Effects of Increased PAR Flux to Sediment Surface

In the beginning…
There Was Chlorophyll
Team Green!
Lorrie Moore
Emma Paz
Paul Warmack
Introduction
 Chlorophyll distribution
 Water column
 Horizontal (from coast to open ocean) &
Vertical (from surface to ocean bottom)
 Our findings
 Historical data
 Sediment
 Vertical distribution
 Our findings
 Historical data
Battle of the Chlorophylls
Sediment
VS
Water Column
Visible Light Attenuation with Depth
Sta. 01 AA
Sta. 02 AA
5
6
5
412.2 Violet
412.2 Violet
3
442.2 Indigo
442.2 Indigo
2
489.6 Blue
1
0
-20
-10
Depth (m)
531.9 Green
555.1 Yellow
664.7 Orange
-30
-25
-20
-15
Depth (m)
Linear (683.5 Red)
4
412.2 Violet
442.2 Indigo
489.6 Blue
2
531.9 Green
555.1 Yellow
Linear (412.2 Violet)
Linear (442.2 Indigo)
Linear (489.6 Blue)
Linear (531.9 Green)
Linear (555.1 Yellow)
Linear (664.7 Orange)
0
-30
-25
2
1
555.1 Yellow
6
-40664.7 Orange -35
683.5 Red
3
531.9 Green
664.7 Orange
0
10
683.5 Red
y = 0.1178x +-13.7637
Linear (412.2 Violet)
y = 0.0883x + 4.0806
-2
Linear (442.2 Indigo)
y = 0.0588x + 4.2744
y = 0.06x + 4.1423
_ Linear (489.6 Blue)
-3
y = 0.0637x + 4.2065
Linear (531.9 Green)
y = 0.2688x +-43.4683
Linear (555.1 Yellow)
y = 0.2856x + 3.2594
Linear (664.7 Orange )
4
489.6 Blue
Sta. 03 AA
ln Ed
-30
ln Ed
ln Ed
4
-20
-15
-10
-5
0
-2
y = 0.0431x + 4.4766
y = 0.0303x + 4.7353
y = 0.0213x + 4.8447
y = 0.0296x + 4.5947
y = 0.0356x + 4.6151
y = 0.2097x + 3.0533
y = 0.2162x + 2.7425
-4
-6
Depth (m)
Linear (683.5 Red)
Longer wavelengths are extinguished faster with depth (Jerlov 1976)
-10
y = 0.0767x
+ 4.5503
y = 0.0543x + 4.7623
y = 0.0389x + 4.9258
y = 0.0449x + 4.7927
y = 0.0637x + 4.2065
y = 0.2688x + 3.4683
y = 0.2856x + 3.2594
-5
683.5 Red
0
-1 0
Linear (412.2 Violet)
-2
Linear (442.2 Indigo)
-3
Linear (489.6 Blue)
-4
Linear (531.9 Green)
-5
Linear (555.1 Yellow)
Linear (664.7 Orange )
Linear (683.5 Red)
Sta. 01 AB PAR
37.8
37.6
y = 0.0516x + 37.538
PAR
37.4
Sta. 02 AB PAR
37.2
39
37
38.8
36.8
38.6
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
Depth (m)
PAR
36.6
y = 0.0567x + 38.818
38.4
36.4
38.2
0
38
37.8
37.6
37.4
37.2
Sta. 03 AB PAR
-30
-25
-20
-15
-10
-5
0
Depth (m)
39.2
39
38.8
PAR
38.6
38.4
y = 0.0344x + 38.846
38.2
38
PAR Penetration
37.8
37.6
37.4
160
37.2
-45
-40
-35
-30
-25
Depth (m)
-20
-15
-10140
Depth (m)
-50
120
Depth 1%0
-5
Depth 10%
100
80
60
40
20
0
1A
1B
2A
2B
Stations
3A
3B
PAR Flux to Sediment Surface
PAR (µmol m^-2 day^-1)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
13-Jun
14-Jun
15-Jun
16-Jun
17-Jun
18-Jun
19-Jun
20-Jun
21-Jun
Date
•5 of 7 days at or above the past maximum of 3 µmol
Estimates of PAR
 Photosynthetically Active Radiation
 Underwater photometer
 Depth(%) / KPAR = Z(%)
Station
1 AA
1 AB
2 AA
2 AB
3 AA
3 AB
Depth
16.3
16.3
17.3
17.3
26.2
26.2
Attentuation Rate
0.0754
0.0516
0.0568
0.0567
0.0318
0.0344
ln 1%
4.606
4.606
4.606
4.606
4.606
4.606
ln 10%
2.303
2.303
2.303
2.303
2.303
2.303
Depth 1% Depth 10% % Light
61.1
30.5
29.3
89.3
44.6
43.1
81.1
40.5
37.4
81.2
40.6
37.5
144.8
72.4
43.5
133.8
66.9
40.6
Attenuation rates used to estimate the depth of the 1% and 10% light levels at each station.
Also used to estimate percentage of light reaching the benthos.
 Historical PAR
Values (1995)
 Max at 27m
 14%
Nelson et al (1999)
Effects of Increased PAR Flux
to Sediment Surface
 Higher PAR flux rates than historically
observed
 Max at 3 µmol m-2 day-1 (Janke in press)
 Max at 4.6 µmol m-2 day-1 (6/19/2008)
 Increased light  increased production
 Saturation/Inhibition Point
Core Recovery
Fluorescence units
25
20
15
10
5
0
0
0.5
1
1.5
2
2.5
3
Time (days)
• No steady increase (as predicted)
3.5
4
4.5
Oxygen CTD Readings
Confirmed by Winkler
Oxygen Readings
Winkler
CTD
8
Oxygen (mg/L)
7
6
5
4
3
2
1
0
1
2
3
4
5
6
Sample
7
8
9
10
11
Along-track Surface Chlorophyll
Longitude and Chlorophyll Fluorescence
8
Chlorophyll µg/L
7
6
5
4
3
2
1
-80.883
-80.783
-80.683
-80.583
-80.483
-80.383
Longitude
W
E
-80.283
0
-80.183
Chlorophyll a in Sediment Fine Particles at R2
Chlorophyll µg/L
0
0.5
1
1.5
2
2.5
0
2
Depth (cm)
4
6
8
10
12
14
16
C1
C2
C3
3
3.5
Comparing Concentrations
Sediment and Water Column Aerial [Chl]
45
C1 Sediment
Chlorophylll (µg/cm^2)
40
C2 Sediment
Sediment [Chl] > Water [Chl] above line
Station 1 Water Column
35
Station 2 Water Column
Station 3 Water Column
30
Station 4 Water Column
25
Station 5 Water Column
20
15
10
5
0
Sample
Sediment [Chl] > Water [Chl]
2008 KSU Data (1:4)
Mean Concentrations
Sediment
Water Column
Chlorophyll Averages (µg/m3)
1201.471987
0.332064332
Nelson et al (1999)
Re-cap
 Chlorophyll concentration explained by
inferred gradients in nutrients
 High to low  coast to open ocean
 Freshwater input, salt marshes & estuaries
 High to low  deep to surface waters at R2
 Cold, salty, nitrogen-rich waters from upwelling results
in unusually clear waters with most production in
deeper waters
 Sediment chlorophyll is high due to increased light
penetration of upwelled water
 Speculation
 Water column chlorophyll is considerably low due to
possible zooplankton grazing
The Winner is…
Sediment!!!