Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Quantum Electron Optics and Electron Entanglement Na Young Kim (Stanford, AP) William D. Oliver (Stanford, EE) Fumiko Yamaguchi (Stanford, AP/EE) Yoshihisa Yamamoto (Stanford, AP/EE) Jing Kong (Stanford, Chem) Hongjie Dai (Stanford, Chem) Manuel Aranzana (ENS) Leo Di Carlo (Harvard) Gwendal Feve (ENS) Jungsang Kim (Lucent) Robert Liu (UCSF) Xavier Maitre (CNRS) Electron Entanglement via a Quantum Dot R2 Single electron tunneling suppressed by energy conservation VR2 VL EL = ER1 = ER2 Two-electron virtual tunneling is allowed VR1 L R1 Only singlet-state remains at output: indistinguishability and Fermi statistics including Pauli Exclusion Principle U Ed EL1 EL2 X EL1 + EL2 = ER1 + ER2 ER2 ER1 W. D. Oliver et al., PRL 88, 037901 (2002) Non-linearity: Coulomb charging energy U L2 R2 Optical analogy: L1 Chi-(3) four-wave mixing process R1 Noise Suppression in Carbon Nanotubes LED/PD CNT LED/PD 200 250 Experimental Fano factor (noise suppresion) 200 nm SWCNT V =0V R = 17.4 kW 200 S (arb. unit) S (arb. units) CNT 150 F SlopeCNT 0.17 Slope PD G 100 150 Elastic scattering: 1-T (transparent contacts) 5050 1 T 1 00 -200 SCNT = 0.17 (2eI) 0 0 200 400 400 I 600 6.45kW 0.63 17.4kW 800 1000 1200 1400 1600 1800 2000 800 1200 I CNT, IPD (nA) CNT 1600 , I PD (nA) S = 2e*IB = 2 (ge) I(1-T) = g (1-T) 2eI g, elastic scattering yield noise suppression CNT: g = 0.2 ~ 0.3 theory, g = 0.28 expt ST = 2eI(1-T) = 0.63 (2eI) Remainder of suppression: LL parameter g g 0.17 0.27 0.63 SCNT = g(1-T) 2eI= 0.17 (2eI) Integrated CNT / SC Structures for Electron Entanglement CNT as a quantum dot (0D) structure Easy to make strong tunnel barriers Strong confinement w/out surface depletion effect Very small CNT quantum dot entangler CNT as a quantum wire (1D) structure “Ideal” 1D channel, minimize intermode coupling Reduced scattering phase space (cf., 2D leads) “interconnect” with long mean free path (?) Caveat: LL quasi-particle not free electron (cf., Fermi Liquid) collective excitation (CDW, SDW) TBD: how does this effect entanglement ?? CNT as 0D and 1D structure “Kinks”, CNT overlap, AFM tip, etc. create tunnel barrier ~20 nm Future Directions Theory of regulated entangled pair generation “unitary limit” of conductance with resonant biasing ….. “natural regulation” turnstile-like operation ….. “engineered regulation” Luttinger Liquid theory Experimental demonstration of electron entangler -0.1 0.8 Normalized Conductance (G/GQ) -0.2 1 0.6 0.6 2 99.08.20_A (-14dB) plateau at p=0.8 0.7 structure at 0.7p = 0.56 0.4 0.4 -0.2 -0.3 -0.3 -0.4 -0.4 4 3 Cross Covariance HBT-type Experiment: shows noise suppression one channel in unitary limit one channel partially conducting Collision experiment: spin polarized vs. unpolarized -0.1 0.8 -0.5 -0.5 0.2 0.2 -0.6 -0.6 -2.9 -2.8 -2.7 -2.6 Input QOC Gate Voltage -2.5 -2.9 -2.8 -2.7 -2.6 -2.5 Gate Voltage (V) -0.7 Normalized xcov Noise Properties of the 0.7 Structure Conductance (G/GQ) Integrated semiconductor / CNT structure Bunching / Anti-bunching experiment
© Copyright 2026 Paperzz