Thermal noise calculations for cryogenic optics R. Nawrodt, I. Martin, A. Cumming, W. Cunningham, S. Rowan, J. Hough ET-WP2 Workshop, La Sapienza - University of Rome 26th/27th February 2009 Overview sources of thermal noise bulk material + coatings up scaling to necessary size suspensions problems, open questions Motivation h [1/ Hz] 10 10 -21 [Punturo, ET talk at the LSC meeting, Amsterdam 2008] 10 -22 -23 thermal noise limited 10 10 -24 -25 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 Thermal Noise Brownian Noise Thermoelastic Noise Bulk Coating Suspension Bulk Coating Suspension Photothermal Noise Coating Bulk Modelling Thermal Noise Reference geometry = advanced detector optics w0 = 60 mm D = 340 mm L = 200 mm D/2w0 = 2.8 aim: cross check with existing calculations Bulk Material (1) demands: low thermal noise suited for coatings (surface treatment, polish...) big sizes available (materials: Fused Silica, CaF2, Si, Sapphire) thermal noise contribution: Brownian thermal noise thermoelastic noise Bulk Material (2) Brownian Thermal Noise reminder: origin - thermal energy fluctuation-dissipation-theorem gives spectral distribution idea: low loss material will concentrate Brownian noise around the internal resonances (which are above the detection band) Bulk Material (3) Brownian Thermal Noise infinite half space S ITM X 2k B T 1 2 (f , T ) 3 / 2 substrate(f , T) f wY [Liu, Thorne 2000] … Poisson ratio, Y … Young’s modulus, T … temperature, f … frequency, substrate ... mechanical loss of the substrate, w … beam radius (1/e 2 definition) finite mirror material (analytical calculation) SFTM (f , T) C2FTM SITM X X (f , T) [Liu, Thorne 2000, Bondu, Hello, Vinet 1998] correction term nearly temperature independent and < 1 Thus, the infinite half space always gives an upper limit. Bulk Material (4) Brownian Thermal Noise (cont’ finite mirror) C 2FTM SFTM (f , T ) XITM SX (f , T ) 1 2 U0 aY 2k B T 1 2 S (f , T ) 3 / 2 substrate(f , T) f wY 4k B T SFTM ( f , T ) substrate(f , T) U 0 U X f exp( 2m r02 / 2a 2 ) Um m J 0 ( m ) 2 m 1 [Liu, Thorne 2000] ITM X 1 Q 2m 4k m HQ m Um (1 Q m ) 2 4k 2m HQ m a2 2 4 2 2 2 U H p 12 H p s 72 ( 1 ) s 0 0 6H 3Y J0 … Bessel function of order zero m … m‘th zero of the zero order Bessel function J1(m) Qm exp 2k m H k m m / a exp( 2m r02 / 4a 2 ) s 2m J 0 ( m ) m 1 exp( k 2m r02 / 4) pm a 2 J 02 ( m ) Bulk Material (5) Brownian Thermal Noise finite mirror material (FEA, ANSYS) direct use of Levin‘s approach S x (f , T ) 4k BT U max 2 substrate f F0 [Levin 1998] ANSYS Bulk Material (6a) Brownian Thermal Noise Young’s modulus Material Y [GPa] Material Y [GPa] Fused Silica 72 Si(100) 130 CaF2 135 Si(110) 169 Sapphire 350 Si(111) 188 Diamond >1000 Bulk Material (6b) Brownian Thermal Noise 10 Q-factor 10 10 10 impurity effects (e.g. doping, oxygen) Mechanical loss 10 9 8 7 [McGuigan 1978] 10 6 1 3 10 30 temperature [K] 100 300 Material properties collected and summarized for ET homepage. Bulk Material (7) Thermoelastic Noise reminder: origin – entropy production during heat flux between compressed and expanded regions causes thermoelastic loss a given temperature fluctuation T is converted into a displacement fluctuation x by means of the thermal expansion coefficient dependent on material thermal properties Bulk Material (8) Thermoelastic Noise (Material properties) thermal expansion coefficient [1/K] heat capacity [J/kg K] 700 600 500 400 300 200 100 0 0 50 100 150 200 temperature [K] 250 300 x 10 -6 1400 2.5 2 1.5 1 0.5 0 -0.5 0 50 100 150 200 temperature [K] 250 300 1200 1000 800 [Hull 1999] 3 800 thermal conductivity [W/m K] 600 400 200 0 0 50 100 150 200 temperature [K] 250 300 Collection of extracted data as txt-files and Origin-files for ET homepage. Bulk Material (9) Thermoelastic Noise finite/infinite test mass 4k BT 2 2 1 (f , T ) 5 / 2 2 C 2 f 2 w 3 2 ITM TE S FTM ITM STE (f , T) C'2FTM STE (f , T) [Liu, Thorne 2000] problem: Most of the calculations use the adiabatic assumption. Bulk Material (10) Thermoelastic Noise adiabatic limit: a temperature fluctuation stays in time 1/f within the beam diameter 2w 2w laser w = 2 r0 valid if: substrate C Cr02 (adiabatic limit) Bulk Material (11) Adiabatic limit 10 adiabatic limit [Hz] 10 10 10 10 10 4 Si(111) Fused Silica Sapphire 2 crystalline materials violate adiabatic assumption 0 -2 -4 amorphous materials still fulfil assumption -6 0 T<80 K: 50 200 150 100 temperature [K] 250 300 Bulk Material (12) Thermoelastic Noise beyond the adiabatic limit 2 8 2 k BT r0 2 STE (f , T) 1 J() 2 3 u 2 / 2 2 ue du dv 3 0 (u 2 v 2 )[( u 2 v 2 ) 2 2 ] J() J() 10 10 C 0 10 -10 10 -5 10 [Rowan et al. 2000, Aspen Meeting] [Cerdonio et al. 2001] 0 10 5 10 Bulk Material (13) Bulk Material Comparison (300 K) thermal noise [m/Hz] 10 10 10 10 -16 Fused Silica Si(111) Sapphire -18 SiO2 = 4×10-10 Si = 3×10-9 Sapphire = 3×10-9 -20 TE -22 Brownian 10 -24 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 Bulk Material (14) thermal noise [m/Hz] 10 10 Bulk Material Si(111) (20 K) -19 -20 Si = 5×10-10 10 10 10 -21 -22 TE -23 Brownian 10 -24 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 Bulk Material (15) thermal noise [m/Hz] 10 10 10 10 10 Bulk Material Comparison (20 K) -16 Fused Silica Si(111) Sapphire -18 SiO2 = 1×10-3 Si = 5×10-10 Sapphire = 3×10-9 -20 -22 -24 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 Bulk Material (16) thermal noise [m/Hz] 10 10 10 10 Bulk Material - e.g. Si(111), f=100 Hz, real measured values -18 properties extracted from: McGuigan 1978 Touloukian 1972 Hull 1999 -20 -22 -24 Brownian Thermoelastic total 10 -26 0 50 100 150 200 temperature [K] 250 300 Coating Material (1) Demands: low thermal noise low optical absorption (thermal load) conventional stack – high difference in refraction index large coatings needed with properties at the limit what is currently available Coating Material (2) Brownian Thermal Noise Thermoelastic Noise infinite/finite important parameters mostly unknown for coating materials (Y, , …) infinite/finite important thermal parameters unknown Photothermal Noise absorption measurement needed for all new coatings Coating Material (3) Brownian Thermal Noise (infinite) 2k B T 1 2 d S x (f , T ) 2 f w 2 Y YY ' (1 '2 )(1 2 ) [Harry et al. 2002] Y '2 (1 ) 2 (1 2) 2 || YY ' ' (1 )(1 ' )(1 2)(|| ) Y 2 (1 ' ) 2 (1 2' ) , ' 0 S x (f , T ) 2k B T d Y ' Y || 2f w 2 Y Y Y' If two different mechanical loss values exist then the Brownian thermal noise of a coating is dependent on the ratio of Young’s moduli at the interface. Lowest loss occurs if Y=Y’. Coating Material (4) Brownian Thermal Noise (finite) ANSYS as an alternative [Cunningham, Torrie] multilayer stack is treated as a two-layer-system S x (f , T ) 4k B T 1 max max 2 U layer 1 layer1 U layer2 layer2 f F0 analytical approaches [Somiya, Yamamoto, LIGO-P080121-00-Z] Coating Material (5) Brownian Thermal Noise Sx (f , T) 2k BT d Y' Y || 2 2 f w Y Y Y' unknown parameters: Y’, and || often: approximations = || measurements: see next two talks Coating Material (6) Thermoelastic Noise (multilayer stack) ~2 8k BT 2 L SC F 2 1 s g() STE (f , T) 2 2 f w CS [Braginsky, Fejer et al. 2004] C 1 E S (1 2S ) 1 2 C 1 1 E S F S S AVG ~2 sinh i F 1 g() Im iF cosh iF R sinh 2 iF L2 FC2F F and R SCS2 The adiabatic limit for amorphous materials (silica, tantala) is low even at cryogenic temperatures no limit/correction. Coating Material (7) Thermoelastic Noise (material properties) most parameters unknown for coatings some measurements available (e.g. densitiy, absorption) [Morgado, 1st ET Meeting, Cascina 2008] coatings often approximated by bulk material values Measurements of thermal and mechanical properties needed. Coating Material (8) 10 Photothermal Noise SPT (f , T) 2 2 2 0 WabsC 1 K ( ) 2 2 1 u 2e u / 2 K () du dv 2 0 (u v 2 )( u 2 v 2 i) K() 10 0 10 2 -10 10 -5 10 0 10 [Cerdonio et al. 2001] absorption of coatings governs photothermal noise Ta2O5:TiO2 absorption, ~ 1 ppm [Harry 2007] 5 10 Coating Material (9) example (15 double layers Ta2O5:TiO2 / SiO2) Si(111) 15 double layers advanced geometry 20 K sample temperature l = 1064 nm Ta2O5 = 9×10-4 SiO2 = 6×10-4 Si = 5×10-10 Coating Material (10) thermal noise [m/Hz] 10 10 10 10 10 10 -19 bulk Brownian bulk TE coating Brownian coating TE -20 coating dominates -21 -22 -23 -24 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 Comparison to Goal strain noise h [1/Hz] 10 10 10 10 10 -18 cryogenic mirror ET sensitivity advDetector sensitivity -20 -22 -24 -26 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 4 mirrors contributing, L = 10 km How to achieve the ET sensitivity? increasing beam size: 10 -18 strain noise [1/Hz] ET adDet 10 10 10 10 assuming advDet. aspect ratio -20 -22 -24 w [mm] m [kg] 60 42 100 196 140 537 -26 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 m ~ w3 ROC How to achieve the ET sensitivity? thermal noise [m/Hz] 10 10 10 10 10 10 increasing beam size: -19 bulk Brownian bulk TE coating Brownian coating TE -20 smaller influence of the coatings (e.g. waveguide mirrors, beam-profile) -21 -22 60 mm beam radius would be sufficient -23 -24 10 0 10 1 2 10 frequency [Hz] 10 3 10 4 How to achieve the ET sensitivity? increasing beam size: results agrees with estimates by S. Hild for upscaling existing techniques in GWINC [Hild et al. arXiv: 0810.0604v2] big substrate, coating with dia. 800 mm needed big mass will cause problems in the suspension Suspension Material (1) Demands: low thermal noise high thermal conductivity (extraction of thermal load of residual absorption, ~ 1 ppm, ~ 1 W) high breaking strength available ? Suspension Material (2) Brownian Thermal Noise Thermoelastic Noise fibres, ribbons Thermal Aspects Connecting Bulk and Suspension? Suspension Material (3) breaking strength of Si is dependent on treatment (200 MPa – 6 GPa) 1 circular fibre diameter: 25 mm2 … 1 mm2 500 kg 30% of maximum value: 4 fibres: ~ 2.5 mm2 ~ 0.7 mm2 per fibre ~ 1 mm diameter Suspension Material (4) Thermoelastic Noise 10 thermoelastic loss 10 10 10 10 10 -2 dia. -4 NL TE -6 -8 1 Y T T [Cagnoli, Willems 2002] -10 for Si unsuited for compensation -12 10 YT 0 C Y 1 () 2 2 300 K 20 K 0 10 1 2 10 frequency [Hz] 10 3 10 4 AdvLIGO fibre thermal noise reduction techniques developed for advDet. -> ET suspension FE assisted analysis of refined fibre models, fibre shapes, fibre neck shapes, tapered fibres additional aspects of heat extraction needs to be taken into account [Cumming 2008] Challenges high coating thermal noise compensation: large beam diameter, large substrate large substrate mass causes problems in the suspension possible reduction: finite size correction, reconsidering aspect ratio of substrat, better/no dielectric coatings, lower temperatures unknown parameters of coatings (thermal, mechanical) cause uncertainties which might change the result significantly Suggestions database for material properties (paper + data files) common reference curve for thermal properties comparison between different calculations implementation of temperature dependent material properties in a GWINC code (cryoGWINC?)
© Copyright 2026 Paperzz