Empirical Estimation of Probability Distribution of Extreme Responses of Turret Moored FPSOs Presentation By: Amir Izadparast Authors: Amir Izadparast Arun Duggal Background Design Value Extreme Statistics Limited Data Non-linearity Extreme Value Analysis Distribution Model Sample Data Numerical Experimental Complexity of data structure Full Scale Mixed Effects Table of Content • • • • • • • Non-linear Responses of Turret Moored FPSOs Probability Distributions Distribution Parameters Extreme Statistics Case Studies Results Concluding Remarks Non-linear Responses of Turret Moored FPSOs Mooring Leg Tension • Windward • • • • Low-Frequency Wave Frequency Total Tension Leeward • • • Low-Frequency Wave Frequency Total Tension Vessel Offset • Along the vessel length (X) • Low-Frequency Sources of Non-linearity • • • • Mooring System Stiffness Loading Nature (low-drift forces, drag, etc.) Environmental Condition (steep waves) Damping Probability Distributions Normalized Random Variable Model Transformation Linear Random Variable (narrow-banded) n 2 2 2 n A B 2 Non-Linear Random Variable n a 2 1 2 n 2 Distribution F x 1 exp x 2 2 Rayleigh F n x 1 exp x Exponential x F n x 1 exp B A Stansberg x F n x 1 exp Weibull 2 3-Par Rayleigh F n x 1 exp 2 8 2 4 x 12 Distribution Parameters Model Linear Random Variable (narrow-banded) Distribution Parameters Rayleigh , Exponential , Stansberg , , , Weibull , , , , 3-Par Rayleigh , , , ,γ Non-Linear Random Variable Extreme Statistics Ordered Value Statistics Theory (N independent cycles): F max x F n x N Expected Maximum: E max x dF max x Asymptotic Distribution of Large N (Gumbel) F max x exp exp x a N bN E max a N bN EM Number of Cycles (N) Wave frequency Narrow-banded process N Tstorm Tz Low frequency Non-narrow-banded– Correlation time - Stansberg’s formula 1 2 Combined Process Difficult to estimate bandwidth of the spectrum Number of observed cycles Case Studies: General Info Deepwater System Shallow-water System Water depth (m) ~2000m ~45m Area West Africa South East Asia 100Yr Condition Hs = 4.5m, Tp = 17sec, Ws = 6.3m/sec Hs = 10m, Tp = 16sec, Ws = 32m/sec Mooring System 3G*4L Taut mooring legs 4G*3L Catenary mooring legs Mooring Legs Chain-Polyester-Chain Chain-Heavy Chain-Chain Case Studies: Response Characteristics 10 4 10 4 Line T (Leeward) Line T (Windward) 10 1 10 0 1 Deepwater System 0 -2 10 10 10 0 10 4 10 -1 f ( Hz ) 10 4 Line T (Leeward) Line T (Windward) Shallow-water System 10 10 3 X Motion 2 10 1 10 0 10 -3 10 10 10 -2 -1 10 f ( Hz ) 10 0 10 3 2 1 0 2 10 2 10 -3 10 2 2 2 3 S X ( f ) / X (1/sec) 10 10 SX ( f ) / X (1/sec) 10 X Motion S T ( f ) / T (1/sec) 2 ST ( f ) / T (1/sec) 10 3 Case Studies: Response Characteristics 14 Shallow Water Deepwater 12 FX / FX 10 8 6 4 2 0 0 1 2 3 X/X 4 5 Results: Wave-Frequency 7 n-wave ( P ) 6 5 7 SAMPLE RAYLEIGH 6 EXPONENT IAL 3PAR-WEIBULL 5 3PAR-RAYLEIGH 4 4 3 3 2 2 1 0 0 10 10 -2 10 10 -3 RAYLEIGH EXPONENT IAL 3PAR-WEIBULL 3PAR-RAYLEIGH 1 Deepwater windward -1 SAMPLE -4 10 0 0 10 Deepwater leeward 10 -1 10 P 7 n-wave ( P ) 6 5 7 SAMPLE RAYLEIGH 6 EXPONENT IAL 3PAR-WEIBULL 5 3PAR-RAYLEIGH 4 4 3 3 2 2 1 0 0 10 -1 10 10 -2 P=( 1 -u ) -3 10 (1 -4 10 0 0 10 10 -3 10 -4 ) SAMPLE RAYLEIGH EXPONENT IAL 3PAR-WEIBULL 3PAR-RAYLEIGH 1 Shallow-water windward -2 Shallow-water leeward -1 10 -2 10 P=( 1 -u) -3 10 -4 10 Results: Low-Frequency 7 6 n-low ( P ) 5 4 7 SAMPLE RAYLEIGH 6 EXPONENT IAL EXP-ST ANSBERG 5 3PAR-WEIBULL 3PAR-RAYLEIGH 4 3 3 2 2 1 0 0 10 7 6 n-low ( P ) 5 4 -1 -2 -3 10 10 -4 10 0 0 10 7 SAMPLE RAYLEIGH 6 EXPONENT IAL EXP-ST ANSBERG 5 3PAR-WEIBULL 3PAR-RAYLEIGH 4 3 3 2 2 1 0 0 10 10 -2 10 P=( 1 -u ) 10 -3 EXP-ST ANSBERG 3PAR-WEIBULL 3PAR-RAYLEIGH Deepwater leeward -1 10 -2 10 10 -4 0 0 10 -3 10 -4 10 SAMPLE RAYLEIGH EXPONENT IAL EXP-ST ANSBERG 3PAR-WEIBULL 3PAR-RAYLEIGH 1 Shallow-water windward -1 EXPONENT IAL 1 Deepwater windward 10 SAMPLE RAYLEIGH Shallow-water leeward -1 10 -2 10 P=( 1-u) -3 10 -4 10 Results: Total 7 6 n (P ) 5 7 SAMPLE RAYLEIGH 6 EXPONENT IAL 3PAR-WEIBULL 5 3PAR-RAYLEIGH 4 4 3 3 2 2 1 0 0 10 7 6 -3 10 10 EXPONENT IAL 3PAR-WEIBULL 3PAR-RAYLEIGH -4 10 0 0 10 7 SAMPLE RAYLEIGH 6 EXPONENT IAL 3PAR-WEIBULL 5 3PAR-RAYLEIGH Deepwater leeward -1 10 -2 10 -3 10 -4 10 SAMPLE RAYLEIGH EXPONENT IAL 3PAR-WEIBULL 3PAR-RAYLEIGH 4 4 n n (P ) 5 10 -2 RAYLEIGH 1 Deepwater windward -1 SAMPLE 3 3 2 2 1 0 0 10 1 Shallow-water windward -1 10 -2 10 P=( 1-u) -3 10 -4 10 0 0 10 Shallow-water leeward 10 -1 10 -2 P=( 1 -u ) 10 -3 10 -4 Results: Extreme Statistics Model Deep water Sample Rayleigh Exponential 3-Par. Rayleigh 3-Par. Weibull Stansberg Exp. Model Sample Shallow water Rayleigh Exponential 3-Par. Rayleigh 3-Par. Weibull Stansberg Exp. Wave Freq. 4.2 (5.4 - 3.3) 3.8 7.1 3.8 3.9 -- Windward Low Freq. 3.2 (3.5 - 2.8) 2.7 3.8 3.3 3.1 3.4 Wave Freq. 5.8 (7.3 - 4.9) 3.8 7.3 6.3 5.6 -- Windward Low Freq. 4.1 (4.5 - 3.6) 3.2 5.2 4.7 4.4 4.5 Total 4.2 (5.2 - 3.6) 3.7 7.0 4.3 4.1 -- Total 5.8 (6.9 - 5.1) 3.7 6.8 6.4 5.7 -- Wave Freq. 4.1 (5.3 - 3.4) 3.8 7.1 4.0 4.0 -- Leeward Low Freq. 3.1 (4.1 - 2.6) 2.8 4.0 3.1 3.1 3.5 Wave Freq. 5.6 (5.8 - 5.4) 3.8 7.2 5.4 5.0 -- Leeward Low Freq. 5.0 (5.2 - 4.6) 3.2 5.2 4.8 4.5 4.5 Total 3.9 (4.9 - 3.3 ) 3.7 7.1 3.7 3.8 -- Total 5.4 (6.4 - 4.4) 3.7 7.0 6.1 5.3 -- Concluding Remarks • The probability distribution of mooring leg tension and vessel offset in extreme environmental condition were studied. • Two case studies of shallow water and deepwater turret moored FPSOs are considered. • The characteristics of probability distribution of wave-frequency, low-frequency, and the combined tension are studied. • The probability distributions of tension in the windward and leeward lines are studied. • The performance of widely used distribution models as well as the three-parameter Rayleigh distribution model is evaluated over the experimental data. • The effect of distribution model on the predicted extreme values is discussed. Thank You!
© Copyright 2026 Paperzz