Unit 4 HW 2 p. 178 # 1 -6, 8, 9, 12 Mrs. McCaleb A 1. Given: ΔABD is isosceles with base BD AC is a median Prove: AC is the perpendicular bisector of BD B D C F 2. G Given: EFGH is a rhombus Prove: EG perpendicular to FH H E 3. H P J K N Given: ray JK bisects HJL NP perpendicular HJ NM perpendicular JL Prove: NP NM M L A 4. Given: ΔABD is isosceles w/ base BD Ray AC bisects BAD Prove: AC perpendicular BD B C D E 5. Given: EH is an altitude of ΔEFG Prove: 1 2 F 2 1 H 1. 2. 3. G Statements EH is an altitude of ΔEFG 1 is right 2 is right 1 2 Reasons 1. Given 2. Def altitude 3. Right Thm 6. Given: ΔABD is isosceles w/ base BD AC is a median A Prove: ∆ABC ∆ADC B C D Statements ΔABD is isosceles w/ base BD AC is a median AB AD BC CD AC AC ∆ABC ∆ADC 1. 2. 3. 4. 5. A 8. Reasons 1. Given 2. 3. 4. 5. Def isosceles Def median Reflexive property SSS Given: AC is a median AC is an altitude Prove: ∆ABD is isosceles 2 1 B C 1. 2. 3. 4. 4. 5. 6. 7. D Statements AC is a median AC is an altitude 1 is right 2 is right 1 2 BC CD AC AC ∆ABC ∆ADC AB AD (or B D) ΔABD is isosceles Reasons 1. Given 2. Def altitude 3. 4. 4. 5. 6. 7. Right Thm Def median Reflexive property SAS CPCTC Def isosceles A 9. Given: ΔABD is isosceles w/ base BD Ray AC and AE trisect BD Prove: AC AE B C 1. 2. 3. 4. 5. 6. D E Statements ΔABD is isosceles w/ base BD AB AD B D Ray AC and AE trisect BD BC ED ∆ABC ∆ADE AC AE Reasons 1. Given 2. Def isosceles 3. 4. 5. 6. Given Def trisect SAS CPCTC A 12. Given: ΔABD is isosceles w/ base BD Ray BC bisects ABD Ray DC bisects ADB C B 1. 2. 3. 4. 5. 2 1 D Prove: ∆BCD is isosceles Statements ΔABD is isosceles w/ base BD ABD ADB Ray BC bisects ABD Ray DC bisects ADB 1 2 ∆BCD is isosceles Reasons 1. Given 2. Def isosceles 3. Given 4. Like divisions of s are 5. Def isosceles
© Copyright 2026 Paperzz