Objective Function Definition in Conceptual Hydrological Modelling V. Guinot, B. Cappelaere, C. Delenne, D. Ruelland HydroSciences Montpellier UMR 5569 (CNRS, IRD, UM1, UM2) SimHydro 2010 1 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Reservoir‐based models • discretized versions of balance equations written in differential form dU = R (U , ϕ , t ) − Q (U , ϕ , t ) dt R U n +1 = f (U n , Rn , ϕ ,...) Qn = g (U n , ϕ ) • Predefined flux functions U Q • Parameters to be calibrated R (U , ϕ , t ) SimHydro 2010 Q (U , ϕ , t ) 2 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland The calibration process R • The primary variable can often not be used for calibration U • A « secondary variable » is used instead (e.g. the discharge Q) because it is easier to observe Q Q Observed Modelled t SimHydro 2010 3 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland The calibration process V • Try to make the modelled signal as close as possible to the observed one BUT… • What does « as close as possible » mean ? F(U, ϕ) Observed Modelled t Q t SimHydro 2010 4 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Classical measures of « closeness » • Nash‐Sutcliffe Efficiency (NSE) • Mean Square Error (MSE) • Root Mean Square Error (RMSE) J= ∑ [F (U N J= n , ϕ ) − Vn ] 2 = ∑ V en2 e : model error e Ω t N 2 2 [ ] F ( U ( t ), ϕ ) − V ( y ) d t = e ∫ ∫ (t ) dt Ω SimHydro 2010 Ω 5 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Classical measures of « closeness » V • Generalized Nash‐Sutcliffe Efficiency (NSE) e : model error e Jp = ∑ en ∑ F (U (t ), ϕ ) − V ( y ) dt = ∫ F (U n , ϕ ) − Vn p = ∫ Ω SimHydro 2010 Ω N N Jp = p p t p e (t ) dt Ω 6 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Classical measures of « closeness » V • Generalized Nash‐Sutcliffe Efficiency (NSE) e : model error e Jp = ∑ en ∑ F (U (t ), ϕ ) − V ( y ) dt = ∫ F (U n , ϕ ) − Vn p = ∫ p Ω Ω N N Jp = p t p e (t ) dt Ω Perfect model SimHydro 2010 Jp = 0 7 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Classical measures of « closeness » verify • Positivity Jp = ∫ e(t ) p dt ≥ 0 ∀( p > 0, Ω) Ω • Triangle rule • Zero property J p = 0 ⇔ e(t ) = 0∀t ∫ p ⎤ dt ⎥ ⎥ ⎦ 1/ p ⎡ ⎢ e1 + e2 ⎢Ω ⎣ ⎡ ≤ ⎢ e1 ⎢Ω ⎣ ∫ p ⎤ dt ⎥ ⎥ ⎦ 1/ p ⎡ + ⎢ e2 ⎢Ω ⎣ ∫ p ⎤ dt ⎥ ⎥ ⎦ 1/ p These are the properties of a norm (distance) SimHydro 2010 8 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Another possible approach: the weak form • Desired property: • Weak form: e(t ) = 0 ∀t ∈ Ω ∫ e(t ) w(t ) dt = 0 ∀w(t ) Ω • Particular case: SimHydro 2010 w(t ) = e(t ) p −1 , p ≥1 9 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Another possible approach: the weak form • Desired property: • Weak form: e(t ) = 0 ∀t ∈ Ω ∫ e(t ) w(t ) dt = 0 ∀w(t ) Ω • Particular case: w(t ) = e(t ) p −1 , p ≥1 ∫ J p = a + b e(t ) Proposed Objective Function p −1 e(t ) dt Ω Jp = a+b ∑ en p −1 en N SimHydro 2010 10 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Very small differences… Distance-based p=1 J1 = ∫Q sim Weak form-based − Qobs dt VE = Ω ∫ (Q sim − Qobs ) dt Ω p=2 MSE = 2 ( ) Q − Q ∫ sim obs dt Ω SimHydro 2010 J2 = ∫Q sim − Qobs (Qsim − Qobs ) dt Ω 11 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland … yield very different objective function behaviours 0.5 cP dU = cP(t ) − kU dt k U kU 0 0 c 0.2 Distance‐based, p = 1 Observed variable: discharge SimHydro 2010 12 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland … yield very different objective function behaviours 0.5 0.5 k k 0 0 0 c 0.2 Distance‐based, p = 1 Observed variable: Q SimHydro 2010 0 c 0.2 Weak form‐based, p = 1 Observed variable: Q N.B.: This is the Volume Error VE 13 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland … yield very different objective function behaviours 0.5 0.5 k k 0 0 0 c 0.2 Distance‐based, p = 2 Observed variable: Q SimHydro 2010 0 c 0.2 Weak form‐based, p = 2 Observed variable: Q 14 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Response surface monotony If the following assuptions hold • Q > 0, R > 0 • R – Q is an increasing function of U • There exists as steady state solution • Initial condition: U(0) ≥ 0 Then (Guinot & al., submitted) • Weak form‐based objective functions are monotone in ϕ (no local minimum) • Distance‐based objective functions are not (local minima may appear) SimHydro 2010 dU = R (U , ϕ , t ) − Q(U , ϕ , t ) dt Jp D W ϕ 15 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland The calibration process Distance‐based • Optimization process • Local minima • Equifinality • Gradient‐based methods may fail • Global search procedures • Optimum depends on p Weak form‐based • Root finding problem • Monotone function • Gradient‐based methods can be used • Search the intersection between hypersurfaces defined for different values of p Both types of objective functions lead to similar optimal parameter sets SimHydro 2010 16 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Moreover… (from Guinot & al, submitted to Journal of Hydrology) • Using different p in Jp allows redundant parameters to be identified • In reservoir‐based models, applying the same objective function to several model variables is more efficient for calibration than applying different objective functions to the same model variable • Correspondence (Parameters ÍÎ Variables) for optimal calibration efficiency SimHydro 2010 17 Objective Function Definition in Conceptual Hydrological Modelling Guinot, Cappelaere, Delenne & Ruelland Conclusions • Weak form‐based objective functions may prove easier to use than distance‐based objective functions in practice • It is well‐admitted that calibration and validation should be carried out using different data sets • We may also admit that they should be carried out using different types of objective functions ! SimHydro 2010 18 Objective Function Definition in Conceptual Hydrological Modelling V. Guinot, B. Cappelaere, C. Delenne, D. Ruelland HydroSciences Montpellier UMR 5569 (CNRS, IRD, UM1, UM2) SimHydro 2010 19
© Copyright 2026 Paperzz