e
1
2
Density-Functional Theory : X-α method
X
E XC
E X EC E XDirac [ ( r ) ]
Spin compensated Case
1
E
X
3 3 3 2
e
4
1
V X
4
3
d3r
1
2
1
3 2 13
3 3 e
3
e 2
(a0 (r )) 3
2a0
3
1
3
3 3
, 2 2.95
2
V
X
1
1
e2
3
3 2
2.95
a
(
r
)
1.475(
(
r
))
e
0
2a0
Ashcroft , page 337
다시 …Hartree-Fock
Slater Determinant
1
Hˆ
A B C
N!
Hˆ A B C
N!개의 항
N
1
1
ˆ
ˆ
H h(ri )
2 i j ri rj
i 1
1-body operator
2-body operator
One body operator ;
One body operator
Particle index => state index
Indirect term 의 모든 합은 0 이다.
One body term
=>
= 0
two body operator
two body operator
Indirect term
1
(r1 ) (r2 ) (r3 ) (r4 )
(r2 ) (r1 ) ( r3 ) ( r4 )
r1 r2
(r1 ) (r2 ) (r3 ) (r4 )
{i , j }
1
(r2 ) (r1 ) ( r3 ) ( r4 )
ri rj
{ , }
1 N N
2 1 1
Every distinct pair
Hatree-Fock
Hatree-Fock; Coulomb 항
Hatree-Fock; exchange 항
총에너지 ? 전자구름의 기저상태 에
너지
Hatree-Fock (분자의 총에너지)
Unrestricted Hatree-Fock
Unrestricted singlet frequently collapse to the corresponding restricted singlets.
Every pairs of the same spins
For example three electrons
C
B
A
“같은 spin” 하고 만 exchange interaction 한다.
zero:
No! exchange potential!
© Copyright 2026 Paperzz