State Space Model for Autopilot Design of Aerospace Vehicles Farhan A. Faruqi Weapons Systems Division Defence Science and Technology Organisation DSTO-TR-1990 ABSTRACT This report is a follow on to the report given in DSTO-TN-0449 and considers the derivation of the mathematical model for aerospace vehicles and missile autopilots in state space form. The basic equations defining the airframe dynamics are non-linear, however, since the nonlinearities are “structured” (in the sense that the states are of quadratic form) a novel approach of expressing this non-linear dynamics in state space form is given. This should provide a useful way to implement the equations in a computer simulation program and possibly for future application of non-linear analysis and synthesis techniques, particularly for autopilot design of aerospace vehicles executing high g-manoeuvres. This report also considers a locally linearised state space model that lends itself to better known linear techniques of the modern control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for both the application of the modern control techniques as well as the classical time-domain and frequency domain techniques. The models developed are useful for further research on precision optimum guidance and control. It is hoped that the model will provide more accurate presentations of missile autopilot dynamics and will be used for adaptive and integrated guidance & control of agile missiles. RELEASE LIMITATION Approved for public release Published by DSTO Defence Science and Technology Organisation PO Box 1500 Edinburgh, SA 5111 Australia Telephone: (08) 8259 7245 Fax: (02) 8259 6964 © Commonwealth of Australia 2007 AR-013-894 March 2007 APPROVED FOR PUBLIC RELEASE State Space Model for Autopilot Design of Aerospace Vehicles Executive Summary Requirements for next generation guided weapons and other aerospace vehicles, particularly with respect to their capability to engage high speed, highly agile targets and achieve precision end-game trajectory, have prompted a revision of the way in which the guidance and autopilot design is undertaken. This report considers the derivation of the mathematical models for aerospace vehicles and missile autopilots in state space form. The basic equations defining the airframe dynamics are non-linear, however, since the non-linearities are “structured” (in the sense that the states are of quadratic form) a novel approach of expressing this non-linear dynamics in state space form is given. This should provide a useful way to implement the equations in a computer simulation program and possibly for future application of non-linear analysis and synthesis techniques. This report which is a follow on report to DSTO-TN-0449, also considers a locally linearised state space model that lends itself to better known linear techniques of the modern control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for both the application of the modern control techniques as well as the classical time-domain and frequency domain techniques. The models developed are useful for further research on precision optimum guidance and control. It is hoped that the model will provide more accurate presentations of aerospace vehicles autopilot dynamics and will be used for adaptive and integrated guidance & control of agile missiles and other aerospace vehicles that do not necessarily have symmetric cruciform airframes. Authors Dr. Farhan A. Faruqi Weapons Systems Division Farhan A. Faruqi received B.Sc.(Hons) in Mechanical Engineering from the University of Surrey (UK), 1968; M.Sc. in Automatic Control from the University of Manchester Institute of Science and Technology (UK), 1970 and Ph.D from the Imperial College, London University (UK), 1973. He has over 20 years experience in the Aerospace and Defence Industry in UK, Europe and the USA. Prior to joining DSTO in January 1999 he was an Associate Professor at QUT (Australia) 1993-98. His research interests include: Missile Navigation, Guidance and Control, Target Tracking and Precision Pointing Systems, Strategic Defence Systems, Signal Processing, and Optoelectronics. Contents 1. INTRODUCTION ............................................................................................................... 1 2. STATE SPACE AERODYNAMICS MODEL ................................................................. 2 2.1 Nonlinear Airframe Model ..................................................................................... 2 2.2 Body Acceleration Model ........................................................................................ 6 2.3 Accelerometer Dynamics Model............................................................................ 7 2.4 Gyro Dynamics Model............................................................................................. 9 2.5 Actuation Servo Model .......................................................................................... 10 2.6 Overall Nonlinear (Quadratic) Airframe Model including IMU .................. 12 2.7 The Measurement Model ...................................................................................... 12 3. LINEARISED STATE SPACE AIRFRAME MODEL ................................................. 13 3.1 Linearised Measurement Model .......................................................................... 15 4. CONCLUSIONS ................................................................................................................ 16 5. REFERENCES..................................................................................................................... 17 APPENDIX A: ...................................................................................................................... 19 A.1. Non-linear (Quadratic) Airframe and IMU Dynamics............ 19 A.1.1 Body Acceleration Model .............................................. 22 A.1.2 Accelerometer and Gyro Dynamics............................. 24 A.1.3 A.1.3 Accelerometer Dynamics..................................... 25 A.1.4 Gyro Dynamics................................................................ 27 A.1.5 Actuation Servo Model .................................................. 29 A.1.6 Non-linear Airframe, IMU and Actuator Dynamic .. 30 A.1.7 Measurement Model ...................................................... 31 A.2. Linearised Airframe, Actuation and IMU Dynamics .............. 32 A.2.1 Linearised Aerodynamic Forces and Moments......... 32 A.2.2 Linearisation of the Quadratic State Vector .............. 34 A.2.3 Linearised Airframe, IMU, Actuator Model .............. 35 A.3. Decomposed State Space Models................................................ 38 A.3.1 Nonlinear Model:............................................................ 38 A.3.2 Linearised Model: ........................................................... 38 DSTO-TR-1990 1. Introduction Requirements for next generation guided weapons, particularly with respect to their capability to engage high speed, highly agile targets and achieve precision end-game trajectory, have prompted a revision of the way in which the guidance and autopilot design are undertaken. Integrating the guidance and control function is a synthesis approach that is being pursued as it allows the optimisation of the overall system performance. This approach requires a more complete representation of the airframe dynamics and the guidance system. The use of state space model allows the application of modern control techniques such as the optimal adaptive control and parameter estimation techniques [10] to be utilised. In this report we derive the autopilot model that will serve as a basis for an adaptive autopilot design and allow further extension of this to integrated guidance and control system design. Over the years a number of authors [1-3, 6-9] have considered modelling, analysis and design of autopilots for atmospheric flight vehicles including guided missiles. In the majority of the published work on autopilot analysis and design, locally linearised versions of the model with decoupled airframe dynamics have been considered. This latter simplification arises out of the assumption that the airframe and its mass distribution are symmetrical about the body axes, and that the yaw, pitch and roll motion about the equilibrium state remain “small”. As a result, many of the autopilot analysis and design techniques, considered in open literature, use classical control approach, such as: single input/single output transfer-functions characterisation of the system dynamics, Bode, Nyquist, root-locus and transient -response analysis and synthesis techniques [5, 7]. These techniques are valid for a limited set of flight regimes and their extension to cover a wider set of flight regimes and airframe configurations requires autopilot gain and compensation network switching. With the advent of fast processors it is now possible to take a more integrated approach to autopilot design. Modern optimal control techniques allow the designer to consider autopilots with high-order dynamics (large number of states) with multiple inputs/outputs and to synthesise controllers such that the error between the demanded and the achieved output is minimised. Moreover, with real-time mechanisation any changes in the airframe aerodynamics can be identified (parameter estimation) and compensated for by adaptively varying the optimum control gain matrix. This approach should lead to missile systems that are able to execute high g-manoeuvres (required by modern guided weapons), adaptively adjust control parameters (to cater for widely varying flight profiles) as well as account for non-symmetric airframe and mass distributions. Typically, for a missile autopilot, the input is the demanded control surface deflection and outputs are the achieved airframe (lateral) accelerations and body rates measured about the body axes. Other input/output variables (such as: the flight path angle and angle rate or the body angles) can be derived directly from lateral accelerations and body rates. This report considers the derivation of the mathematical model for a missile autopilot in state space form. The basic equations defining the airframe dynamics are non-linear, however, since the nonlinearities are “structured” (in the sense that the states are of quadratic form) a novel approach of expressing this non-linear dynamics in state space form is given. This should provide a useful way to implement the equations in a computer simulation program 1 DSTO-TR-1990 and possibly for future application of non-linear analysis and synthesis techniques. Detailed consideration of the quadratic/bilinear type of dynamic systems is given in [4]. This report which is a follow on report from the previous report [1,2], also considers a locally linearised state space model that lends itself to better known linear techniques of the modern control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for both the application of the modern control techniques as well as the classical time-domain and frequency domain techniques. For sake of clarity, Figure 2.1 is a symmetric cruciform missile, however the models developed are valid for non axis-symmetric aerospace vehicles. Tables A-1.1 to A-1.3 contain the various aerodynamic derivatives and coefficients. 2. State Space Aerodynamics Model The airframe, actuation and sensor measurement equations have been derived in detail in Appendix A in this section we give the main results that will be used for matrix based computation of the state space model. 2.1 Nonlinear Airframe Model Conventions and notations for vehicle body axes systems as well as the forces, moments and other quantities are shown in Figure 2.1 and defined in Table 2.1. T Ixx, Lp Iyy, Mq Izz, Nr Figure 2.1 Motion variable notations The variables shown in Figure 2.1 are defined as: m - mass of a vehicle. 2 σ DSTO-TR-1990 α - incidence in the pitch plane. β - incidence in the yaw plane. λ - incidence plane angle. σ - total incidence, such that: tan α = tan σ cos λ, and tan β = tan σ sin λ. T – thrust. Table 2.1: Motion variables Vehicle Body Axes System Angular rates Component of vehicle velocity along each axis Component of aerodynamic forces acting on vehicle along each axis Moments acting on vehicle about each axis Moments of inertia about each axis Products of each inertia Longitudinal and lateral accelerations Euler angles Gravity along each axis Vehicle thrust along the body axis Roll axis p u X Pitch axis q v Y Yaw axis r w Z L Ixx Iyz ax M Iyy Izx ay N Izz Ixy az φ θ ψ gx T gy gz Tail Control Configuration: We shall use the following notation: ξ - aileron deflection; η - elevator deflection; ς - rudder deflection. Figure 2.2 defines the control surface convention. Here the control surfaces are numbered as shown and the deflections ( δ 1 , δ 2 , δ 3 , δ 4 ) are taken to be positive if clockwise, looking outwards along the individual hinge axis. Thus, Aileron deflection: 1 1 ξ = ( δ 1 + δ 2 + δ 3 + δ 4 ) , if all four control surfaces are active; or ξ = ( δ 1 + δ 3 ) , or 4 2 1 ξ = ( δ 2 + δ 4 ) if only two surfaces are active. Positive control defection (ξ) causes negative 2 1 roll. Elevator deflection: η = ( δ 1 − δ 3 ) . Positive control deflection (η) causes negative pitch. 2 1 Rudder deflection: ζ = ( δ 2 − δ 4 ) . Positive control deflection (ζ) causes negative yaw. 2 3 DSTO-TR-1990 +δ4 +δ3 +δ1 +δ2 Figure 2.2 Control surfaces seen from the rear of a missile Canard Control Configuration: For a canard configuration, same convention will be used for control surface deflections; however, it is noted that the force and moment coefficients will have opposite signs. Canard control is generally not used for roll control. Euler Equations of Motion The six equations of motion for a body with six degrees of freedom may be written as [1-3]: m ( u& + wq − vr ) = X + T + g x m m ( v& + ur − wp ) = Y + g y m (2-1) (2-2) m ( w& − uq + vp ) = Z + g x m I xx p& − ( I yy − I zz )qr + I yz ( r 2 − q 2 ) − I zx ( pq + r& ) + I xy ( rp − q& ) = L (2-3) I yy q& − ( I zz − I xx )rp + I zx ( p 2 − r 2 ) − I xy ( qr + p& ) + I yz ( pq − r& ) = M (2-5) I zz r& − ( I xx − I yy ) pq + I xy ( q 2 − p 2 ) − I yz ( rp + q& ) + I zx ( qr − p& ) = N (2-6) (2-4) d - is the derivative operator. dt Based on the Euler equations above, the nonlinear (quadratic) airframe state space model is given by (see equations A-1.1 to A-1.5): Here ( ⋅ ) = d [1] x = [F0 ] x [32 ] + [G0 ] u[31]+ g [1] dt 3 4 (2-7) DSTO-TR-1990 Where: ⎡ x [1] ⎤ ⎢ 1 ⎥ x [31] = ⎢ − − ⎥ = [u v ⎢ x [1] ⎥ ⎣⎢ 2 ⎦⎥ w | ⎡ x [2 ] ⎤ ⎢ 1 ⎥ x [32 ] = ⎢ − − ⎥ = uq ur ⎢ x [2 ] ⎥ ⎣⎢ 2 ⎦⎥ state vector. [ p q r ]T : is a 6x1 linear-state vector. vp vr ⎡ u[1] ⎤ 1 ⎥ ~ ~ ~ [ 1] ⎢ u3 = ⎢ − − ⎥ = X + T Y ⎢ u[1] ⎥ ⎣⎢ 2 ⎦⎥ and moments. [ p2 wp wq | ~ Z | L M N pq pr q 2 qr r2 ] : is a 12x1 quadraticT ]T : is 6x1 a vector function of control inputs, forces ⎡ g ⎤ ⎢ ⎥ g [1] = ⎢ − − ⎥ = [g x g y g z 0 0 0 ]T : is the 6x1 gravity (or disturbance) vector. ⎢0 3× 1 ⎥ ⎣ ⎦ ⎡ [C ] | [03×6 ] ⎤⎥ ⎢ 0 [F0 ] = ⎢ − − − | − − − − − − ⎥ : is a 6x12 state-coefficient matrix. ⎢[0 ] | [ A ]− 1 [B ]⎥ 0 0 ⎦⎥ ⎣⎢ 3×6 ⎡ [I ] ⎢ 3× 3 [G0 ] = ⎢ − − − ⎢ [0 ] ⎢⎣ 3× 3 ⎡ I xx [A0 ] = ⎢⎢− I xy ⎢− I ⎣ zx ⎡ 0 [B0 ] = ⎢⎢− I zx ⎢ I ⎣ xy | [03× 3 ] ⎤⎥ − − − ⎥ : is a 6x6 input-coefficient matrix. | [ A0 ]− 1 ⎥⎥ ⎦ | − I xy I yy − I yz − I zx ⎤ ⎥ − I yz ⎥ : is a 3x3 matrix. I zz ⎥⎦ I zx − I yz I xx − I yy ( ) − I xy I yz (I yy − I zz ) I yz 0 − I xy I xy − I zx (I zz − I xx ) − I yz ⎤ ⎥ I zx ⎥ 0 ⎥⎦ : is a 3x6 matrix. 5 DSTO-TR-1990 0 1 0 − 1⎤ ⎡0 0 ⎢ [C0 ] = ⎢0 − 1 0 0 1 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣ 1 0 - 1 0 0 0 ⎥⎦ Subscripts under [I] and [0] matrices denote the matrix dimensions. Generally, not all state variables in the state equation are accessible or measurable. The vehicle angular rate components (roll rate p, pitch rate q, and yaw rate r) and the acceleration components (ax, ay, az) are commonly available and can be measured using the IMU. 2.2 Body Acceleration Model Equations for the vehicle actual body accelerations and body rates are derived in Appendix A equations (A-1.6) to (A-1.11). These equations allow position offsets from c.g for observing the body accelerations. The acceleration components at point O (where O is at a distance of dx, dy and dz from the central point of gravity, c.g., along x-, y- and z-axis, respectively), may be written as: a x = u& + qw − rv − d x ( q 2 + r 2 ) + d y ( pq − r& ) + d z ( pr + q& ) ~ ~ = X + T + g x − d x ( q 2 + r 2 ) + d y ( pq − r& ) + d z ( pr + q& ) (2-8) a y = v& + ru − pw + d x ( pq + r& ) − d y ( p 2 + r 2 ) + d z ( qr − p& ) ~ = Y + g y + d x ( pq + r& ) − d y ( p 2 + r 2 ) + d z ( qr − p& ) (2-8) a z = w& + pv − qu + d x ( pr − q& ) + d y ( qr + p& ) − d z ( p 2 + q 2 ) ~ = Z + g z + d x ( pr − q& ) + d y ( qr + p& ) − d z ( p 2 + q 2 ) (2-9) After some matrix manipulations, the body acceleration model may be written as (see equations (A-1.6) to (A-1.11): y [1] = [J 0 ] x [31] + [K 0 ] x [32 ] +[L0 ] u[31] +[M 0 ] g [1] 3 Where: [ y [1] = a x 1 ay ] a z T : is a 3x1 body acceleration vector. y [1] = x [21] = [ p q r ]T : is a 3x1 body rate vector 2 [ y [1] = y [1] | 3 6 1 ] y [1] T : is a 6x1 output vector. 2 (2-10) DSTO-TR-1990 ⎡1 0 0 0 ⎢ [D0 ] = ⎢0 1 0 − d z ⎢0 0 1 d y ⎣ dz 0 − dx − dy⎤ ⎥ d x ⎥ : is a 3x6 accelerometer position ‘offset’ matrix. 0 ⎥⎦ ⎡ 0 0 0 −1 0 1 0 ⎢ [D1 ] = ⎢ 0 1 0 0 − 1 0 − d y ⎢− 1 0 1 0 0 0 − dz ⎣ position ‘offset’ matrix. dy dz − dx 0 dx 0 0 dz 0 dx − dz dy − dx⎤ ⎥ − d y ⎥ : is a 3x12 accelerometer 0 ⎥⎦ [03×6 ] ⎤ ⎡ ⎢ [J 0 ] = ⎢− − − − − − − − − ⎥⎥ : is a 6x6 linear-state output coefficient matrix. ⎢⎣ [03× 3 | I 3× 3 ] ⎥⎦ ⎡[D0 F0 + D1 ]⎤ [K 0 ] = ⎢⎢ − − − − − − ⎥⎥ : is a 6x12 quadratic-state output coefficient matrix. ⎢⎣ [03×12 ] ⎥⎦ ⎡ [D0 G0 ] ⎤ [L0 ] = ⎢⎢− − − − − − ⎥⎥ : is a 6x6 coefficient matrix. ⎢⎣ [03×6 ] ⎥⎦ ⎡ [D0 ] ⎤ [M 0 ] = ⎢⎢ − − − ⎥⎥ : is a 6x6 output coefficient matrix. ⎢⎣[03×6 ]⎥⎦ Note: equation (2-10) represents the actual accelerations and body rates outputs; these have to be measured using a body fixed IMU (accelerometers and gyros). 2.3 Accelerometer Dynamics Model The dynamic model for the accelerometers is derived in Appendix A, equations (A-1.12) to (A-1.17). A second order linear dynamics is assumed for the accelerometer model. d [1] x = [W0 ] x [41] + [W 2 ] x [32 ] + [W3 ] u[31] + [W4 ] g [1] dt 4 (2-11) Where: ⎡ x [41] = ⎢a xo ⎢⎣ • a xo T • a yo a yo a zo • ⎤ a zo ⎥ : is a 6x1 accelerometer state vector. ⎥⎦ 7 DSTO-TR-1990 1 0 0 ⎡ 0 ⎢ 2 0 0 ⎢ − ω x − 2ζ xω x ⎢ 0 0 0 1 [W0 ] = ⎢ 2 − ω y − 2ζ yω y 0 ⎢ 0 ⎢ 0 0 0 0 ⎢ 0 0 0 ⎣⎢ 0 containing accelerometer parameters. ⎡0 ⎢ 2 ⎢ω x ⎢0 [W1 ] = ⎢ ⎢0 ⎢0 ⎢ ⎢⎣ 0 0 0 0 0 0 − ω z2 ⎤ ⎥ 0 ⎥ ⎥ 0 ⎥ : is a 6x6 coefficient matrix 0 ⎥ ⎥ 1 ⎥ − 2ζ zω z ⎦⎥ 0 0 ⎤ ⎥ 0 0 ⎥ 0 0 ⎥ ⎥ : is a 6x3 coefficient matrix containing accelerometer parameters. 2 ωy 0 ⎥ 0 0 ⎥ ⎥ 0 ω z2 ⎥⎦ 0 [W 2 ] = [W 1 D0 F0 +W 1 D1 ]: is a 6x12 coefficient matrix. [W 3 ] = [W 1 D0 G0 ] : is a 6x6 coefficient matrix. [W 4 ] = [W 1 D0 ] : is a 6x6 coefficient matrix. The accelerometer measurement model is given by (see equation (A-1.18)): z [41] = [J 1 ] x [41] + v [a1] + v [a1] + v [a1] + v [a1] b d s n Where: [ a ym [ v yb v zb T : is a 3x1 accelerometer bias error vector. [ v yd v zd T : is a 3x1 accelerometer drift error vector. [ v ys v z s T : is a 3x1 accelerometer scale factor error vector. [ v yn v z n T : is a 3x1 accelerometer noise error vector. z [41] = a x m v [a1] = v xb b v [a1] = v xd d v [a1] = v x s s v [a1] = v x n n 8 ] a z m T : is a 3x1 accelerometer measurement vector. ] ] ] ] (2-12) DSTO-TR-1990 ⎡1 0 0 0 0 0⎤ [J 1 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ 2.4 Gyro Dynamics Model The dynamic model for the gyros is derived in Appendix A, equations (A-1.19) to (A-1.21). A second order linear dynamics is assumed for the gyro model. d [1] x = [W5 ] x [51] + [W7 ] x [31] dt 5 (2-13) Where: ⎡ x [1] = p 5 ⎢ o ⎣⎢ • • po qo qo • ro 1 0 ⎡ 0 ⎢ 2 0 ⎢ − ω p − 2ζ pω p ⎢ 0 0 0 [W5 ] = ⎢ − ω q2 0 ⎢ 0 ⎢ 0 0 0 ⎢ 0 0 ⎢⎣ 0 containing gyro parameters. 0 ⎡ 0 ⎢ 2 ⎢ω p 0 ⎢ 0 0 [W6 ] = ⎢ 2 ⎢ 0 ωq ⎢ 0 0 ⎢ 0 ⎢⎣ 0 [W7 ] = [06×3 T ⎤ r o ⎥ : is a 6x1 gyro state vector. ⎦⎥ 0 0 0 0 1 0 − 2ζ qω q 0 0 0 0 − ω r2 ⎤ ⎥ 0 ⎥ ⎥ 0 ⎥ : is a 6x6 coefficient matrix 0 ⎥ ⎥ 1 ⎥ − 2ζ r ω r ⎥⎦ 0 0 ⎤ ⎥ 0 ⎥ 0 ⎥ ⎥ : is a 6x3 coefficient matrix containing gyro parameters. 0 ⎥ 0 ⎥ ⎥ ω r2 ⎥⎦ | W 6 ] : is a 6x6 coefficient matrix. The gyro measurement model is given by (see equation (A-1.22)): z [51] = [J 2 ] x [51] + v [g1] + v [g1] + v [g1] + v [g1] b d s n (2-14) 9 DSTO-TR-1990 Where: [ qm [ v qb v rb T : is a 3x1 gyro bias error vector. [ v qd v rd T : is a 3x1 gyro drift error vector. [ vq s v rs T : is a 3x1 gyro scale factor error vector. [ vqn v rn T : is a 3x1 gyro noise error vector. z [41] = p m v [g1] = v pb b v [g1] = v pd d v [g1] = v p s s v [g1] = v pn n ] rm T : is a 3x1 gyro measurement vector. ] ] ] ] ⎡1 0 0 0 0 0 ⎤ [J 2 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ 2.5 Actuation Servo Model The dynamic model for the actuation system is derived in Appendix A, equations (A-1.23) to (A-1.28). A second order linear dynamics is assumed for the gyro model. This equation is of the form: d [1] x 6 = [V0 ] x [61] + [V1 ] u[41] dt (2-15) Where: ⎡ x [1] = ξ 6 • • T ⎤ ⎢ o ξ o ηo ηo ζ o ζ o ⎥ : is a 6x1 state vector. ⎢⎣ ⎦⎥ u[41] = α i = [ξ i η i 10 • ζ i ]T : is a 3x1 control (servo actuator) input vector. DSTO-TR-1990 ⎡ 0 ⎢ 2 ⎢ − ωξ ⎢ 0 [V0 ] = ⎢ 0 ⎢ ⎢ 0 ⎢ ⎣⎢ 0 1 0 0 0 0 0 1 − ωη2 0 0 − 2ζ η ωη 0 0 − 2ζ ξ ωξ 0 0 0 0 0 0 0 0 0 − ωζ2 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x6 servo actuator coefficient ⎥ ⎥ ⎥ − 2ζ ζ ωζ ⎦⎥ 0 0 0 0 1 matrix. ⎡ 0 ⎢ 2 ⎢ωξ ⎢ 0 [V1 ] = ⎢ 0 ⎢ ⎢ 0 ⎢ ⎢⎣ 0 0 0 0 ωη2 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x3 servo input coefficient matrix. ⎥ ⎥ 2⎥ ωζ ⎥⎦ 0 0 0 0 0 If the actuator system noise is included in the model then the actual output from the actuator servo may be written as: d [1] x 6 = [V0 ] x [61] + [V1 ] u[41] + ν [s1] n dt (2-16) We may also write for the actuator output: y [1] = [ξ o η o ς o ]T = [V2 ]x [61] 6 (2-17) Where: [ v [s1] = vξ n n vξ& n vη n vη&n vζ n ] vζ& T : is a 6x1 actuator servo noise error vector. n ⎡1 0 0 0 0 0 ⎤ [V2 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ Note that: [ ] T ~ ~ ~ u[31] = X (..) Y (..) Z (..) L(..) M (..) N (..) ( = f (u , v , w , p , q , r , u& , v& , w& ,ξ o ,ηo ,ζ o ) = f x [31] , x& [31] , [V2 ]x [61] ) (2-18) 11 DSTO-TR-1990 2.6 Overall Nonlinear (Quadratic) Airframe Model including IMU Equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) combine to give us an overall airframe, IMU and actuator dynamic model; this equation is of the form: d [1] x = [F1 ] x7[1] + [F2 ] x [32 ] + [G1 ] u[31](..) + [G2 ] u[41] + [H 1 ] g [1] + [H 2 ]ν [s1] n dt 7 (2-19) Where: T ⎡ x7[1] = ⎢ x [31] ⎣ ⎡[06 ×6 ] ⎢ ⎢−−− ⎢[06 ×6 ] [F1 ] = ⎢⎢ − − − ⎢ [W7 ] ⎢ ⎢−−− ⎢[0 ] ⎣ 6 ×6 | x [41] T | x [51] T T T⎤ | x [61] ⎥ : is a 24 x1 state vector. ⎦ | [06×6 ] | [06 ×6 ] | | | | | | | −−− [W0 ] −−− [06×6 ] −−− [06×6 ] | | | | | | −−− [06 ×6 ] −−− [W5 ] −−− [06 ×6 ] | | | | | | [F2 ] = [[F0 ]T | [W2 ]T | [012×6 ] [G1 ] = [[G0 ]T | [W3 ]T | [06×6 ] | [06 ×6 ]] : is a 24x6 coefficient matrix. [G2 ] = [[03×6 ] | [03×6 ] | [03×6 ] | [V1 ]T ] : is a 24x3 coefficient matrix. [H 1 ] = [[I 6×6 ] | [W 4 ]T [H 2 ] = [[06×6 ] | [06×6 ] | | [06×6 ]⎤ ⎥ −−−⎥ [06×6 ]⎥ ⎥ − − − ⎥ : is a 24x24 coefficient matrix. [06×6 ]⎥ ⎥ −−−⎥ [V0 ] ⎥⎦ T T [06×6 ] [06×6 ] [012×6 ]] T : is a 24x12 coefficient matrix. | | | [06×6 ]] T : is a 24x6 coefficient matrix. [I 6×6 ]]T : is a 24x6 coefficient matrix. A block diagram of the decomposed version (derived by considering the sub-matrices) of the overall model is given in Figure A-1.1. See appendix section 3. 2.7 The Measurement Model Equation (2-12) and (2-14) may be combined to give the overall airframe and IMU (Gyros, Accelerometers) measurement model (see equation (A-1.30)): z 7[1] = [J 6 ] x 7[1] + v [b1] +v [d1] + v [s1] + v [n1] 12 (2-20) DSTO-TR-1990 Where: T [ T⎤ ⎡ T z7[1] = ⎢ z [41] | z [51] ⎥ = a x m a y m ⎣ ⎦ accelerometer) measurement vector. T ⎡ v [b1] = ⎢ v [a1] ⎣ b T⎤ | v [g1] ⎥ b ⎦ T T ⎡ v [d1] = ⎢ v [a1] ⎣ d T⎤ | v [g1] ⎥ d ⎦ T T ⎡ v [s1] = ⎢ v [a1] ⎣ s vector. T⎤ | v [g1] ⎥ s ⎦ T T T⎤ ⎡ v [n1] = ⎢ v [a1] | v [g1] ⎥ T ⎣ n n ⎦ azm pm = v xb [ v yb v zb v pb [ v yd v zd v pd = v xs [ v ys vzs [ v yn v zn = v xd = v xn v ps v pn qm vqb vqd vq s vqn rm ] T : is a 6x1 IMU (gyro + ] v rb T : is a 6x1 IMU bias error vector. ] v rd T : is a 6x1 IMU drift error vector. ] vrs T : is a 6x1 IMU scale factor error ] v rn T : is a 6x1 IMU noise error vector. | 0 3×6 | 0 3×6 ⎤ ⎡ 0 3×6 | J 1 ⎢ [J 6 ] = ⎢− − − | − − − | − − − | − − − ⎥⎥ : is a 6x24 matrix. ⎢⎣ 0 3×6 | 0 3×6 | J 2 | 0 3×6 ⎥⎦ 3. Linearised State Space Airframe Model The linearised state space model is derived in Appendix A, section 2 (equations (A-2.1) to . . . ~ ~ ~ (A-2.9). It is assumed that X , Y , Z , L , M and N are functions of u , v , w , p , q , r , u , v , w ξ ,η ,ς and first order linearization of these nominal values u0, v0, w0, p0, q0, r0, ξ0, η0 and ς0, are considered. The linearised airframe model is given by: The ‘small’ perturbation model for the quadratic dynamic model of equation (A-1.29) may be written as (see equation (A-2.5)): d d Δ x7[1] = [F1 ] Δ x7[1] + [F2 E 4 + G1 E0 ] Δ x [31] + [G1 E 2 ] Δ x [61] + [G1 E 3 ] Δ x [31] dt dt +[G2 ]Δ u[41] +[H 2 ]Δν [s1] (3-1) n This equation will be referred to as the decomposed form (see Appendix A section 3) 13 DSTO-TR-1990 Where: ⎡ [G 0 E 2 ]⎤ ⎡ [G 0 E 3 ]⎤ ⎡ [F0 E 4 + G 0 E 0 ] ⎤ ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − − −⎥ ⎢− − − − − − − − − ⎥ ⎢[W 3 E 2 ]⎥ ⎢[W 3 E 3 ]⎥ ⎢[W 2 E 4 + W 3 E 0 ]⎥ ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ [F2 E 4 + G 1 E 0 ] =⎢ − − − − − − − − − ⎥ ; [G1 E 2 ] = ⎢ − − − − ⎥ ; [G1 E 3 ] = ⎢ − − − − ⎥ ⎢ [06×6 ] ⎥ ⎢ [06×6 ] ⎥ ⎢ ⎥ [06×6 ] ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − − −⎥ ⎢− − − − − − − − − ⎥ ⎢ [0 ] ⎥ ⎢ [0 ⎥ ⎢ ⎥ [06×6 ] ⎣ 6×6 ⎦ ⎣ 6×6 ] ⎦ ⎣ ⎦ Equation (3-1) may be written in a compact form as: d Δ x7[1] = [F5 ] Δ x7[1] + [G3 ] Δ u[41] +[H 3 ] Δν [s1] n dt Where: ~ ⎡X u ⎢ ~ ⎢ Yu ⎢ Z~ [E 0 ] = ⎢ u ⎢ Lu ⎢M ⎢ u ⎢ Nu ⎣ ~ Xv ~ Yv ~ Zv Lv Mv Nv ~ Xw ~ Yw ~ Zw Lw Mw Nw ~ Xp ~ Yp ~ Zp Lp Mp Np ~ Xq ~ Yq ~ Zq Lq Mq Nq ~ Xr ⎤ ~ ⎥ Yr ⎥ ~ Zr ⎥ ⎥ : is a 6x6 aero-derivative matrix. Lr ⎥ M r ⎥⎥ N r ⎥⎦ ~ ⎡X ξ ⎢ ~ Y ⎢ ξ ⎢~ [ E 1 ] = ⎢ Zξ ⎢ Lξ ⎢M ⎢ ξ ⎢⎣ N ξ ~ Xη ~ Yη ~ Zη Lη Mη Nη ~ Xς ⎤ ~ ⎥ Yς ⎥ ~ Zς ⎥ ⎥ : is a 6x3 control-derivative matrix. Lς ⎥ Mς ⎥ ⎥ N ς ⎥⎦ [E 2 ] = [E1V2 ] : is a 6x6 matrix. ~ ⎡X u& ⎢ ~ Y & ⎢ u ⎢~ [E 3 ] = ⎢ Z u& ⎢ Lu& ⎢M ⎢ u& ⎢⎣ N u& 14 ~ X v& ~ Yv& ~ Z v& Lv& M v& N v& ~ X w& ~ Yw& ~ Z w& Lw& M w& N w& 0 0 0⎤ ⎥ 0 0 0⎥ 0 0 0 ⎥ : is a 6x6 aero-derivative matrix. ⎥ 0 0 0⎥ 0 0 0⎥ ⎥ 0 0 0 ⎥⎦ (3-2) DSTO-TR-1990 ⎡q0 ⎢ ⎢ r0 ⎢0 ⎢ ⎢0 ⎢0 ⎢ [E 4 ] = ⎢⎢ 0 0 ⎢ ⎢0 ⎢0 ⎢0 ⎢ ⎢0 ⎢ ⎣0 0 0 0 0 u0 0 v0 0 w0 0 0 0 w0 0 p0 0 2 q0 r0 0 p0 r0 0 0 0 0 0 0 0 p0 q0 0 0 0 0 0 0 0 0 2 p0 q0 r0 0 0 0 0 0 0 0 [F3 ] = [I 24× 24 ] −[G1 E3 | 024×6 [F4 ] = [F1 ] +[F2 E4 + G1 E0 0 ⎤ u0 ⎥⎥ 0 ⎥ ⎥ v0 ⎥ 0 ⎥ 0 ⎥⎥ : is a 12x6 matrix of steady state values. 0 ⎥ ⎥ 0 ⎥ p0 ⎥ 0 ⎥ ⎥ q0 ⎥ ⎥ 2 r0 ⎦ | 024×6 | 024 ×6 | 024×6 ] : is a 24x24 coefficient matrix. | 024×6 | 024×6 ] : is a 24x24 coefficient matrix. [F5 ] = [F3 ]−1 [F4 ] : is a 24x24 coefficient matrix. [G3 ] = [F3 ]−1 [G2 ] : is a 24x3 coefficient matrix. [H 3 ] = [F3 ]−1 [H 2 ] : is a 24x3 coefficient matrix. 3.1 Linearised Measurement Model Small perturbation model of the measurement model (see equation (A-1.30) may be written as: Δz 7[1] = [J 6 ] Δx 7[1] + Δv [b1] +Δv [b1] + Δv [s1] + Δv [n1] (3-3) Δ : denotes small perturbation about nominal values Finally, linearising the output equation (2-10) (see also equation (A-1.11)) gives us: Δy [1] = [J 7 ] Δx [31] +[L0 ] Δu [31] 3 (3-4) Where: [J 7 ] = [J 0 + K 0 E 4 ] : is a 6x6 coefficient matrix. 15 DSTO-TR-1990 4. Conclusions Both the non-linear and linearised autopilot models have been derived in this report. The state-space model of a missile autopilot needs to be validated by comparing the model with the other published results, and through both open and closed-loop systems simulation. The non-linear dynamics model presented as structural quadratic algebraic system is novel and will be used for developing non-linear control techniques suitable for missile systems high gmanoeuvres and operating of a range of aerodynamics conditions. The models developed in this report are useful for applications to precision optimum and adaptive guidance and control. It is hoped that the higher order model with motion and inertial coupling will provide more accurate representation of autopilot dynamics particularly for non axis-symmetric airframes that could be used for adaptive and integrated guidance & control of missiles such as air breathing supersonic and hypersonic vehicles. 16 DSTO-TR-1990 5. References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Babister, A.W: Aircraft Dynamic Stability and Response, Pergamon, 1980. Blakelock, J.H: Automatic Control of Aircraft and Missiles, John Wiley & Sons, Inc., 1965. Cook, M.V: Flight Dynamics Principles, Arnold, 1997. Faruqi, F.A: On the Algebraic Structure of a Class of Nonlinear Dynamical Systems, Journal of Applied Mathematics and Computation, 162 (2005). Garnell, P. and East, D.J: Guided Weapon Control Systems, Pergamon Press, 1977. Kuo, B.C: Automatic Control Systems, 6th Edition, Prentice-Hall International Editions, 1991. Pallett, E.H.J: Automatic Flight Control, 3rd Edition, BSP Professional Books, 1987. Etkin, B and Reid, L. D: Dynamics of Flight – Stability and Control, 3rd Edition, John Wiley & Sons, Inc. 1996. Nelson, R. C: Flight Stability and Automatic Control, 2nd Edition, McGraw Hill, 1998. Bitmead, R. R; Gevers, G; Wertz, V: Adaptive Optimal Control (The Thinking Man’s GPC), Prentice Hall, 1990. Etkin, B: Dynamics of Atmospheric Flight, John Wiley & Sons, 1972. Faruqi, F. A and Vu, T.L: Mathematical Models for Missile Autopilot Design, DSTO Rept. DSTO-TN-0449, August 2002. 17 DSTO-TR-1990 18 DSTO-TR-1990 Appendix A: A.1. Non-linear (Quadratic) Airframe and IMU Dynamics Equations (2-1) to (2-3) represent the force equations of a generalised rigid body and describe the translational motion of its centre of gravity (c.g) since the origin of the vehicle body axes is assumed to be co-located with the body c.g. Equations (2-4) to (2-6) represent the moment equations of a generalised rigid body and describe the rotational motion about the body axes through its c.g. Separating the derivative terms and after some algebraic manipulation, Equations (2-1) to (2-3) may be written in a vector form as: ~ ~ 0 1 0 − 1⎤ ⎡ uq ⎤ ⎡ X + T ⎤ ⎡ g x ⎤ ⎡ u ⎤ ⎡0 0 ⎢ ~ ⎥ ⎢ ⎥ d ⎢ ⎥ ⎢ v ⎥ = ⎢0 − 1 0 0 1 0 ⎥⎥ ⎢⎢ ur ⎥⎥ + ⎢ Y ⎥ + ⎢ g y ⎥ ⎢ dt ~ ⎢⎣ w ⎥⎦ ⎢⎣ 1 0 − 1 0 0 0 ⎥⎦ ⎢ vp ⎥ ⎢ Z ⎥ ⎢⎣ g z ⎥⎦ ⎣ ⎦ ⎢ vr ⎥ ⎢ ⎥ ⎢ wp ⎥ ⎢ wq ⎥ ⎣ ⎦ (A-1.1) Where: ~ X ~ Y ~ Z ~ T X= ; Y = ; Z= ; T= . m m m m Note: that in the above equations, the states (u, v, w, p, q, r) appear as a quadratic form expression. In matrix notation equations (2-4) to (2-6) (section.2) may be written as: ⎡ p2 ⎤ ⎡ L ⎤ ⎡ p⎤ ⎢ ⎥ d ⎢ ⎥ [A0 ] ⎢ q ⎥ = [B0 ]⎢ pq ⎥ + ⎢⎢ M ⎥⎥ dt ⎢ pr ⎥ ⎢ N ⎥ ⎢⎣ r ⎥⎦ ⎢ 2⎥ ⎣ ⎦ ⎢q ⎥ ⎢ ⎥ ⎢ qr ⎥ ⎢⎣ r 2 ⎥⎦ (A-1.2) Here again, the states (p,q,r) appear as a quadratic form expression. 19 DSTO-TR-1990 Where: ⎡ I xx [A0 ] = ⎢⎢− I xy ⎢− I ⎣ zx ⎡ 0 [B0 ] = ⎢⎢− I zx ⎢ I ⎣ xy − I zx ⎤ ⎥ − I yz ⎥ : is a 3x3 matrix. I zz ⎥⎦ − I xy I yy − I yz − I xy I zx − I yz (I xx − I yy ) (I zz − I xx ) I yz I yz (I yy − I zz ) 0 I xy − I xy − I zx − I yz ⎤ ⎥ I zx ⎥ : is a 3x6 matrix. 0 ⎥⎦ Equation (A-1.2) may also be written as: ⎡ p⎤ d ⎢ ⎥ q ⎥ = [ A0 ]− 1 [B0 ] ⎢ dt ⎢⎣ r ⎥⎦ ⎡ p2 ⎤ ⎢ ⎥ −1 ⎢ pq ⎥ + [ A0 ] ⎢ pr ⎥ ⎢ 2⎥ ⎢q ⎥ ⎢ ⎥ ⎢ qr ⎥ ⎢⎣ r 2 ⎥⎦ ⎡ L⎤ ⎢ ⎥ ⎢M ⎥ ⎢⎣ N ⎥⎦ (A-1.3) Where: ⎡ ⎢ 1 [ A0 ]− 1 = ⎢ Δ⎢ ⎢⎣ (I yy I zz ) (I I + I I ) (I I I ) (I I − I ) (I I I ) (I I + I I ) (I I − I yz 2 (I zz I xy + I yz zx (I yz I xy + I yy zx zz xy xx zz xx yz yz zx 2 zx xy zx ) ) + I yy I zx ⎤ ⎥ I I + xx yz zx xy ⎥ : a 3x3 matrix. 2 ⎥ ⎥⎦ xx yy − I xy yz xy ) ) ( Δ = I xx I yy I zz − I xx I yz 2 − I yy I zx 2 − I zz I xy 2 − 2 I yz I zx I xy . The selection of the particular order of the terms in the ‘quadratic-state’ vectors [uq ur vp vr wp wq ]T of Equation (A-1.1) and [p 2 pq pr q 2 qr r 2 ] T of Equation (A-1.2) is made on the basis of retaining lexicographic order of the variables. Combining Equations (A-1.1) and (A-1.3), we obtain the full 6th order rigid body dynamics state equations as: ⎡ x [1] ⎤ ⎡ [C0 ] | [03×6 ] ⎤⎥ ⎡ x [12 ]⎤ ⎡⎢[I 3× 3 ] 1 ⎥ ⎢ ⎢ ⎥ ⎢ d ⎢ − − ⎥ = ⎢ − − | − − − − − − ⎥⎢ − − ⎥ + ⎢ − − − dt ⎢ [1] ⎥ ⎢ [0 ] | [A0 ]− 1 [B0 ]⎥⎦⎥ ⎢⎣⎢ x [22 ]⎥⎦⎥ ⎢⎣⎢ [03× 3 ] x ⎣⎢ 2 ⎦⎥ ⎣⎢ 3×6 [03× 3 ] ⎤⎥ ⎡u[11] ⎤ ⎡g ⎤ ⎢ ⎥ ⎢ ⎥ | − − − ⎥ ⎢ − − ⎥ + ⎢− − ⎥ ⎢ ⎥ | [ A0 ]− 1 ⎥⎥ ⎢⎢ u[21] ⎥⎥ ⎢ 0 ⎥ ⎦ ⎣ ⎦ ⎦⎣ | (A-1.4) 20 DSTO-TR-1990 Where: 0 1 0 − 1⎤ ⎡0 0 ⎢ [C0 ] = ⎢0 − 1 0 0 1 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣ 1 0 - 1 0 0 0 ⎥⎦ x [11] = [u v w ]T : is a 3x1 linear state vector. x [21] = [ p q r ]T : is a 3x1 linear state vector. x [12 ] = [uq ur [ x [22 ] = p 2 vp vr pq [ g = gx gy qr r2 ] : is a 6x1 quadratic state vector. T ] ~ ~ ~ u[11] = X + T Y u[21] = [L M q2 pr [ wp wq ]T : is a 6x1 quadratic state vector. ~T Z : is a 3x1 ‘force’ input vector. N ]T : is a 3x1 ‘moment’ input vector. ] g z T : is a 3x1 gravity vector. Note: superscript [1] is used to indicate that the state vector is linear; while superscript [2] is used to indicate that the state vector is a quadratic/bilinear form. Equation (A-1.4) may be written in a compact form as: d [1] x 3 = [F0 ] x [32 ] + [G0 ] u[31]+ g [1] dt (A-1.5) Where: ⎡ x [1] ⎤ ⎢ 1 ⎥ x [31] = ⎢ − − ⎥ = [u v ⎢ x [1] ⎥ ⎣⎢ 2 ⎦⎥ w | p q r ]T : is a 6x1 linear-state vector. 21 DSTO-TR-1990 ⎡ x [2 ] ⎤ 1 ⎥ [ 2] ⎢ x 3 = ⎢ − − ⎥ = uq ur ⎢ x [2 ] ⎥ ⎣⎢ 2 ⎦⎥ state vector. [ vp vr ⎡ u[1] ⎤ ⎢ 1 ⎥ ~ ~ ~ u[31] = ⎢ − − ⎥ = X + T Y ⎢ u[1] ⎥ ⎢⎣ 2 ⎥⎦ and moments. [ wp wq | ~ Z | L M N p2 pq pr q2 qr r2 ] : is a 12x1 quadraticT ]T : is 6x1 a vector function of control inputs, forces ⎡ g ⎤ ⎢ ⎥ g [1] = ⎢ − − ⎥ = [g x g y g z 0 0 0 ]T : is the 6x1 gravity (or disturbance) vector. ⎢0 3× 1 ⎥ ⎣ ⎦ ⎡ [C ] | [03×6 ] ⎤⎥ ⎢ 0 [F0 ] = ⎢ − − − | − − − − − − ⎥ : is a 6x12 state-coefficient matrix. ⎢[0 ] | [ A ]− 1 [B ]⎥ 0 0 ⎥ ⎣⎢ 3×6 ⎦ ⎡ [I ] ⎢ 3× 3 [G0 ] = ⎢ − − − ⎢ [0 ] ⎢⎣ 3× 3 | [03× 3 ] ⎤⎥ − − − ⎥ : is a 6x6 input-coefficient matrix. | [ A0 ]− 1 ⎥⎥ ⎦ | Subscripts under [I] and [0] matrices denote the matrix dimensions. A.1.1 Body Acceleration Model Generally, not all state variables in the state equation are accessible or measurable. The common accessible measurement variables, in most missiles or airplanes, are the angular rate components (roll rate p, pitch rate q, and yaw rate r) and the acceleration components (ax, ay, az). The acceleration components at point O (where O is at a distance of dx, dy and dz from the central point of gravity, c.g., along x-, y- and z-axis, respectively), may be written as [11]: 22 a x = u& + qw − rv − d x ( q 2 + r 2 ) + d y ( pq − r& ) + d z ( pr + q& ) ~ ~ = X + T + g x − d x ( q 2 + r 2 ) + d y ( pq − r& ) + d z ( pr + q& ) (A-1.6) a y = v& + ru − pw + d x ( pq + r& ) − d y ( p 2 + r 2 ) + d z ( qr − p& ) ~ = Y + g y + d x ( pq + r& ) − d y ( p 2 + r 2 ) + d z ( qr − p& ) (A-1.7) DSTO-TR-1990 a z = w& + pv − qu + d x ( pr − q& ) + d y ( qr + p& ) − d z ( p 2 + q 2 ) ~ = Z + g z + d x ( pr − q& ) + d y ( qr + p& ) − d z ( p 2 + q 2 ) (A-1.8) Or in matrix form:Î ⎡ x [1] ⎤ ⎡ x [2 ] ⎤ ⎡a x ⎤ 1 ⎥ 1 ⎢ ⎢ ⎥ [1] = [D ] d − − + [D ] ⎢ − − ⎥ = a y ⎥ ⎢ ⎥ ⎢ y 0 1 ⎢ ⎥ 1 dt ⎢ [1] ⎥ [ 2]⎥ ⎢ ⎢⎣ a z ⎥⎦ ⎢⎣ x 2 ⎥⎦ ⎢⎣ x 2 ⎥⎦ (A-1.9) Where: [ y [1] = a x 1 ay ] a z T : is a 3X1 body acceleration vector. ⎡1 0 0 0 ⎢ [D0 ] = ⎢0 1 0 − d z ⎢0 0 1 d y ⎣ dz 0 − dx −dy⎤ ⎥ d x ⎥ : is a 3x6 accelerometer ‘offset’ matrix. 0 ⎥⎦ ⎡ 0 0 0 −1 0 1 0 ⎢ [D1 ] = ⎢ 0 1 0 0 − 1 0 − d y ⎢− 1 0 1 0 0 0 − dz ⎣ ‘offset’ matrix. dy dz − dx 0 dx 0 0 dz 0 dx − dz dy Substituting from equation (A-1.5) for the − dx⎤ ⎥ − d y ⎥ : is a 3x12 accelerometer 0 ⎥⎦ d [..] term in the above equation gives us: dt ⎡ x [2 ] ⎤ ⎡ u[1] ⎤ ⎡ g ⎤ 1 ⎥ ⎢ ⎢ 1 ⎥ ⎢ ⎥ [ 1] y = [D0 F0 + D1 ]⎢ − − ⎥ + [D0G0 ] ⎢ − − ⎥ + [D0 ] ⎢ − − ⎥ 1 ⎢ x [2 ] ⎥ ⎢ u[1] ⎥ ⎢⎣ 0 ⎥⎦ ⎢⎣ 2 ⎥⎦ ⎢⎣ 2 ⎥⎦ Î y [1] = [D0 F0 + D1 ]x [32 ] + [D0G0 ]u[31] + [D0 ]g [1] 1 (A-1.10) Now, the expression for the body rates is: y [1] = x [21] = [ p q r ]T : is a 3X1 body rate vector. 2 23 DSTO-TR-1990 Combining this with equation (A-1.10) gives us: ⎡ y [1] ⎤ ⎡ [03×6 ] ⎤ ⎡ [D0 F0 + D1 ]⎤ ⎡[D0G0 ] ⎤ ⎡ [D0 ] ⎤ ⎢ 1 ⎥ ⎢ ⎥ [1] ⎢ ⎥ [2 ] ⎢ ⎥ [1] ⎢ ⎥ [1] ⎢ − − ⎥ = ⎢− − − − − − − − − ⎥ x 3 + ⎢− − − − − − − ⎥ x 3 + ⎢ − − − − ⎥ u3 + ⎢ − − − ⎥ g ⎢ y [1] ⎥ ⎢ [0 ⎢⎣ [03×12 ] ⎥⎦ ⎢⎣ [03×6 ] ⎥⎦ ⎢⎣[03×6 ]⎥⎦ | I 3× 3 ] ⎥⎦ ⎣⎢ 2 ⎦⎥ ⎣ 3× 3 Î y [1] = [J 0 ] x [31] + [K 0 ] x [32 ] +[L0 ] u[31] +[M 0 ] g [1] 3 (A-1.11) Where: ⎡ y [1] ⎤ ⎢ 1 ⎥ y [1] = ⎢ − − ⎥ : is a 6x1 output vector. 3 ⎢ y [1] ⎥ ⎢⎣ 2 ⎥⎦ [03×6 ] ⎤ ⎡ ⎢ [J 0 ] = ⎢− − − − − − − − − ⎥⎥ : is a 6x6 linear-state output coefficient matrix. ⎢⎣ [03× 3 | I 3× 3 ] ⎥⎦ ⎡[D0 F0 + D1 ]3×12 ⎤ [K 0 ] = ⎢⎢ − − − − − − − − − ⎥⎥ : is a 6x12 quadratic-state output coefficient matrix. ⎥⎦ ⎢⎣ [0 3×12 ] ⎡[D0 G 0 ]3×6 ⎤ [L0 ] = ⎢⎢ − − − − − − ⎥⎥ : is a 6x6 coefficient matrix. ⎢⎣ [0 3×6 ] ⎥⎦ ⎡[D0 ]3×6 ⎤ [M 0 ] = ⎢⎢ − − − − ⎥⎥ : is a 6x6 output coefficient matrix. ⎢⎣ [0 3×6 ] ⎥⎦ Note: equation (A-1.11) represents the actual accelerations and body rates outputs; these have to be measured using a body fixed IMU (accelerometers and gyros). A.1.2 Accelerometer and Gyro Dynamics Let us assume a second order dynamics for the accelerometers and gyros respectively; thus: aα o ωα2 = 2 ; α = x, y,z (A-1.12) aα s + 2ζ α ωα s + ωα2 ( 24 ) DSTO-TR-1990 ω μ2 μo = 2 ; μ = p ,q ,r μ s + 2ζ μ ω μ s + ω μ2 ( ) (A-1.13) (ω ,ζ ) : denote the sensor natural frequency and the damping factor respectively. Subscript ‘o’ denote output values, and subscripts ( x , y , z ) and ( p , q , r ) denote accelerations and body rates measured by accelerometer and gyro orthogonal triads respectively. A.1.3 A.1.3 Accelerometer Dynamics In state space form equations for the accelerometer may be written as: ⎡ a xo ⎤ ⎢• ⎥ ⎡ 0 ⎢a xo ⎥ ⎢ − ω 2 x ⎥ ⎢ ⎢ a ⎢ yo ⎥ ⎢ 0 d ⎢• ⎥ = ⎢ dt ⎢a yo ⎥ ⎢ 0 ⎥ ⎢ 0 ⎢ ⎢ a zo ⎥ ⎢ ⎢ • ⎥ ⎢⎣ 0 ⎣⎢ a zo ⎦⎥ 1 − 2ζ xω x 0 0 0 0 0 0 1 0 0 0 0 0 0 − ω 2y 0 0 − 2ζ yω y 0 0 0 0 − ω z2 ⎡ a xo ⎤ ⎤ ⎢• ⎥ ⎡ 0 ⎥ ⎢a xo ⎥ ⎢ω 2 ⎥⎢ ⎥ ⎢ x ⎥ ⎢ a yo ⎥ ⎢ 0 ⎥ ⎢• ⎥ + ⎢ 0 ⎥ ⎢a yo ⎥ ⎢ 0 1 ⎥ ⎢a ⎥ ⎢ 0 ⎥ ⎢ zo ⎥ ⎢ − 2ξ zω z ⎥⎦ ⎢ • ⎥ ⎢⎣ 0 ⎣⎢ a zo ⎦⎥ 0 0 0 0 0 0 ω 2y 0 0 ⎤ ⎥ ⎥ ⎡a ⎤ ⎥ ⎢ x⎥ ⎥ a 0 ⎥ ⎢ y⎥ ⎢a ⎥ 0 ⎥ ⎣ z⎦ ⎥ ω z2 ⎥⎦ 0 0 0 (A-1.14) • d aα o ; α = x , y , z dt This equation is of the form: Where: aα o = d [1] x 4 = [W0 ] x [41] + [W1 ] y [1] 1 dt (A-1.15) Where: ⎡ 0 ⎢ 2 ⎢− ω x ⎢ 0 [W0 ] = ⎢ ⎢ 0 ⎢ 0 ⎢ ⎢⎣ 0 1 − 2ζ xω x 0 0 0 0 0 0 0 0 0 1 − ω 2y − 2ζ yω y 0 0 0 0 0 0 0 0 0 − ω z2 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x6 coefficient matrix ⎥ ⎥ ⎥ − 2ζ zω z ⎥⎦ 0 0 0 0 1 containing accelerometer parameters. 25 DSTO-TR-1990 ⎡ 0 ⎢ 2 ⎢ω x ⎢ 0 [W1 ] = ⎢ ⎢ 0 ⎢ 0 ⎢ ⎣⎢ 0 ⎡ x [41] = ⎢a xo ⎣⎢ 0 0 0 ω 2y 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x3 coefficient matrix containing accelerometer parameters. ⎥ ⎥ 2⎥ ω z ⎦⎥ 0 0 0 0 0 • a yo Substituting for y d dt Î d dt T • a xo [1] 1 a yo a zo • ⎤ a zo ⎥ : is a 6x1 accelerometer state vector. ⎦⎥ from equation (A-1.10) into equation (A-1.15), we get: x [41] = [W0 ] x [41] + [W1 D0 F0 +W1 D1 ] x [32 ] + [W1 D0G0 ] u[31] + [W1 D0 ] g [1] (A-1.16) x [41] = [W0 ] x [41] + [W2 ] x [32 ] + [W3 ] u[31] + [W4 ] g [1] (A-1.17) Where: [W 2 ] = [W 1 D0 F0 +W 1 D1 ]: is a 6x12 coefficient matrix. [W 3 ] = [W 1 D0 G0 ] : is a 6x6 coefficient matrix. [W 4 ] = [W 1 D0 ] : is a 6x6 coefficient matrix. The measurement model is given by: z [41] = [J 1 ] x [41] + v [a1] + v [a1] + v [a1] + v [a1] b d s n Where: [ a ym [ v yb v z b T : is a 3x1 accelerometer bias error vector. [ v yd v zd T : is a 3x1 accelerometer drift error vector. [ v ys v z s T : is a 3x1 accelerometer scale factor error vector. z [41] = a x m v [a1] = v x b b v [a1] = v xd d v [a1] = v x s s 26 ] a z m T : is a 3x1 accelerometer measurement vector. ] ] ] (A-1.18) DSTO-TR-1990 [ v [a1] = v x n n v yn ] v z n T : is a 3x1 accelerometer noise error vector. ⎡1 0 0 0 0 0⎤ [J 1 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ A.1.4 Gyro Dynamics Similarly, state space form equations for the gyros may be written as: ⎡ po ⎤ ⎢• ⎥ ⎡ 0 ⎢ po ⎥ ⎢− ω 2 p ⎢ ⎥ ⎢ q ⎢ 0 d ⎢ o⎥ ⎢• ⎥ = ⎢ dt ⎢ q ⎥ ⎢ 0 o ⎢r ⎥ ⎢ 0 ⎢ o⎥ ⎢ ⎢ • ⎥ ⎢⎣ 0 ⎣ ro ⎦ 1 − 2ζ pω p 0 0 0 0 0 0 0 0 0 1 − ω q2 − 2ζ qω q 0 0 0 0 0 0 0 0 0 − ω q2 ⎡ po ⎤ ⎤ ⎢• ⎥ ⎡ 0 0 0 ⎤ ⎥ ⎢p ⎥ ⎢ 2 ⎥ 0 ⎥ ⎥ ⎢ o ⎥ ⎢ω p 0 ⎡ p⎤ ⎥ ⎢ qo ⎥ ⎢ 0 0 0 ⎥⎢ ⎥ ⎥ ⎢• ⎥ + ⎢ ⎥ q 2 0 ⎥⎢ ⎥ ⎥ ⎢ qo ⎥ ⎢ 0 ωq ⎢r ⎥ ⎥⎢ ⎥ ⎢ 0 ⎥⎣ ⎦ 0 0 ⎥ ⎢ ro ⎥ ⎢ ⎥ − 2ζ qω q ⎥⎦ ⎢ • ⎥ ⎢⎣ 0 0 ω r2 ⎥⎦ ⎣ ro ⎦ (A-1.19) 0 0 0 0 1 Where: • d μ o = μo ; μ = p , q , r dt Equation (A-1.19) is of the form: d dt Î d dt Î d dt x [51] = [W5 ] x [51] + [W6 ] x [21] x [51] = [W 5 ] x [51] + [06× 3 (A-1.20) | W 6 ] x [31] x [51] = [W5 ] x [51] + [W7 ] x [31] (A-1.21) Where: ⎡ x [1] = p 5 ⎢ o ⎢⎣ • po • qo qo • ro T ⎤ r o ⎥ : is a 6x1 gyro state vector. ⎥⎦ x [21] = y [1] = ω = [ p q r ]T 2 27 DSTO-TR-1990 ⎡ 0 ⎢ 2 ⎢− ω p ⎢ 0 [W5 ] = ⎢ ⎢ 0 ⎢ 0 ⎢ ⎣⎢ 0 1 − 2ζ pω p 0 0 0 0 0 0 0 0 0 1 − ω q2 0 0 − 2ζ qω q 0 0 0 0 0 0 0 − ω r2 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x6 coefficient matrix ⎥ ⎥ ⎥ − 2ζ r ω r ⎦⎥ 0 0 0 0 1 containing gyro parameters. 0 0 ⎤ ⎡ 0 ⎢ 2 ⎥ 0 ⎥ ⎢ω p 0 ⎢ 0 0 0 ⎥ [W6 ] = ⎢ ⎥ : is a 6x3 coefficient matrix containing gyro parameters. 2 0 ⎥ ⎢ 0 ωq ⎢ 0 0 0 ⎥ ⎢ ⎥ 0 ω r2 ⎥⎦ ⎢⎣ 0 [W7 ] = [06×3 | W 6 ] : is a 6x6 coefficient matrix. The measurement model is given by: z [51] = [J 2 ] x [51] + v [g1] + v [g1] + v [g1] + v [g1] b d s n Where: [ qm rm T : is a 3x1 gyro measurement vector. [ vqb v rb T : is a 3x1 gyro bias error vector. [ vqd v rd T : is a 3x1 gyro drift error vector. [ vq s v rs T : is a 3x1 gyro scale factor error vector. [ vq n v rn T : is a 3x1 gyro noise error vector. z [41] = p m v [g1] = v pb b v [g1] = v pd d v [g1] = v p s s v [g1] = v pn n ] ] ] ] ] ⎡1 0 0 0 0 0 ⎤ [J 2 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ 28 (A-1.22) DSTO-TR-1990 A.1.5 Actuation Servo Model Let us assume a second order dynamics for the actuators, that is: αo ωα2 = 2 ; α = ξ ,η ,ζ αi s + 2ζ α ωα s + ωα2 ( ) (A-1.23) (ωα ,ζ α ) : denote the sensor natural frequency and the damping factor respectively; subscript ‘i’ denotes the servo (control) input value (servo demand), and subscripts (ξ ,η ,ζ ) denote roll, pitch, and yaw outputs from the servo. In state space form equations for the actuation system model may be written as: ⎡ξ o ⎤ ⎢• ⎥ ⎡ 0 ⎢ξ o ⎥ ⎢ − ω 2 ⎢ ⎥ ⎢ ξ d ⎢η o ⎥ ⎢ 0 ⎢ • ⎥=⎢ dt ⎢η ⎥ ⎢ 0 o ⎢ζ ⎥ ⎢ 0 ⎢ •o ⎥ ⎢ ⎢ ⎥ ⎢⎣ 0 ⎣ζ o ⎦ 1 − 2ζ ξ ωξ 0 0 0 0 0 0 0 1 0 0 0 0 − ωη − 2ζ η ωη 0 0 0 0 0 0 2 ⎡ξ o ⎤ ⎤⎢ • ⎥ ⎡ 0 ⎥ ⎢ξ ⎥ ⎢ 2 ⎥ ⎢ o ⎥ ⎢ωξ ⎥ ⎢η o ⎥ ⎢ 0 0 ⎥⎢ • ⎥+⎢ 0 ⎥ ⎢ηo ⎥ ⎢ 0 ⎥⎢ ⎥ ⎢ 0 1 ⎥ ⎢ζ o ⎥ ⎢ − 2ζ ζ ωζ ⎥⎦ ⎢ • ⎥ ⎢⎣ 0 ⎣ζ o ⎦ 0 0 0 − ωζ 2 0 0 0 ωη2 0 0 0 ⎤ ⎥ 0 ⎥ ⎡ξ ⎤ 0 ⎥ ⎢ i⎥ ⎥ η 0 ⎥ ⎢ i⎥ ⎢ζ ⎥ 0 ⎥ ⎣ i⎦ ⎥ ωζ2 ⎥⎦ (A-1.24) Where: • d α = α ; α = ξ ,η ,ζ dt This equation is of the form: d [1] x 6 = [V0 ] x [61] + [V1 ] u[41] dt (A-1.25) Where: ⎡ x [1] = ξ 6 • • • T ⎤ ⎢ o ξ o ηo ηo ζ o ζ o ⎥ : is a 6x1 state vector. ⎢⎣ ⎥⎦ u[41] = α i = [ξ i η i ζ i ]T : is a 3x1 control (servo actuator) input vector. 29 DSTO-TR-1990 ⎡ 0 ⎢ 2 ⎢ − ωξ ⎢ 0 [V0 ] = ⎢ 0 ⎢ ⎢ 0 ⎢ ⎣⎢ 0 1 − 2ζ ξ ωξ 0 0 0 0 0 0 0 0 0 1 − ωη2 0 0 − 2ζ η ωη 0 0 0 0 0 0 0 − ωζ2 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x6 servo actuator coefficient ⎥ ⎥ ⎥ − 2ζ ζ ωζ ⎦⎥ 0 0 0 0 1 matrix. ⎡0 ⎢ 2 ⎢ωξ ⎢0 [V1 ] = ⎢ 0 ⎢ ⎢0 ⎢ ⎢⎣ 0 ⎤ ⎥ ⎥ ⎥ ⎥ : is a 6x3 servo input coefficient matrix. 2 ωη ⎥ ⎥ 0 2⎥ 0 ωζ ⎥⎦ If the actuator system noise is included in the model then the actual output from the actuator servo may be written as: 0 0 0 0 0 0 0 0 d [1] x = [V0 ] x [61] + [V1 ] u[41] + ν [s1] n dt 6 (A-1.26) We may also write for the actuator output: y [1] = [ξ o ηo ς o ]T = [V2 ]x [61] (A-1.27) 6 Where: [ v [s1] = vξ n n vξ& n vη n vη&n vζ n ] vζ& T : is a 6x1 actuator servo noise error vector. n ⎡1 0 0 0 0 0 ⎤ [V2 ] = ⎢⎢0 0 1 0 0 0 ⎥⎥ : is a 3x6 matrix. ⎢⎣0 0 0 0 1 0 ⎥⎦ Note that: [ ] T ~ ~ ~ u[31] = X (..) Y (..) Z (..) L(..) M (..) N (..) ( = f (u , v , w , p , q , r , u& , v& , w& ,ξ o ,ηo ,ζ o ) = f x [31] , x& [31] , [V2 ]x [61] A.1.6 ) (A-1.28) Non-linear Airframe, IMU and Actuator Dynamic We can now combine equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) to give us an overall airframe, IMU and actuator dynamic model; this equation is of the Form: 30 DSTO-TR-1990 d [1] x7 = [F1 ] x7[1] + [F2 ] x [32 ] + [G1 ] u[31](..) + [G2 ] u[41] + [H 1 ] g [1] + [H 2 ]ν [s1] n dt (A-1.29) Where: T T T T T⎤ ⎡ x7[1] = ⎢ x [31] | x [41] | x [51] | x [61] ⎥ : is a 24 x1 state vector. ⎣ ⎦ ⎡[06 ×6 ] ⎢ ⎢−−− ⎢[06 ×6 ] [F1 ] = ⎢⎢ − − − ⎢ [W7 ] ⎢ ⎢−−− ⎢[0 ] ⎣ 6 ×6 | [06×6 ] | [06 ×6 ] | | | | | | | −−− [W0 ] −−− [06×6 ] −−− [06×6 ] | | | | | | −−− [06 ×6 ] −−− [W5 ] −−− [06 ×6 ] | | | | | | [F2 ] = [[F0 ]T | [W2 ]T | [012×6 ] [G1 ] = [[G0 ]T | [W3 ]T | [06×6 ] | [06 ×6 ]] : is a 24x6 coefficient matrix. [G2 ] = [[03×6 ] | [03×6 ] | [03×6 ] | [V1 ]T ] : is a 24x3 coefficient matrix. [H 1 ] = [[I 6×6 ] | [W 4 ]T [H 2 ] = [[06×6 ] | [06×6 ] | | [06×6 ]⎤ ⎥ −−−⎥ [06×6 ]⎥ ⎥ − − − ⎥ : is a 24x24 coefficient matrix. [06×6 ]⎥ ⎥ −−−⎥ [V0 ] ⎥⎦ [012×6 ]] T : is a 24x12 coefficient matrix. | T T [06×6 ] [06×6 ] | | [06×6 ]] T : is a 24x6 coefficient matrix. [I 6×6 ]]T : is a 24x6 coefficient matrix. A block diagram of the decomposed version (derived by considering the sub-matrices) of the overall model is given in Figure A-1.1. See appendix section 3. A.1.7 Measurement Model Equations (A-1.18) and (A.1.22) may be combined to give the overall measurement model: z7[1] = [J 6 ] x7[1] + v [b1] +v [d1] + v [s1] + v [n1] (A-1.30) 31 DSTO-TR-1990 Where: T [ T⎤ ⎡ T z7[1] = ⎢ z [41] | z [51] ⎥ = a x m a y m ⎣ ⎦ accelerometer) measurement vector. T ⎡ v [b1] = ⎢ v [a1] ⎣ b T⎤ | v [g1] ⎥ b ⎦ T T ⎡ v [d1] = ⎢ v [a1] ⎣ d T⎤ | v [g1] ⎥ d ⎦ T T ⎡ v [s1] = ⎢ v [a1] ⎣ s vector. T⎤ | v [g1] ⎥ s ⎦ T T T⎤ ⎡ v [n1] = ⎢ v [a1] | v [g1] ⎥ T ⎣ n n ⎦ azm pm = v xb [ v yb v zb v pb [ v yd v zd v pd = v xs [ v ys vzs [ v yn v zn = v xd = v xn v ps v pn qm vqb vqd vq s vqn rm ] T : is a 6x1 IMU (gyro + ] v rb T : is a 6x1 IMU bias error vector. ] v rd T : is a 6x1 IMU drift error vector. ] vrs T : is a 6x1 IMU scale factor error ] v rn T : is a 6x1 IMU noise error vector. | 0 3×6 | 0 3×6 ⎤ ⎡ 0 3×6 | J 1 ⎢ [J 6 ] = ⎢− − − | − − − | − − − | − − − ⎥⎥ : is a 6x24 matrix. ⎢⎣ 0 3×6 | 0 3×6 | J 2 | 0 3×6 ⎥⎦ A.2. Linearised Airframe, Actuation and IMU Dynamics Equation (A1.30) defines the complete non-linear description of the full 6-DOF airframe model. These equations contain quadratic terms in states and will be classed as the quadratic dynamic model. This type of model is required when autopilot design is undertaken for a missile executing high g- or high angle of attack manoeuvres, and (u, v, w, p, q, r) are not small. A more detailed consideration of the algebraic structure of this type of dynamic systems is given in [4]. A.2.1 Linearised Aerodynamic Forces and Moments . . . ~ ~ ~ Assuming that X , Y , Z , L , M and N are functions of u , v , w , p , q , r , u , v , w ξ ,η ,ς and using first order linearisation about the nominal values u0, v0, w0, p0, q0, r0, ξ0, η0 and ς0, we get: 32 DSTO-TR-1990 ~ ~ ~ ⎡ ΔX + ΔT ⎤ ⎡ X u ⎢ ~ ⎢ ~ ⎥ ⎢ ΔY ⎥ ⎢ Yu ⎢ ΔZ~ ⎥ ⎢ Z~u [ 1] Δu3 = ⎢ ⎥=⎢ ⎢ ΔL ⎥ ⎢ Lu ⎢ ΔM ⎥ ⎢ M ⎢ ⎥ ⎢ u ⎢⎣ ΔN ⎥⎦ ⎢⎣ N u ~ ⎡X u& ⎢ ~ Y ⎢ u& ⎢ Z~ & +⎢ u ⎢ Lu& ⎢M ⎢ u& ⎣⎢ N u& ~ X v& ~ Yv& ~ Z v& Lv& M v& N v& ~ X w& ~ Yw& ~ Z w& Lw& M w& N w& 0 0 0 0 0 0 ~ Xv ~ Yv ~ Zv Lv Mv Nv ~ Xw ~ Yw ~ Zw Lw Mw Nw ~ Xp ~ Yp ~ Zp Lp Mp Np 0 0 0 0 0 0 0 ⎤ ⎡ Δu& ⎤ ⎥⎢ ⎥ 0 ⎥ ⎢ Δv& ⎥ 0 ⎥ ⎢ Δw& ⎥ ⎥⎢ ⎥ 0 ⎥ ⎢ Δp& ⎥ 0 ⎥ ⎢ Δq& ⎥ ⎥⎢ ⎥ 0 ⎦⎥ ⎣⎢ Δr& ⎦⎥ ~ Xq ~ Yq ~ Zq Lq Mq Nq ~ ~ X r ⎤ ⎡ Δu ⎤ ⎡ X ξ ⎥ ⎢ ~ ~ Yr ⎥ ⎢⎢ Δv ⎥⎥ ⎢ Yξ ~ ~ Z r ⎥ ⎢ Δw ⎥ ⎢ Z ξ ⎥⎢ ⎥ + ⎢ Lr ⎥ ⎢ Δp ⎥ ⎢ Lξ M r ⎥⎥ ⎢ Δq ⎥ ⎢⎢ M ξ ⎢ ⎥ N r ⎥⎦ ⎢⎣ Δr ⎥⎦ ⎢⎣ N ξ ~ Xη ~ Yη ~ Zη Lη Mη Nη ~ Xς ~ Yς ~ Zς Lς ⎤ ⎥ ⎥ Δξ ⎥⎡ o ⎤ ⎥ ⎢ Δη o ⎥ ⎥ ⎥⎢ ⎢ ⎥⎦ Δ ζ o ⎣ M ς ⎥⎥ N ς ⎥⎦ (A-2.1) This equation may be written as: Δ u[31] = [E0 ] Δ x [31] +[E1V2 ] Δ x [61] +[E 3 ] Î Δ u[31] = [E0 ] Δ x [31] +[E 2 ] Δ x [61] +[E 3 ] d Δ x [31] dt d Δ x [31] dt (A-2.2) Where: Δ (..) : denotes ‘small’ (see Tables A-1.1 – A1-3): deviations from the normal steady-state condition ~ ~ . . . . . . ∂X ∂Y ~ ~ Xα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ; Yα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ∂α ∂α ~ . . . . . . ∂Z ∂L ~ Zα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ; Lα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ∂α ∂α . . . . . . ∂M ∂N Mα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ; Nα = ; α = u , v , w , p , q , r , u , v , w ξ ,η ,ς ∂α ∂α [E 2 ] = [E1V2 ] : is a 6x6 matrix. ΔT = 0 ; Δ g [1] = 0 ~ 33 DSTO-TR-1990 ~ ⎡X u ⎢ ~ Y ⎢ u ⎢ Z~ [E 0 ] = ⎢ u ⎢ Lu ⎢M ⎢ u ⎢ Nu ⎣ ~ Xv ~ Yv ~ Zv Lv Mv Nv ~ Xw ~ Yw ~ Zw Lw Mw Nw ~ ⎡X ξ ⎢ ~ Y ⎢ ξ ⎢~ [E 1 ] = ⎢ Z ξ ⎢ Lξ ⎢M ⎢ ξ ⎢⎣ N ξ ~ Xη ~ Yη ~ Zη Lη Mη Nη ~ Xς ⎤ ~ ⎥ Yς ⎥ ~ Zς ⎥ ⎥ : is a 6x3 control-derivative matrix. Lς ⎥ Mς ⎥ ⎥ N ς ⎥⎦ ~ ⎡X u& ⎢ ~ Y ⎢ u& ⎢~ [E 3 ] = ⎢ Z u& ⎢ Lu& ⎢M ⎢ u& ⎣⎢ N u& ~ X v& ~ Yv& ~ Z v& Lv& M v& N v& A.2.2 ~ X w& ~ Yw& ~ Z w& Lw& M w& N w& ~ Xp ~ Yp ~ Zp Lp Mp Np 0 0 0 0 0 0 0 0 0 0 0 0 ~ Xq ~ Yq ~ Zq Lq Mq Nq ~ Xr ⎤ ~ ⎥ Yr ⎥ ~ Zr ⎥ ⎥ : is a 6x6 aero-derivative matrix. Lr ⎥ M r ⎥⎥ N r ⎥⎦ 0⎤ ⎥ 0⎥ 0 ⎥ : is a 6x6 aero-derivative matrix. ⎥ 0⎥ 0⎥ ⎥ 0 ⎥⎦ Linearisation of the Quadratic State Vector It is easily verified the first order linearization of the quadratic state vector defined in section 2.1. : T T⎤ ⎡ x [32 ] = ⎢ x [12 ] | x [22 ] ⎥ ⎣ ⎦ may be written as: Δ x [32 ] = [E 4 ] Δ x [31] 34 T [ = uq ur vp vr wp wq | p2 pq pr q 2 qr r2 ] T (A-2.3) DSTO-TR-1990 Where: ⎡q0 ⎢ ⎢ r0 ⎢0 ⎢ ⎢0 ⎢0 ⎢ [E 4 ] = ⎢⎢ 0 0 ⎢ ⎢0 ⎢0 ⎢0 ⎢ ⎢0 ⎢ ⎣0 0 0 ⎣ A.2.3 u0 0 v0 0 w0 0 0 0 w0 0 p0 0 2 q0 r0 0 p0 r0 0 0 0 0 0 0 0 0 0 0 2 p0 q0 r0 0 0 0 0 0 0 0 Δ x [31] = ⎢ Δ x [11] ⎡ 0 0 0 0 0 0 p0 q0 0 T 0 ⎤ u0 ⎥⎥ 0 ⎥ ⎥ v0 ⎥ 0 ⎥ 0 ⎥⎥ : is a 12x6 matrix of steady state values. 0 ⎥ ⎥ 0 ⎥ p0 ⎥ 0 ⎥ ⎥ q0 ⎥ ⎥ 2 r0 ⎦ T⎤ | Δ x [21] ⎥ T = [Δu Δv Δw | Δp Δq Δr ] T : is a 6x1 linear Δ -state vector. ⎦ Linearised Airframe, IMU, Actuator Model The ‘small’ perturbation model for the quadratic dynamic model of equation (A-1.29) may be written as: d Δ x7[1] = [F1 ] Δ x7[1] + [F2 ] Δ x [32 ] + [G1 ] Δ u[31] + [G2 ] Δ u[41] + [H 1 ] Δ g [1] + [H 2 ] Δν [s1] n dt (A-2.4) Substituting for Δ x [32 ] and Δ u [31] from equations (A-2.2) and (A-2.3), gives us: d d Δ x7[1] = [F1 ] Δ x7[1] + [F2 E4 + G1 E0 ] Δ x [31] + [G1 E 2 ] Δ x [61] + [G1 E 3 ] Δ x [31] dt dt +[G2 ]Δ u[41] +[H 2 ]Δν [s1] (A-2.5) n Where: ⎡ [G0 E 2 ]⎤ ⎡ [G0 E 3 ]⎤ ⎡ [F0 E 4 + G 0 E 0 ] ⎤ ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − − −⎥ ⎢− − − − − − − − − ⎥ ⎢[W 3 E 2 ]⎥ ⎢[W 3 E 3 ]⎥ ⎢[W 2 E 4 + W 3 E 0 ]⎥ ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ Δ g [1] = 0 ; [F2 E 4 + G 1 E 0 ] =⎢ − − − − − − − − − ⎥ ; [G 1 E 2 ] = ⎢ − − − − ⎥ ; [G 1 E 3 ] = ⎢ − − − − ⎥ ⎢ [06×6 ] ⎥ ⎢ [06×6 ] ⎥ ⎢ ⎥ [06×6 ] ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − − −⎥ ⎢− − − − − − − − − ⎥ ⎢ [0 ] ⎥ ⎢ [0 ] ⎥ ⎢ ⎥ [06×6 ] ⎣ 6×6 ⎦ ⎣ 6×6 ⎦ ⎣ ⎦ 35 DSTO-TR-1990 These above matrices are all of dimension 24X6. See also the block diagram Figure A-1.2. Now, Equation (A-2.5)Î d Δ x7[1] = [F1 ] Δ x7[1] + [[F2 E 4 + G1 E0 ] | dt + [G 2 ] Δ u[41] +[[G1 E 3 ] | [024×6 ] [024×6 ] | | [024×6 ] [024×6 ] | | [G1 E 2 ]] Δ x7[1] [024×6 ]] d + [H 2 ]Δν [s1] dt Δ x7[1] (A-2.6) n Î d [F3 ]Δ x7[1] = [F4 ] Δ x7[1] + [G2 ] Δ u[41] + [H 2 ] Δν [s1n] dt Î d Δ x [61] = [F3 ]− 1 [F4 ] Δ x7[1] + [F3 ]− 1 [G2 ] Δ u[41] +[F3 ]− 1 [H 2 ] Δν [s1] n dt Î d Δ x7[1] = [F5 ] Δ x7[1] + [G3 ] Δ u[41] +[H 3 ] Δν [s1] n dt (A-2.7) (A-2.8) (A-2.9) Where: [F3 ] = [I 24× 24 ] −[G1 E3 | 024×6 | 024×6 | 024×6 ] : is a 24x24 coefficient matrix. [F4 ] = [F1 ] +[F2 E 4 + G1 E 0 | 0 24×6 | 0 24×6 [F5 ] = [F3 ]−1 [F4 ] : is a 24x24 coefficient matrix. | G 1 E 2 ] : is a 24x24 coefficient matrix. [G3 ] = [F3 ]−1 [G2 ] : is a 24x3 coefficient matrix. [H 3 ] = [F3 ]−1 [H 2 ] : is a 24x3 coefficient matrix. Small perturbation model of the measurement model (see equation (A-1.30) may be written as: Δz 7[1] = [J 6 ] Δx 7[1] + Δv [b1] +Δv [b1] + Δv [s1] + Δv [n1] Δ : denotes small perturbation about nominal values. 36 (A-2.10) DSTO-TR-1990 Finally, linearising the output equation (A-1.11) gives us: Δy [1] = [J 0 + K 0 E 4 ] Δx [31] +[L0 ] Δu [31] 3 (A-2.11) Î Δy [1] = [J 7 ] Δx [31] +[L0 ] Δu [31] 3 (A-2.12) Where: [J 7 ] = [J 0 + K 0 E 4 ] : is a 6x6 coefficient matrix. 37 A.3.1 DSTO-TR-1990 38 A.3. Decomposed State Space Models Nonlinear Model: Using the relationship established in the appendix section 1.4, we may write: ⎡ x [1] ⎤ ⎡[06×6 ] ⎢ 3 ⎥ ⎢ ⎢− −⎥ ⎢− − − ⎢ x [1] ⎥ ⎢[0 6×6 ] d ⎢ 4 ⎥ ⎢ ⎢− −⎥ = − − − dt ⎢ [1] ⎥ ⎢⎢ ⎢ x 5 ⎥ ⎢ [W7 ] ⎢− −⎥ ⎢− − − ⎢ [1] ⎥ ⎢ [0 ] ⎣⎢ x 6 ⎦⎥ ⎣ 6×6 A.3.2 [06×6 ] | | | | −−− [W0 ] −−− −−− [06×6 ] −−− −−− [06×6 ] | | | −−− [06×6 ] [06×6 ] | | | [06×6 ] | | | | [W 5 ] [06×6 ]⎤ ⎡ x [31] ⎤ ⎡ [F0 ] ⎤ ⎡ [G 0 ] ⎤ ⎥ ⎢ ⎥ ⎢ ⎥ ⎥⎢ − − − ⎥ ⎢ − − ⎥ ⎢− − − − ⎥ ⎢− − −⎥ ⎢ [W 3 ] ⎥ [06×6 ]⎥ ⎢⎢ x [41] ⎥⎥ ⎢ [W 2 ] ⎥ ⎥ ⎢ ⎥ [2 ] ⎢ ⎥ − − − ⎥ ⎢ − − ⎥ +⎢ − − − − ⎥ x 3 + ⎢ − − − ⎥ u [31] + ⎢[06×6 ]⎥ | [06×6 ]⎥ ⎢⎢ x [51] ⎥⎥ ⎢ [06×12 ]⎥ ⎥ ⎢ ⎥ ⎢ ⎥ | − − − ⎥ ⎢ − − ⎥ ⎢− − − − ⎥ ⎢− − −⎥ ⎢ ⎥ ⎢[0 ⎥ | [V0 ] ⎥⎦ ⎢ x [61] ⎥ ⎢⎣ [06×12 ]⎥⎦ ⎣ 6×6 ]⎦ ⎣ ⎦ | | | | ⎡[I 6×6 ]⎤ ⎡[06×3 ]⎤ ⎢ ⎥ ⎢ ⎥ ⎢− − −⎥ ⎢− − −⎥ ⎢ [W 4 ] ⎥ ⎢[06×3 ]⎥ ⎥ [1] ⎢ ⎥ [1] ⎢ ⎢ − − − ⎥u 4 + ⎢ − − − ⎥ g + ⎢[06×6 ]⎥ ⎢[06×3 ]⎥ ⎢ ⎥ ⎥ ⎢ ⎢− − −⎥ ⎢− − −⎥ ⎢[0 ⎥ ⎢ [V ] ⎥ ⎣ 1 ⎦ ⎣ 6×6 ]⎦ ⎡[06×6 ]⎤ ⎥ ⎢ ⎢− − −⎥ ⎢[06×6 ]⎥ ⎥ [1] ⎢ ⎢ − − − ⎥ v sn ⎢[06×6 ]⎥ ⎥ ⎢ ⎢− − −⎥ ⎥ ⎢[I ⎣ 6×6 ]⎦ (A3-1) Linearised Model: Using the relationship established in the appendix section 1.4 and equations (A-2.2), (A-2.3) and (A-2.5), we may write: ⎡ Δx [1] ⎤ ⎡[06×6 ] ⎢ 3 ⎥ ⎢ ⎢ − − ⎥ ⎢− − − ⎢ Δx [1] ⎥ ⎢[0 6×6 ] d ⎢ 4 ⎥ ⎢ ⎢ −− ⎥= −−− dt ⎢ [1] ⎥ ⎢⎢ ⎢ Δx 5 ⎥ ⎢ [W7 ] ⎢ − − ⎥ ⎢− − − ⎢ [1] ⎥ ⎢ ⎢⎣ Δx 6 ⎥⎦ ⎣[06×6 ] | | | | | | | [06×6 ] −−− [W 0 ] −−− | | | | −−− [06×6 ] | | | [06×6 ] [06×6 ] −−− [06×6 ] −−− [W 5 ] −−− [06×6 ] [06×6 ]⎤ ⎡Δx [31] ⎤ ⎡ [F0 E 4 + G0 E 0 ] ⎤ ⎡ [G 0 E 2 ]⎤ ⎥ ⎢ ⎢ ⎥ ⎥ ⎥⎢ − − − ⎥ ⎢ − − ⎥ ⎢− − − − − − − − − ⎥ ⎢− − − −⎥ ⎢[W 3 E 2 ]⎥ [06×6 ]⎥ ⎢⎢ Δx [41] ⎥⎥ ⎢[W 2 E 4 + W 3 E 0 ]⎥ ⎥ ⎥ [1] ⎢ ⎢ ⎥ − − − ⎥ ⎢ − − ⎥ +⎢ − − − − − − − − − ⎥ Δx 3 + ⎢ − − − − ⎥ Δx [61] + ⎢ [06×6 ] ⎥ ⎥ [06×6 ] | [06×6 ]⎥ ⎢⎢ Δx [51] ⎥⎥ ⎢ ⎢ ⎥ ⎥ ⎢ ⎥ | − − − ⎥ ⎢ − − ⎥ ⎢− − − − − − − − − ⎥ ⎢− − − −⎥ ⎢ ⎥ ⎢ [0 ⎥ ⎥ [06×6 ] | [V0 ] ⎥⎦ ⎢ Δx [61] ⎥ ⎢⎣ ⎣ 6×6 ] ⎦ ⎦ ⎣ ⎦ | | | | ⎡ [G 0 E 3 ]⎤ ⎡[06×6 ]⎤ ⎡[06× 3 ]⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − −⎥ ⎢− − −⎥ ⎢[W 3 E 3 ]⎥ ⎢[06×6 ]⎥ ⎢[06× 3 ]⎥ ⎥ d ⎥ [1] ⎢ ⎥ [1] ⎢ [ 1] ⎢ ⎢ − − − ⎥ Δu 4 + ⎢ − − − − ⎥ dt Δx 3 + ⎢ − − − ⎥ Δv sn ⎢ [06×6 ] ⎥ ⎢[06×6 ]⎥ ⎢[06× 3 ]⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − − −⎥ ⎢− − −⎥ ⎢− − −⎥ ⎢ [0 ⎥ ⎢[ I ⎥ ⎢ [V ] ⎥ ⎣ 1 ⎦ ⎣ 6×6 ] ⎦ ⎣ 6×6 ]⎦ (A3-2) Block diagrams for the decomposed versions for the nonlinear and the linearised models are given in Figures A-1.1 and A-1.2 respectively 3 DSTO-TR-1990 Table A-1.1. Longitudinal (Roll) Aerodynamic Derivatives and Coefficients: Derivatives Symbol Units Nm-1 sec Xu Derivatives Symbols - Units - Normalised Coefficients Symbols Units -1 sec m C x u (= X u / QS x ) Xv Nm-1 sec X β (= UX v ) N C x β = X β / QS x ) - Xw Nm-1 sec X α (= UX w ) N C xα (= X α / QS x ) - Xp N sec - - Xq N sec - - Xr N sec - - C x r (= X r / QS x ) Xξ N - - C xξ = X ξ / QS x Xη N - - Xζ N - - X u& Nm-1 sec2 - - X v& Nm-1 sec2 X w& Nm-1 sec2 Lu N sec - - Lv N sec - - Lw N sec - - C l w (= Lw / QS x c x ) m-1 sec Lp Nm sec - - C l p = L p / QS x c x sec Lq Nm sec - - Lr Nm sec - - Lξ Nm - - Lη Nm - - Lζ Nm - - Lu& N sec2 - - Lv& N sec2 Lw& N sec2 * Q= ( X β& (= UX v& ) X α& (= UX w& ) Lβ& (= ULv& ) Lα& (= ULw& ) ) ( ( ) C x q (= X q / QS x ) C x p = X p / QS x ( ) C xη (= X η / QS x ) C xζ (= X ζ / QS x ) N sec - C x w& (= X w& / QS x ) m-1 sec2 C l v (= Lv / QS x c x ) ( ) C l q (= Lq / QS x c x ) C l r (= Lr / QS x c x ) ( ) C lη (= Lη / QS x c x ) C l ζ (= Lζ / QS x c x ) C l ξ = Lξ / QS x c x m-1 sec2 m-1 sec m-1 sec sec sec - C l u& (= Lu& / QS x c x ) m-1 sec2 C l w& (= Lw& / QS x c x ) m-1 sec2 C l v& (= Lv& / QS x c x ) Nm sec sec m-1 sec2 C l u (= Lu / QS x c x ) Nm sec sec C x u& (= X u& / QS x ) C x v& (= X v& / QS x ) N sec sec m-1 sec2 ( ) 1 ρ U 2 : Nm − 2 ; S x : m 2 ; c x : (m ) 2 3 39 DSTO-TR-1990 Table A-2.1. Lateral (Pitch) Aerodynamic Derivatives and Coefficients: Derivatives Symbol Units Nm-1 sec Yu 40 Derivatives Symbols - Units - Yv Nm-1 sec Y β (= UYv ) N Yw Nm-1 sec Yα (= UY w ) N Yp N sec - - Yq N sec - - Yr N sec - - Yξ N - - Yη N - - Yζ N - - Y u& Nm-1 sec2 - - Yv& Nm-1 sec2 Y w& Nm-1 sec2 Mu N sec - - Mv N sec - - Mw N sec - - Mp Nm sec - - Mq Nm sec - - Mr Nm sec - - Mξ Nm - - Mη Nm - - Mζ Nm - - M u& N sec2 - - M v& N sec2 M β& (= UM v& ) M w& N sec2 Y β& (= UYv& ) Yα& (= UY w& ) M α& (= UM w& ) Normalised Coefficients Symbols Units m-1 sec C y = Y u / QS y ( ) C y (= Y β / QS y ) CY (= Yα / QS y ) C y (= Y p / QS y ) C y (= Yq / QS y ) C y (= Y r / QS y ) C y (= Yξ / QS y ) C y (= Yη / QS y ) C y (= Yζ / QS y ) C y (= Y u& / QS y ) C y (= Yv& / QS y ) C y (= Y w& / QS y ) C m (= M u / QS y c y ) C m (= M v / QS y c y ) C m (= M w / QS y c y ) C m (= M p / QS y c y ) C m (= M q / QS y c y ) C m (= M r / QS y c y ) C m (= M ξ / QS y c y ) C m (= M η / QS y c y ) C m (= M ζ / QS y c y ) C m (= M u& / QS y c y ) C m (= M v& / QS y c y ) C m (= M w& / QS y c y ) u - β - α p q r sec sec sec - ξ - η - ζ u& N sec v& N sec w& u v w p q r ξ η ζ u& Nm sec v& Nm sec w& 4 m-1 sec2 m-1 sec2 m-1 sec2 m-1 sec m-1 sec m-1 sec sec sec sec m-1 sec2 m-1 sec2 m-1 sec2 DSTO-TR-1990 Table A-3.1. Lateral (Yaw) Aerodynamic Derivatives and Coefficients: Derivatives Symbol Units Nm-1 sec Zu Derivatives Symbols - Units - Normalised Coefficients Symbols Units -1 sec m C z u (= Z u / QS z ) C z β = Z β / QS z ( ) Zv Nm-1 sec Z β (= UZ v ) N Zw Nm-1 sec Zα (= UZ w ) N Zp N sec - - C z p = Z p / QS z sec Zq N sec - - C zq sec Zr N sec - - C z r (= Z r / QS z ) Zξ N - - C zξ = Zξ / QS z - Zη N - - C zη - Zζ N - - C zζ Z u& Nm-1 sec2 - - Z v& Nm-1 sec2 Z w& Nm-1 sec2 Nu N sec - - Nv N sec - - Nw N sec - - C nw (= N w / QS z c z ) m-1 sec Np Nm sec - - C n p = N p / QS z c z sec Nq Nm sec - - C nq sec Nr Nm sec - - Nξ Nm - - C nr (= N r / QS z c z ) C nξ = N ξ / QS z c z Nη Nm - - C nη Nζ Nm - - C nζ N u& N sec2 - - N v& N sec2 N w& N sec2 Z β& (= UZ v& ) Zα& (= UZ w& ) N β& (= UN v& ) Nα& (= ULw& ) - C zα (= Zα / QS z ) ( ) (= Zq / QSz ) ( ) (= Zη / QS z ) (= Zζ / QS z ) C z u& (= Z u& / QS z ) C z v& (= Z v& / QS z ) N sec C z w& (= Z w& / QS z ) N sec C nu (= N u / QS z c z ) C nv (= N v / QS z c z ) ( ) (= N q / QS z cz ) ( ) (= Nη / QS z cz ) (= Nζ / QS z cz ) C nu& (= N u& / QS z c z ) C nv& (= N v& / QS z c z ) Nm sec C nw& (= N w& / QS z c z ) Nm sec 4 - sec m-1 sec2 m-1 sec2 m-1 sec2 m-1 sec m-1 sec sec m-1 sec2 m-1 sec2 m-1 sec2 41 DSTO-TR-1990 This page left intentionally blank 42 4 DSTO-TR-1990 ν [s1] n u [41] V1 Σ Σ V0 x& [61] x [61] ∫ y [1] V2 6 y [1] 6 f(..) u[31] u [31] G0 g [1] H1 W4 W3 Σ x& [31] Σ x [32 ] y [1] Σ J0 3 π x [31] K0 W2 x& [41] ∫ x [41] x [31] [] z 41 Σ J1 W0 π : see ref.4 [] [] [] [] v 1 +v 1 +v 1 +v 1 ab ad as an W7 Airframe IMU x [31] ∫ F0 Σ Σ L0 Σ x& [51] ∫ x [51] [] z 51 Σ J2 Actuator W5 [] [] [] [] v 1 +v 1 +v 1 +v 1 gb gd Figure A-1.1 Nonlinear (Quadratic) Airframe Model including Actuator and IMU 4 gs gn 43 DSTO-TR-1990 This page left intentionally blank 44 4 DSTO-TR-1990 Δv [s1] n Δu [41] V1 Σ Σ V0 6 ∫ Δx& [61] Δy [1] Δx [1] 6 V2 E2 E0 Σ Σ E3 Δu [31] G0 Δu [31] Σ Δx& [31] ∫ Δx [31] L0 Δy [1] Σ J0 3 Δx [31] F0E4 Δx [31] W2E4 W3 Σ Δx& [41] ∫ Δx [41] W0 Δx [31] K0E4 Δz [41] Σ J1 Δv [a1] + Δv [a1] + Δv [a1] + Δv [a1] b d s n Airframe W5 IMU Actuator Σ Δx& [51] ∫ Δx [51] Δz [51] Σ J2 Δv [g1] + Δv [g1] + Δv [g1] + Δv [g1] W5 b d s n Figure A-1.2 Linearised Airframe Model Including Actuator 4 45 Page classification: UNCLASSIFIED DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT) 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION) 2. TITLE State Space Model for Autopilot Design of Aerospace Vehicles Document Title Abstract (U) (U) (U) 5. CORPORATE AUTHOR 4. AUTHOR(S) DSTO Defence Science and Technology Organisation PO Box 1500 Edinburgh South Australia 5111 Australia Dr. Farhan A. Faruqi 6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT DSTO-TR-1990 AR-013-894 Technical Report 8. FILE NUMBER 9. TASK NUMBER 2007/1006135/1 05/303 13. URL on the World Wide Web 7. DOCUMENT DATE March 2007 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES CWSD 39 12 14. RELEASE AUTHORITY http://dspace.dsto.defence.gov.au/dspace/handle/1947/8679 Chief, Weapons Systems Division 15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT Approved for public release OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, SALISBURY, SA 5108 16. DELIBERATE ANNOUNCEMENT No Limitations 17. CASUAL ANNOUNCEMENT 18. DEFTEST DESCRIPTORS Yes Guidance, automatic control, optimal control, modelling, mathematical models 19. ABSTRACT This report is a follow on to the report given in DSTO-TN-0559 and considers the derivation of the mathematical model for a aerospace vehicles and missile autopilots in state space form. The basic equations defining the airframe dynamics are non-linear, however, since the non-linearities are “structured” (in the sense that the states are of quadratic form) a novel approach of expressing this non-linear dynamics in state space form is given. This should provide a useful way to implement the equations in a computer simulation program and possibly for future application of non-linear analysis and synthesis techniques, particularly for autopilot design of aerospace vehicles executing high g-manoeuvres. This report also considers a locally linearised state space model that lends itself to better known linear techniques of the modern control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for both the application of the modern control techniques as well as the classical time-domain and frequency domain techniques. The models developed are useful for further research on precision optimum guidance and control. It is hoped that the model will provide more accurate presentations of missile autopilot dynamics and will be used for adaptive and integrated guidance & control of agile missiles. Page classification: UNCLASSIFIED 5
© Copyright 2025 Paperzz