Complex Numbers Section 3: Complex numbers and trigonometry Notes and Examples These notes contain subsections on: Using de Moivre’s theorem to find trigonometric identities Using complex numbers to sum real series Using de Moivre’s theorem to find trigonometric identities De Moivre’s theorem can be used to give a multiple angle formula in terms of powers and to express powers of sine and cosine in terms of multiple angles. This can be very useful in integration. z n z n z n z n and cos n are 2i 2 used frequently. You should be happy with these identities and know how they arise (they are proved on page 345). In the example below, the identities sin n Example 1 (i) Express sin 6 in terms of multiple angles (ii) Hence find sin 6 d . putting n = 1 Solution (i) z cos isin sin n So 2i 6 sin 6 z z 1 z n z n 2i sin z z 1 . 2i 6 . z 6 6 z 5 z 1 15 z 4 z 2 20 z 3 z 3 15 z 2 z 4 6 zz 5 z 6 z 6 6 z 4 15 z 2 20 15 z 2 6 z 4 z 6 z 6 z 6 6 z 4 z 4 15 z 2 z 2 20 2 cos 6 12 cos 4 30 cos 2 20 Therefore: using z z 2cos n for n = 6, 4 and 2 respectively n n 64sin 6 2cos 6 12cos 4 30cos 2 20 . 20 2 cos 6 12 cos 4 30 cos 2 sin 6 64 10 cos 6 6 cos 4 15cos 2 32 1/5 sin (ii) 6 10 cos 6 6 cos 4 15cos 2 d 32 1 1 6 15 10 sin 6 sin 4 sin 2 c 32 6 4 2 1 60 sin 6 9sin 4 45sin 2 c 192 d Using complex numbers to sum real series. Consider the sum n n n n 1 cos cos 2 ... cos (n 1) cos n . 1 2 n 1 n This sum is not an arithmetic series, it is not a geometric series, nor is it a binomial series. However, in Example 2 below, complex numbers will be used to show that it is equal to n 2cos cos . 2 2 n Similarly, it is not immediately clear that the series sin sin 2 sin 3 sin 4 2 3 4 ... 2 2 2 2 can be dealt with using the techniques that we have learnt so far. It is shown in Example 3, using complex numbers, that the sum of this series is sin 5 4 cos In both examples, the strategy is the same: introduce some complex terms so that the given summation becomes the real or imaginary part of an arithmetic, geometric or binomial series. Then, using the familiar formulae for these types of sums, find an expression for the (usually complex) value of this new summation. In both examples n below, De Moivre’s Theorem, that cos isin cos n isin n , or e i n ein , is used. manipulate this expression to express it as a single complex number. In both of the examples below, some of this algebraic manipulation is dealt with in the first part of the question. equate real or imaginary parts to give the value of the original summation. 2/5 Example 2 (i) Using the identities 1 cos 2 2cos 2 and sin 2 2cos sin , prove that i 1 ei 2e 2 cos . 2 n n n n (ii) Let C 1 cos cos 2 ... cos (n 1) cos n . 1 2 n 1 n By considering C iS , where n n n n S sin sin 2 ... sin (n 1) sin n 1 2 n 1 n n show that C 2cos cos . 2 2 n gives 1 cos 2cos Solution (i) 1 ei 1 cos i sin 2 cos 2 2e cos 2 2 2 2i cos sin 2 2 2 2 cos i sin cos 2 2 2 i 2 The identity 1 cos 2 2cos sin 2 2cos sin gives sin 2 cos sin 2 2 The identity 2 n n n n (ii) C iS 1 cos cos 2 ... cos (n 1) cos n 2 n 1 n 1 n n n n i sin sin 2 ... sin (n 1) sin n 2 n 1 n 1 n n 1 cos i sin cos 2 i sin 2 ... 1 2 n n cos (n 1) i sin (n 1) cos n i sin n n 1 n n n 2 1 cos i sin cos i sin ... 1 2 n n n 1 n cos i sin cos i sin n 1 n 2 n n n i n 1 n i n 1 ei ei ... e e using de Moivre’s 1 2 n 1 n theorem 1 ei n This is just the standard result 1 x n n n n n1 n n i 1 x x 2 ... x x , with x e 1 2 n 1 n 3/5 Using the answer to part (i) gives C iS 1 ei n i 2e 2 cos 2 n 2n cos i sin cos 2 2 2 n n n n 2 cos i sin cos . 2 2 2 n n n Equating the real parts of the equation above gives C 2cos cos . 2 2 n Example 3 (i) Show that 2 ei 2 ei 5 4cos . sin sin 2 sin 3 sin 4 ..... 2 22 23 24 cos cos 2 cos3 cos 4 By considering C iS where C 1 ... , 2 22 23 24 2sin show that S . 5 4cos (ii) Let S Solution (i) 2 ei 2 ei 4 2ei 2e i ei e i 5 2 ei ei 5 2 cos i sin cos( ) i sin( ) 5 2 cos i sin cos i sin 5 2 (2 cos ) 5 4 cos . cos sin cos 2 sin2 cos 3 sin3 i i 2 i 3 ... 2 3 2 2 2 2 2 2 cos i sin cos 2 i sin 2 cos 3 i sin 3 1 ... 2 22 23 (ii) C iS 1 cos i sin 1 2 cos i sin cos i sin ... 22 23 2 3 cos i sin cos i sin cos i sin 1 ... 2 2 2 2 3 4/5 2 3 e i e i e i 1 ... 2 2 2 1 e i 1 2 This is just a geometric series with first term 1 and common ratio ei 2 2 2 e i using the standard result that the sum of an infinite geometric progression with first term a and common ration e i a r r is , with a = 1 and . Note r 1 is 2 1 r required for the series to converge, check you are happy e i that this is the case for r .) 2 Using part (i): 2 2 ei i 2 2 e i i 2 e 2 e . 4 2e i 5 4 cos 4 2 cos 2i sin 5 4 cos C iS Equating imaginary parts gives S 2sin . 5 4cos 5/5
© Copyright 2026 Paperzz