Microeconomics 2: Problem Set 1

Problem Set 3: General Equilibrium
Matthew Robson
University of York
Microeconomics 2
1
Question 1
Producer Theory
β€’ The firm chooses 𝑦, 𝐿 and 𝐾 to maximise profit , πœ‹, subject to its
production function, 𝑦
Or:
β€’ The firm chooses 𝐿 and 𝐾 to minimise cost, 𝐢, subject to a given
level of output, 𝑦
2
Question 1 i)
Consider the profit function πœ‹ = 𝑝2 /𝑀, where 𝑝 is the price of
output and 𝑀 is the price of labour. Derive the producer’s outputsupply and input-demand functions.
3
Question 1 i)
𝑝2
πœ‹=
𝑀
Hotelling’s lemma:
πœ•πœ‹
𝑦=
,
πœ•π‘
Output-supply function:
πœ•πœ‹
𝐿=βˆ’
πœ•π‘€
2𝑝
𝑦=
𝑀
Input-demand function:
𝑝
𝐿=
𝑀
2
4
Question 1 ii)
1 1
4 4
Consider the cost function 𝐢 = 4𝑦𝑀 π‘Ÿ , where 𝑦 is output, 𝑀 is the
wage rate, and π‘Ÿ is the rental rate. Derive the producer’s conditional
input-demand functions for labour and capital.
5
Question 1 ii)
𝐢=
1 1
4𝑦𝑀 4 π‘Ÿ 4
Shepard’s Lemma:
πœ•πΆ
𝐿=
,
πœ•π‘€
πœ•πΆ
𝐾=
πœ•π‘Ÿ
Conditional Input-Demand Functions:
𝐿=
𝐾=
1
π‘¦π‘Ÿ 4
3
𝑀4
1
𝑦𝑀 4
3
π‘Ÿ4
6
Question 2
Consider a two-commodity (π‘₯ and 𝑦), two-consumer (𝐴 and 𝐡) pureexchange economy.
Suppose consumer 𝐴’s utility function is π‘ˆπ΄ π‘₯𝐴 , 𝑦𝐴 = π‘₯𝐴0.5 𝑦𝐴0.5 and
she is endowed with 100 units of π‘₯ and zero units of 𝑦.
Suppose consumer B’s utility function is π‘ˆπ΅ π‘₯𝐡 , 𝑦𝐡 = π‘₯𝐡0.5 𝑦𝐡0.5 and
she is endowed with zero units of π‘₯ and 100 units of 𝑦.
Derive the equation that describes the economy’s contract curve.
7
Edgeworth Box
8
Question 2
Choose an allocation π‘₯𝐴 , 𝑦𝐴 , π‘₯𝐡 , 𝑦𝐡 to maximise:
π‘₯𝐡0.5 𝑦𝐡0.5
subject to:
π‘₯𝐴0.5 𝑦𝐴0.5 = π‘ˆπ΄
π‘₯𝐴 + π‘₯𝐡 = 100
𝑦𝐴 + 𝑦𝐡 = 100
Feasible Allocations
9
Question 2
Form the Lagrangian:
β„’ = π‘₯𝐡0.5 𝑦𝐡0.5 + πœ† π‘₯𝐴0.5 𝑦𝐴0.5 βˆ’ π‘ˆπ΄ + 𝛼 100 βˆ’ π‘₯𝐴 βˆ’ π‘₯𝐡 + 𝛾 100 βˆ’ 𝑦𝐴 βˆ’ 𝑦𝐡
Where πœ†, 𝛼 and 𝛾 are Lagrange multipliers.
Derive the FOC’s:
π‘₯𝐴 : πœ†0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5 βˆ’ 𝛼 = 0, (1) 𝑦𝐴 : πœ†0.5π‘₯𝐴0.5 π‘¦π΄βˆ’0.5 βˆ’ 𝛾 = 0 (2)
π‘₯𝐡 : 0.5π‘₯π΅βˆ’0.5 𝑦𝐡0.5 βˆ’ 𝛼 = 0, (3) 𝑦𝐡 : 0.5π‘₯𝐡0.5 π‘¦π΅βˆ’0.5 βˆ’ 𝛾 = 0
πœ†: π‘₯𝐴0.5 𝑦𝐴0.5 βˆ’ π‘ˆπ΄ = 0,
(5) 𝛼: 100 βˆ’ π‘₯𝐴 βˆ’ π‘₯𝐡 = 0
(4)
(6)
𝛾: 100 βˆ’ 𝑦𝐴 βˆ’ 𝑦𝐡 = 0 (7)
10
Question 2
(1)=(3)
πœ†0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5 = 𝛼 = 0.5π‘₯π΅βˆ’0.5 𝑦𝐡0.5
0.5π‘₯π΅βˆ’0.5 𝑦𝐡0.5
πœ†=
0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5
(2)=(4)
πœ†0.5π‘₯𝐴0.5 π‘¦π΄βˆ’0.5 = 𝛾 = 0.5π‘₯𝐡0.5 π‘¦π΅βˆ’0.5
0.5π‘₯𝐡0.5 π‘¦π΅βˆ’0.5
πœ†=
0.5π‘₯𝐴0.5 π‘¦π΄βˆ’0.5
π‘₯𝐴0.5 𝑦𝐡0.5
π‘₯𝐡0.5 𝑦𝐴0.5
0.5 0.5 = πœ† = 0.5 0.5
π‘₯𝐡 𝑦𝐴
π‘₯𝐴 𝑦𝐡
π‘₯𝐴 𝑦𝐡 = π‘₯𝐡 𝑦𝐴
11
Question 2
From (6):
100 βˆ’ π‘₯𝐴 βˆ’ π‘₯𝐡 = 0
π‘₯𝐡 = 100 βˆ’ xA
From (7):
100 βˆ’ 𝑦𝐴 βˆ’ 𝑦𝐡 = 0
𝑦𝐡 = 100 βˆ’ yA
Plug into:
π‘₯𝐴 𝑦𝐡 = π‘₯𝐡 𝑦𝐴
π‘₯𝐴 (100 βˆ’ yA ) = (100 βˆ’ xA )𝑦𝐴
100
100
βˆ’1=
βˆ’1
𝑦𝐴
π‘₯𝐴
100π‘₯𝐴 = 100𝑦𝐴
π‘₯𝐴 = 𝑦𝐴
12
Contract Curve
13
Question 3
For the economy in question 2, derive the general competitive
equilibrium prices and quantities.
14
Question 3
General Competitive Equilibrium
β€’ Both consumers are maximising utility subject to their budget
constraints
β€’ max π‘ˆπ΄ (π‘₯𝐴 , 𝑦𝐴 ) subject to 𝑝π‘₯ π‘₯𝐴 + 𝑝𝑦 𝑦𝐴 = π‘šπ΄ = 𝑝π‘₯ πœ”π‘₯𝐴 + 𝑝𝑦 πœ”π‘¦π΄
β€’ max π‘ˆπ΅ (π‘₯𝐡 , 𝑦𝐡 ) subject to 𝑝π‘₯ π‘₯𝐡 + 𝑝𝑦 𝑦𝐡 = π‘šπ΅ = 𝑝π‘₯ πœ”π‘₯𝐡 + 𝑝𝑦 πœ”π‘¦π΅
β€’ Market Clear (Demand = Supply)
β€’ π‘₯𝐴 + π‘₯𝐡 = πœ”π‘₯𝐴 + πœ”π‘₯𝐡
β€’ 𝑦𝐴 + 𝑦𝐡 = πœ”π‘¦π΄ + πœ”π‘¦π΅
15
Question 3
For Consumer A:
β„’ = π‘₯𝐴0.5 𝑦𝐴0.5 + πœ† 100𝑝π‘₯ βˆ’ 𝑝π‘₯ π‘₯𝐴 βˆ’ 𝑝𝑦 𝑦𝐴
FOC:
(1)=(2)
π‘₯𝐴 : 0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5 βˆ’ 𝑝π‘₯ Ξ» = 0
(1)
𝑦𝐴 : 0.5π‘¦π΄βˆ’0.5 π‘₯𝐴0.5 βˆ’ 𝑝𝑦 Ξ» = 0
(2)
πœ†: 100𝑝π‘₯ βˆ’ 𝑝π‘₯ π‘₯𝐴 βˆ’ 𝑝𝑦 𝑦𝐴 = 0
(3)
0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5
0.5π‘¦π΄βˆ’0.5 π‘₯𝐴0.5
=πœ†=
𝑝π‘₯
𝑝𝑦
𝑝π‘₯
𝑦𝐴 = π‘₯𝐴 ,
𝑝𝑦
𝑝𝑦
π‘₯𝐴 = 𝑦𝐴
𝑝π‘₯
16
Question 3
Plug 𝑦𝐴 into (3)
Plug π‘₯𝐴 into (3)
𝑝𝑦
100𝑝π‘₯ βˆ’ 𝑝π‘₯ 𝑦𝐴 βˆ’ 𝑝𝑦 𝑦𝐴 = 0
𝑝π‘₯
100𝑝π‘₯ = 2𝑝𝑦 𝑦𝐴
50𝑝π‘₯
= 𝑦𝐴
𝑝𝑦
𝑝π‘₯
100𝑝π‘₯ βˆ’ 𝑝π‘₯ π‘₯𝐴 βˆ’ 𝑝𝑦 π‘₯𝐴 = 0
𝑝𝑦
100𝑝π‘₯ = 2𝑝π‘₯ π‘₯𝐴
50 = π‘₯𝐴
Similarly for Consumer B we obtain:
50𝑝𝑦
π‘₯𝐡 =
𝑝π‘₯
π‘Žπ‘›π‘‘
𝑦𝐡 = 50
Market clearing requires that π‘₯𝐴 + π‘₯𝐡 = 100 and 𝑦𝐴 + 𝑦𝐡 = 100. Therefore:
π‘₯𝐴 = 50 β‡’ π‘₯𝐡 = 50
and
𝑦𝐡 = 50 β‡’ 𝑦𝐴 = 50
17
Question 3
Finally, from utility maximisation we have:
0.5π‘₯π΄βˆ’0.5 𝑦𝐴0.5 𝑦𝐴 𝑝π‘₯
𝑀𝑅𝑆𝐴 =
=
=
0.5π‘₯𝐴0.5 π‘¦π΄βˆ’0.5 π‘₯𝐴 𝑝𝑦
Because
𝑦𝐴
π‘₯𝐴
= 1, general competitive equilibrium prices are
𝑝π‘₯
𝑝𝑦
= 1.
18
Equilibrium Prices and Quantities
19
Question 4
Consider a Robinson Crusoe economy in which the utility function is
𝑒 𝑐, 𝐿 = 2 ln 𝑐 + ln 1 βˆ’ 𝐿 and the production function is 𝑐 =
1
2
2𝐿 , where 𝑐 is consumption and 𝐿 is labour. Find the Pareto optimal
allocation for this economy.
20
Question 4
Robinson Crusoe Economy
β€’ One person is both a consumer and a producer
β€’ Two commodities, 𝑐 the consumption good and 𝐿 is the production input
labour.
β€’ One consumer with the utility function: 𝑒 𝑐, 𝐿 = 2 𝑙𝑛 𝑐 + 𝑙𝑛 1 βˆ’ 𝐿
1
2
β€’ One producer with the production function 𝑐 = 2𝐿
21
Question 4
1
2
Choose 𝑐 and 𝐿 to maximise 2 ln 𝑐 + ln 1 βˆ’ 𝐿 subject to 𝑐 = 2𝐿 . We can turn
this constrained maximisation problem into the unconstrained maximisation
problem:
1
2
Choose 𝐿 to maximise 2 ln 2𝐿
+ ln 1 βˆ’ 𝐿 .
Which is equivalent to:
2
2
Choose 𝐿 to maximise 2 ln 2 + ln 𝐿 + ln 1 βˆ’ 𝐿 .
FOC:
𝐿:
1
2
1
1
βˆ’
=0
𝐿 1βˆ’πΏ
1
2
Which implies that 𝐿 = , and therefore: 𝑐 = 2𝐿 = 2
1
2
1
2
=2
1
2
= 2
22