BBB seminar, February 2, 2006 MITOCHONDRIA AND CELL PROLIFERATION Mitochondrium Karl Johan Tronstad [email protected] Mitochondria - history 1890 Altman: Intracellullar granules, similar to bacteria, ”bioblasts” 1932 Bensley og Hoerr: Isolated mitochondria from guinea pigs 1949 Lehninger: Metabolic pathways localized to the mitochondria (fatty acid oxidation and TCA-cycle) 1952-53 Palade/Sjostrand: Mitochondrial membrane structure (TEM) 1955-62 Chance/ Hafeti/Beinert/Crane: The respiratory chain 1961 Mitchell: The Chemiosmotic theory 1964/65 Schatz/Nass: Mitochondrial DNA 1996 Liu et al: Cytokrom c release during apoptosis Mitochondrial structure Outer Membrane Inner membrane Matrix Intermembrane space From: Fawcett, A Textbook of Histology, Chapman and Hall, 12th edition, 1994 Mitochondrial network in a fibroblast (COS-7). Mitochondria: Green, Microtubuli: Red From: Yaffe M.P. 1999, Science 283: 1493-97 Scorrano et. al. 2002, Dev Cell, 2: 55-67 Mitochondrial facts • Organelles i Eukaryotic cells (endosymbiotic theory) • Have their own DNA (mtDNA) (“The 47th chromosome”, multiple copies in each cell) • Contributes in - energy metabolism - regulation of cell death • Hepatocytes: 1000-2000 mitochondria constituting about 1/5 of the cell volume 1 Mitochondrial interference in cell proliferation • Energy metabolism - Energy (ATP) supply - Reactive oxygen species (ROS) - Nutritional environment • Signalling - Ca2+ uptake and efflux - Cardiolipin - Cell cycle • Apoptosis - Permebility transition - Release of soluble molecules • Differentiation -? Cell fates - malignancy Differentiation Conditions and signals Mitosis Rest Malignant transformation Anticancer treatment Tumor Cell death (apoptosis) Cancers have high aerobic glycolysis Modified fatty acids H OH C Substituents: • F, Br, S, Se, OH • Hydrocarbon branches • Amino/amide-groups • Aromatic rings Cancer cell target mechanisms: Other modifications: • Double/triple bounds • Isomerisation (cis, trans) Source:Gatenby & Gillies, Nat Rev Cancer, 2004 TTA (tetradecylthioacetic acid) O • • • • • Histon deacetylase (HDAC) Eicosanoid metabolism (COX-II) Nuclear receptors (RXR/RAR, PPAR) Protein prenylation (Ras) Mitochondria Tronstad et al, Expert Opin. Ther. Targets, 2003 Mitochondria as target organelles Drugs Transporters ? Cardiolipin β-oxidation TCA-cycle on dr io n Respiration M ito ch • Is not β-oxidized • Stimulates oxidation of other fatty acids • Mitochondrial proliferation • Ligand and activator or PPARs • Hypolipidemic effects • Immunomodulating effects (anti-inflammatory) • Low toxicity Berge RK et al, Curr Opin Lipidol, 2002 2 Reduced tumor growth, prolonged survival Inhibition of glioma cell growth BT4Cn rat gliomas 120 3-Thd incorporation (% of control) Intracranial BT4Cn 100 D54Mg 80 GaMg 60 40 Subcutaneous 20 0 0 50 100 150 200 TTA (µM) Tronstad et al, Biochem Pharmacol, 2001 Proliferation of AML blasts from patients incorporation 10 4 cpm 3 H-Thd Patient 2 2.0 10 Patient 3 Patient 4 2.0 105 Patient 5 2.0 2.0 1.6 8 1.6 1.6 PA 1.5 1.2 6 1.2 1.2 TTA 1.0 0.8 4 0.8 0.8 0.5 0.4 2 0.4 0.4 0.0 0.0 0 0.0 0.0 Patient 6 12 8 6 4 12 Patient 9 Patient 8 0.4 10 0.3 9 0.2 6 0.1 2 Patient 13 6 4 0.3 0 Patient 15 0.6 2 0.0 Patient 16 0.6 2 0.4. 0.4 1 0.2 0.2 3 2 4 2 3 4 5 0 0 1 2 3 4 0.0 5 Tronstad et al, Leukemia, 2003 0 1 2 3 4 5 0.0 0 1 2 3 4 0 5 n = 23 1 2 1 103 Patient 18 4 6 0.1 0 0 1 2 3 4 0 5 0 1 2 3 4 102 5 Control TTA 8CPT-cAMP Induction IPC-81 Bcl-2 IPC-81 Bcl-2 Capase-8 Oxidative stress Cellular damage Second messengers Specific pathways * 40 0 * * 0 3 6 9 12 15 18 21 24 TTA exposure (hrs) 80 * Decision * * 20 * * 60 DNA damage Bax * * 20 0 Protease activation cyt c, Smac/DIABLO Δψ↓ Caspase-9 (Caspase-3) 40 0 1 2 3 4 5 cAMP exposure (hrs) 6 Degradation 60 * % apoptosis % apoptosis 80 p53 Bcl-2 100 IPC-81 IPC-81 Bcl-2 TTA p<0.005 Growth factor Chemicals deprivation Radiation ROS Bid 100 Control Apoptotic pathways Receptor-mediated signals IPC-81 IPC-81 Time PA p<0.05 Fatty acid concentration (10 2 µM) Induction of apoptosis in leukemia cells Time 104 0 Patient 17 10 8 0.2 0.0 8 0.6 0.4 0.3 Reduced growth of AML blasts from patients Patient 12 10 0.9 1 0 Patient 14 3 Patient 11 1.2 2 3 0.0 0 0.5 Patient 10 3 incorporation (cpm) Patient 1 106 3 H-Thd Figure 1 2.5 Berge K et al, Carcinogenesis, 2001 ROS Membrane alterations Nuclear apoptosis Cytoplasmic alterations Tronstad et al,Chemistry & Biology, 2003 3 control TTA-induced apoptosis TTA Apoptosis cyt c (ng/µl protein) Cytochrome c Glutathione * 3 6 0.4 0.0 0.0 0 3 * * 0.3 0.2 0.1 0.1 6 9 2 ΔΨm Ø TTA 0 1 2 3 4(h) 12 15 18 hrs execution 1 Cyt C Activation of effector caspases GSSG ( e GSH Ø Generation of oxidative stress f 9 12 15 18 h 0 6 12 18 h procaspase-3 PARP * 0.2 commitment mitochondrion * TTA cAMP * 0 0.3 nmol/mg protein 14 12 10 8 6 4 2 0 ΔΨ Caspase-3 red fluorescence fold increase TTA inititation 0.4 IPC-81 1.2 0.8 * 0.4 0.0 ctr cAMP 20 * 15 10 0 3 Nuclear condensation and fragmentation * * * 6 * * h Transcriptional regulation g * 5 Cytosolic glutathione depletion (TTA) i GSH 0 * uncleaved cleaved GSSG + GSH 25 cAMP Cell fragmentation (blebbing) 9 12 15 18 hrs TTA nucleus Tronstad et al, Chemistry & Biology, 2003 Respirometry The respiratory chain -measuring oxygen consumption Intermembrane Space rotenone Antimycin A 2H+ CN- 4H+ 2H+ 3H+ cyt c UQ I II FADH2 NADH FAD NAD+ H+ III ½O2 FAD Acyl-CoA dehdrogenase Succinate Pyruvate Fo IV V ETFP 2H+ F1 H2O 2H+ ADP + Pi Ascorbate/TMPD 3H+ Matrix Uncoupling effects of fatty acids, HL-60 cells Oxygen consumption in HL-60 cells Complex IV Cytochrome c oxidase (150µM, 5.5h) KCN 30 25 20 15 ADP Oxygen flux Oxygen flux pmol oxygen/(s*mill cells) antimycin A succinate ascorbate Cells + digitonin + rotenon TMPD 10 pmol oxygen /(s*mill cells) cytochrome c 35 Control (DMSO) TTA 10 30 50 100 µM 15 rotenone 5 0 18 16 TTA DMSO 12 10 0 0 20 14 -5 5 Palmitic acid 22 AntiA 20 10 24 Succinate 25 Oxygen flux Complex II Succinate:CoQ reductase control TTA 500 1000 1500 time (s) 2000 2500 0 20 40 60 80 FA concentration (µM) -5 500 1000 1500 2000 2500 3000 time (s) 4 Involvement of a cyclosporin A sensitive pore? Palmitic acid TTA 35 Cyclosporin A ctr Fatty acid oxidation TTA 5 Fatty acid (50µM) 30 25 Ketogenesis 1.6 * * 20 15 succinate 10 Cells + digitonin + rotenon 5 0 (µmols/h/2 mil cells) 4 (nmols/h/2 mill cells) pmol oxygen/(s*mill cells) TTA increases fatty acid oxidation and ketogenesis in primary hepatocytes * 3 2 * 1 0 -5 0 400 800 1200 1600 2000 Substrate: 2400 1.2 * 0.8 0.4 0 PA EPA DHA PA EPA DHA time (s) Grav et al, JBC, 2003 TTA stimulates respiration in hepatocytes Lowered membrane potential 140 Oxygen uptake (ngatoms oxygen/h/2 mill cells) 1800 1600 120 * * 1400 80 60 40 0 1000 800 600 400 200 0 Substrate: * * 100 20 1200 59 ΔpH (mV) TTA Δψ (mV) ctr UCP-2 mRNA, relative to control Increased oxygen consumption Induced UCP-2 expression in rat hepatocytes -20 -40 -60 Liver 6.0 4.0 * 3.0 2.0 1.0 0.0 control TTA 150 TTA 300 -80 EPA ctr Rat treatment: Respiration substrate: control TTA ctr TTA Succinate ctr Fish-oil TTA UCP-2 protein TTA 33 kD Palmitoyl-L-carnitine Grav et al, JBC, 2003 7.0 UCP-2 mRNA, relative to control TTA -120 PPARα dependent and independent induction of UCP-2 6.0 Wild type * Biological activity of fatty acids A TT PPARα deficient Proliferation 5.0 PPARs 4.0 3.0 * 2.0 1.0 * Metabolism * 0.0 Control Grav et al, JBC, 2003 control -100 DHA Grav et al, JBC, 2003 Purified hepatocytes * -140 PA Primary hepatocytes 5.0 Fish-oil TTA Fibrate Apoptosis Energy Redox Death (apoptosis) 5 Mitochondria as targets for cancer therapy Drugs Changes in energy metabolism Oxidative damage Transporters Respiration Permeability transition β-oxidation Cardiolipin Institute of Medicine Haukeland University Hospital, Bergen Rolf Kristian Berge Kjetil Berge Endre Dyrøy University of Oslo Therese H. Røst Hans J. Grav Oddrun A. Gudbrandsen Per Ole Iversen Hege V. Wergedahl Christian Drevon Ziad Muna Pavol Bohov Norwegian University of Science and Technology, Trondheim Bjørn Tore Gjertsen Tom Chr. Martinsen Øystein Bruserud Helge Waldum Bjarte Sko Erikstein Emmet McCormack Differentiation Department of Biomedicine Stein Ove Døskeland Camilla Krakstad Kari Fladmark M ito ch ? Apoptosis on dr io n Proliferation Coworkers Reduced tumor growth The Norwegian Cancer Society The Research Council of Norway 6
© Copyright 2026 Paperzz