In the beginning… There Was Chlorophyll Team Green! Lorrie Moore Emma Paz Paul Warmack Introduction Chlorophyll distribution Water column Horizontal (from coast to open ocean) & Vertical (from surface to ocean bottom) Our findings Historical data Sediment Vertical distribution Our findings Historical data Battle of the Chlorophylls Sediment VS Water Column Visible Light Attenuation with Depth Sta. 01 AA Sta. 02 AA 5 6 5 412.2 Violet 412.2 Violet 3 442.2 Indigo 442.2 Indigo 2 489.6 Blue 1 0 -20 -10 Depth (m) 531.9 Green 555.1 Yellow 664.7 Orange -30 -25 -20 -15 Depth (m) Linear (683.5 Red) 4 412.2 Violet 442.2 Indigo 489.6 Blue 2 531.9 Green 555.1 Yellow Linear (412.2 Violet) Linear (442.2 Indigo) Linear (489.6 Blue) Linear (531.9 Green) Linear (555.1 Yellow) Linear (664.7 Orange) 0 -30 -25 2 1 555.1 Yellow 6 -40664.7 Orange -35 683.5 Red 3 531.9 Green 664.7 Orange 0 10 683.5 Red y = 0.1178x +-13.7637 Linear (412.2 Violet) y = 0.0883x + 4.0806 -2 Linear (442.2 Indigo) y = 0.0588x + 4.2744 y = 0.06x + 4.1423 _ Linear (489.6 Blue) -3 y = 0.0637x + 4.2065 Linear (531.9 Green) y = 0.2688x +-43.4683 Linear (555.1 Yellow) y = 0.2856x + 3.2594 Linear (664.7 Orange ) 4 489.6 Blue Sta. 03 AA ln Ed -30 ln Ed ln Ed 4 -20 -15 -10 -5 0 -2 y = 0.0431x + 4.4766 y = 0.0303x + 4.7353 y = 0.0213x + 4.8447 y = 0.0296x + 4.5947 y = 0.0356x + 4.6151 y = 0.2097x + 3.0533 y = 0.2162x + 2.7425 -4 -6 Depth (m) Linear (683.5 Red) Longer wavelengths are extinguished faster with depth (Jerlov 1976) -10 y = 0.0767x + 4.5503 y = 0.0543x + 4.7623 y = 0.0389x + 4.9258 y = 0.0449x + 4.7927 y = 0.0637x + 4.2065 y = 0.2688x + 3.4683 y = 0.2856x + 3.2594 -5 683.5 Red 0 -1 0 Linear (412.2 Violet) -2 Linear (442.2 Indigo) -3 Linear (489.6 Blue) -4 Linear (531.9 Green) -5 Linear (555.1 Yellow) Linear (664.7 Orange ) Linear (683.5 Red) Sta. 01 AB PAR 37.8 37.6 y = 0.0516x + 37.538 PAR 37.4 Sta. 02 AB PAR 37.2 39 37 38.8 36.8 38.6 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 Depth (m) PAR 36.6 y = 0.0567x + 38.818 38.4 36.4 38.2 0 38 37.8 37.6 37.4 37.2 Sta. 03 AB PAR -30 -25 -20 -15 -10 -5 0 Depth (m) 39.2 39 38.8 PAR 38.6 38.4 y = 0.0344x + 38.846 38.2 38 PAR Penetration 37.8 37.6 37.4 160 37.2 -45 -40 -35 -30 -25 Depth (m) -20 -15 -10140 Depth (m) -50 120 Depth 1%0 -5 Depth 10% 100 80 60 40 20 0 1A 1B 2A 2B Stations 3A 3B PAR Flux to Sediment Surface PAR (µmol m^-2 day^-1) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 13-Jun 14-Jun 15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun Date •5 of 7 days at or above the past maximum of 3 µmol Estimates of PAR Photosynthetically Active Radiation Underwater photometer Depth(%) / KPAR = Z(%) Station 1 AA 1 AB 2 AA 2 AB 3 AA 3 AB Depth 16.3 16.3 17.3 17.3 26.2 26.2 Attentuation Rate 0.0754 0.0516 0.0568 0.0567 0.0318 0.0344 ln 1% 4.606 4.606 4.606 4.606 4.606 4.606 ln 10% 2.303 2.303 2.303 2.303 2.303 2.303 Depth 1% Depth 10% % Light 61.1 30.5 29.3 89.3 44.6 43.1 81.1 40.5 37.4 81.2 40.6 37.5 144.8 72.4 43.5 133.8 66.9 40.6 Attenuation rates used to estimate the depth of the 1% and 10% light levels at each station. Also used to estimate percentage of light reaching the benthos. Historical PAR Values (1995) Max at 27m 14% Nelson et al (1999) Effects of Increased PAR Flux to Sediment Surface Higher PAR flux rates than historically observed Max at 3 µmol m-2 day-1 (Janke in press) Max at 4.6 µmol m-2 day-1 (6/19/2008) Increased light increased production Saturation/Inhibition Point Core Recovery Fluorescence units 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 Time (days) • No steady increase (as predicted) 3.5 4 4.5 Oxygen CTD Readings Confirmed by Winkler Oxygen Readings Winkler CTD 8 Oxygen (mg/L) 7 6 5 4 3 2 1 0 1 2 3 4 5 6 Sample 7 8 9 10 11 Along-track Surface Chlorophyll Longitude and Chlorophyll Fluorescence 8 Chlorophyll µg/L 7 6 5 4 3 2 1 -80.883 -80.783 -80.683 -80.583 -80.483 -80.383 Longitude W E -80.283 0 -80.183 Chlorophyll a in Sediment Fine Particles at R2 Chlorophyll µg/L 0 0.5 1 1.5 2 2.5 0 2 Depth (cm) 4 6 8 10 12 14 16 C1 C2 C3 3 3.5 Comparing Concentrations Sediment and Water Column Aerial [Chl] 45 C1 Sediment Chlorophylll (µg/cm^2) 40 C2 Sediment Sediment [Chl] > Water [Chl] above line Station 1 Water Column 35 Station 2 Water Column Station 3 Water Column 30 Station 4 Water Column 25 Station 5 Water Column 20 15 10 5 0 Sample Sediment [Chl] > Water [Chl] 2008 KSU Data (1:4) Mean Concentrations Sediment Water Column Chlorophyll Averages (µg/m3) 1201.471987 0.332064332 Nelson et al (1999) Re-cap Chlorophyll concentration explained by inferred gradients in nutrients High to low coast to open ocean Freshwater input, salt marshes & estuaries High to low deep to surface waters at R2 Cold, salty, nitrogen-rich waters from upwelling results in unusually clear waters with most production in deeper waters Sediment chlorophyll is high due to increased light penetration of upwelled water Speculation Water column chlorophyll is considerably low due to possible zooplankton grazing The Winner is… Sediment!!!
© Copyright 2026 Paperzz