Department of Experimental Oncology and Molecular Medicine Unit of Molecular Therapies XXIV Riunione MITO Pisa 4 Dicembre 2014 Development of a molecular predictor of disease recurrance by MITO2 miRNA profiling 2 MITO2 miRNA profiling Case material: 179 cases (of 226 profiled); hereafter OC179 Platform: Agilent SurePrint human miRNA arrays (mirBASE17.0) Main aims: a) Identification of groups of pts diverging from specific baselines b) Identification of miRNA-related subgroups of patients c) development of a prognostic model Overall design - training set: OC179 from MITO2 - validation set1: INT-CRO series (microarray data); hereafter OC263 - validation set2: TCGA (microarray data ); hereafter OC452 2 ID Case materials profiled for miRNA expression case type of n° material published material samples source array processing miRNA platform Array OC55 INT/CRO Oncotarget 2011 frozen 55 INT-Milan Illumina Illumina human v2 OC30 INT Oncotarget 2011 FFPE 30 INT-Milan Illumina Illumina human v2 OC45 INT Oncotarget 2011 frozen 45 INT-Milan Illumina Illumina human v2 OC133 CRO no frozen 133 INT-Milan Illumina Illumina human v2 Agilent Agilent OC179 MITO2 no FFPE 179 INT-Naples INT-Milan OC452 TCGA Nature 2011 frozen 452 TCGA SurePrint miRNA 8x60K 16 plus SurePrint miRNA 8x15K n° of miRNA on miR-BASE array 1146 (including 12 putative) 1146 (including 12 putative) 1146 (including 12 putative) 1146 (including 12 putative) 1512 17 723 10 2 Case materials analyzed for miRNA expression Total number of cases profiled at INT-Milan: - 263 cases on Illumina Platform from INT and CRO - 179 cases on Agilent Platform from MITO2 In-silico Case Material analyzed - 452 cases on Agilent Platform from TCGA consortium Total: 894 cases “the greatest data set available for EOC miRNA profile” Illumina data Agilent data –Milan Agilent data –TCGA Data merging miRNA re-annotation: 706 probes detected corresponding to 581 miRNA 921 probes detected 661 probes detected Re-annotation on miRBase21 385 unique miRNA shared among all studies Batch effect Adjustment: the empirical Bayes (EB) method [Johnson, 2007] 2 Case materials analyzed for miRNA expression Training set: OC179 from MITO2 Median PFS 22.83 months Validation set1: OC263 from INT-CRO Median PFS 16 months Validation set2: OC452 from TCGA Median PFS 16.84 months 2 Identification of groups of patients diverging from specific miRNA baselines A) Data deconvolution: definition of a baseline group of patient with similar clinical characteristics. Definition of each patient “molecular distance” from baseline B) Dimensional shape recognition by topology networking Colored by deviation from baseline: Blue similar to baseline Red different from baseline 2 Approach for baseline definition on OC179 MITO2 dataset Stage III-IV patients with no residual disease (NED) and long PFS (no relapse) ID GF (Milano) Age (years) FIGO Grading Histo Residual PFS Status PFS Time (months) AP91 74 IV G3 serous none 0 73 AQ29 53 III G3 serous none 0 94 AR59 63 III G3 serous none 0 67 AQ67 58 III Undif Undif none 0 100 AQ98 75 III G3 serous none 0 90 AP33 51 III G3 serous none 0 90 AR32 64 III G3 serous none 0 83 AR52 57 III G3 serous none 0 90 2 Baseline definition Patients NED and with long PFS (no relapse) Survival function OC179 MITO2 dataset A B C P=0.0016 Time (Months) Patients closer to baseline (A) have similar good prognosis 2 EOC subtypes validation in independent datasets OC263 –INT-CRO OC452 –TGCA P=1.87E-04 P=4.25E-03 2 Identification of OC Subtypes driven by miRNA expression patterns on OC179 MITO2 dataset Consensus matrix OC179 MITO2 dataset Silhouette Plot P=0.000742 Cl1 Cl2 Cl3 Cl4 2 EOC subtypes validation in independent datasets OC263 –INT-CRO OC452 –TGCA P=3.98E-14 P=0.00228 2 Patients prognosis is correctly identified by both miRNA-driven sub classification Survival function OC179 MITO2 dataset OC179 MITO2 dataset A Cl1 Cl2 Cl3 Cl4 B C P=0.000742 P=0.0016 Time (Months) ID GF Age Baseline Subtypes (Milano) (years) AQ60 ArmC Cl2 29 AR49 ArmC Cl4 60 FIGO Grading III III NA G3 AR50 ArmC Cl4 51 III G3 AR51 AR48 AR53 AR54 AR55 AR56 AR58 ArmC ArmC ArmC ArmC ArmA ArmC ArmC Cl4 Cl4 Cl4 Cl4 Cl4 Cl4 Cl4 78 67 61 63 68 47 59 III III III IV III IV III G2 G1 G3 G3 G3 G3 G3 AQ55 ArmC Cl4 66 III G2 Histo Residual serous >1cm serous none endomet <1cm roid serous >1cm serous <1cm serous <1cm serous <1cm serous >1cm serous <1cm serous <1cm endomet not operated roid 0 1 PFS (months) 36 12 1 12 1 1 1 1 1 1 1 9 4 8 12 35 27 20 1 5 PFS Status 2 miRNAs differentially expressed between arm A vs. Arm C patients Survival function OC179 MITO2 dataset A B C P=0.0016 Time (Months) gene symbol fold-change A vs. C P-value FDR hsa-miR-513b-5p hsa-miR-200c-3p hsa-miR-513a-5p hsa-miR-141-3p hsa-miR-200b-3p hsa-miR-193a-3p hsa-miR-21-5p hsa-miR-429 hsa-miR-200a-3p hsa-miR-15a-5p hsa-miR-142-3p hsa-miR-374a-5p hsa-miR-195-5p hsa-miR-205-5p hsa-miR-199b-5p hsa-miR-125a-3p hsa-miR-148b-3p hsa-miR-1225-5p hsa-miR-135b-5p hsa-miR-374b-5p hsa-miR-486-5p hsa-miR-188-5p hsa-miR-203a-3p hsa-miR-509-5p hsa-miR-224-5p hsa-miR-135a-5p hsa-miR-514a-3p 24,52 14,02 8,13 20,65 6,7 0,3 0,47 6,37 6,43 0,48 0,21 0,38 0,35 15,08 0,31 2,02 0,43 3,24 3,41 0,45 0,4 2,35 3,66 3,24 0,33 2,91 3,37 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 0,0000001 0,0000002 0,0000005 0,0000011 0,0000044 0,000005 0,000006 0,000013 0,0000275 0,0000292 0,0001271 0,0001931 0,0003138 0,0005574 0,0022837 0,0029016 0,0052356 0,0434162 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 0,00000081 0,00000147 0,00000337 0,00000636 0,000021 0,0000225 0,0000256 0,0000526 0,000103 0,000103 0,000368 0,000539 0,000847 0,00129 0,00451 0,00547 0,00922 0,0596 2 How to develop a clinically useful classifier? E’ stato utilizzato un algoritmo che, sulla base dei dati di PFS della casistica MITO2 (OC179) e della relativa espressione dei 385 miRNAs rilevati, ha costruito un modello in grado di stratificare le pazienti ad alto e basso rischio di ricaduta. Il modello contiene 35 miRNAs che dopo crossvalidazione (10-fold) mantengono il loro impatto prognostico anche se con rilevanza diversa. miRNAs la cui espressione è associata a prognosi sfavorevole (score superiore al cut-off di algoritmo) miRNAs la cui espressione è associata a prognosi favorevole (score inferiore al cut-off di algoritmo) Unique id hsa-miR-193a-5p hsa-miR-508-3p hsa-miR-509-5p hsa-miR-514a-3p hsa-miR-506-3p hsa-miR-507 hsa-miR-509-3p hsa-miR-592 hsa-miR-29c-5p hsa-miR-513b-5p hsa-miR-513a-5p hsa-miR-200c-3p hsa-miR-141-3p hsa-miR-200b-3p hsa-miR-423-5p hsa-miR-486-5p hsa-miR-200a-3p hsa-miR-23a-5p hsa-miR-330-3p hsa-miR-30b-3p hsa-miR-484 hsa-miR-769-5p hsa-miR-135b-5p hsa-miR-100-3p hsa-miR-99b-5p hsa-miR-143-5p hsa-miR-429 hsa-miR-151a-3p hsa-miR-574-5p hsa-miR-452-5p hsa-miR-29a-5p hsa-miR-195-3p hsa-miR-890 hsa-miR-30d-5p hsa-miR-193b-5p p-value % CV Support Hazard Ratio 0,0000177 100 1,977 0,0000311 100 0,747 0,0000474 100 0,684 0,0000478 100 0,811 0,0000507 100 0,635 0,0000572 100 0,588 0,0000713 100 0,783 0,0001548 100 0,255 0,0007134 100 1,595 0,0007233 100 0,817 0,0007357 100 0,766 0,0015449 100 0,793 0,0016807 100 0,819 0,0026893 100 0,786 0,002895 90 1,765 0,0029908 90 1,345 0,0031706 100 0,808 0,0052072 80 1,641 0,0060584 80 1,856 0,0064133 100 1,983 0,0078602 80 1,6 0,008215 70 1,762 0,008942 80 0,851 0,0089818 90 1,958 0,0093801 70 1,35 0,0095842 80 1,674 0,0122341 60 0,835 0,013404 60 1,363 0,0161045 50 1,283 0,0174535 60 1,276 0,0179111 50 1,765 0,0186502 40 1,629 0,0231142 40 0,085 0,0233194 40 1,253 0,0240755 60 1,506 2 OC179 – MITO2 patients’ stratification according to the molecular classifier P=6.83E-4 Sample size Median PFS (months) high risk 89 17.99 low risk 90 37.9 HR= 0.5463 95% CI = 0.3829 to 0.7795 2 Molecular classifier validation on independent datasets OC452 TCGA OC263 – INT-CRO P=0.0045 P=1.33E-14 Sample size Median PFS (months) high risk 141 12 low risk 122 34 HR= 0.356 95% CI = 0. 267 to 0.476 Sample size Median PFS (months) high risk 283 15.2 low risk 169 18.7 HR= 0.72 95% CI = 0. 58 to 0.899 2 35 miRNA molecular classifier performance in defining patients’ prognosis OC179 MITO2 dataset Survival function OC179 – MITO2 A B P=6.83E-4 C P=0.0016 Time (Months) Row Labels High risk Low risk Grand Total ArmA 38 65 103 ArmB 35 23 58 ArmC 10 10 2 35 miRNA molecular classifier performance in defining patients’ prognosis OC179 MITO2 dataset OC179 – MITO2 Cl1 Cl2 Cl3 Cl4 P=0.000742 Row Labels High risk Low risk Grand Total Cl1 55 44 99 P=6.83E-4 Cl2 6 44 50 Cl3 18 2 20 Cl4 10 10 2 miRNAs identified with different strategies gene symbol fold-change A vs. C P-value FDR hsa-miR-513b-5p hsa-miR-200c-3p hsa-miR-513a-5p hsa-miR-141-3p hsa-miR-200b-3p hsa-miR-193a-3p hsa-miR-21-5p hsa-miR-429 hsa-miR-200a-3p hsa-miR-15a-5p hsa-miR-142-3p hsa-miR-374a-5p hsa-miR-195-5p hsa-miR-205-5p hsa-miR-199b-5p hsa-miR-125a-3p hsa-miR-148b-3p hsa-miR-1225-5p hsa-miR-135b-5p hsa-miR-374b-5p hsa-miR-486-5p hsa-miR-188-5p hsa-miR-203a-3p hsa-miR-509-5p hsa-miR-224-5p hsa-miR-135a-5p hsa-miR-514a-3p 24,52 14,02 8,13 20,65 6,7 0,3 0,47 6,37 6,43 0,48 0,21 0,38 0,35 15,08 0,31 2,02 0,43 3,24 3,41 0,45 0,4 2,35 3,66 3,24 0,33 2,91 3,37 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 0,0000001 0,0000002 0,0000005 0,0000011 0,0000044 0,000005 0,000006 0,000013 0,0000275 0,0000292 0,0001271 0,0001931 0,0003138 0,0005574 0,0022837 0,0029016 0,0052356 0,0434162 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 < 1e-07 0,00000081 0,00000147 0,00000337 0,00000636 0,000021 0,0000225 0,0000256 0,0000526 0,000103 0,000103 0,000368 0,000539 0,000847 0,00129 0,00451 0,00547 0,00922 0,0596 Unique id hsa-miR-193a-5p hsa-miR-508-3p hsa-miR-509-5p hsa-miR-514a-3p hsa-miR-506-3p hsa-miR-507 hsa-miR-509-3p hsa-miR-592 hsa-miR-29c-5p hsa-miR-513b-5p hsa-miR-513a-5p hsa-miR-200c-3p hsa-miR-141-3p hsa-miR-200b-3p hsa-miR-423-5p hsa-miR-486-5p hsa-miR-200a-3p hsa-miR-23a-5p hsa-miR-330-3p hsa-miR-30b-3p hsa-miR-484 hsa-miR-769-5p hsa-miR-135b-5p hsa-miR-100-3p hsa-miR-99b-5p hsa-miR-143-5p hsa-miR-429 hsa-miR-151a-3p hsa-miR-574-5p hsa-miR-452-5p hsa-miR-29a-5p hsa-miR-195-3p hsa-miR-890 hsa-miR-30d-5p hsa-miR-193b-5p p-value % CV Support Hazard Ratio 0,0000177 100 1,977 0,0000311 100 0,747 0,0000474 100 0,684 0,0000478 100 0,811 0,0000507 100 0,635 0,0000572 100 0,588 0,0000713 100 0,783 0,0001548 100 0,255 0,0007134 100 1,595 0,0007233 100 0,817 0,0007357 100 0,766 0,0015449 100 0,793 0,0016807 100 0,819 0,0026893 100 0,786 0,002895 90 1,765 0,0029908 90 1,345 0,0031706 100 0,808 0,0052072 80 1,641 0,0060584 80 1,856 0,0064133 100 1,983 0,0078602 80 1,6 0,008215 70 1,762 0,008942 80 0,851 0,0089818 90 1,958 0,0093801 70 1,35 0,0095842 80 1,674 0,0122341 60 0,835 0,013404 60 1,363 0,0161045 50 1,283 0,0174535 60 1,276 0,0179111 50 1,765 0,0186502 40 1,629 0,0231142 40 0,085 0,0233194 40 1,253 0,0240755 60 1,506 2 The miRNA molecular classifier is an independent prognostic marker Covariates: 35 miRNA model: above threshold cut-off vs. below threshold cut-off Stage: III-IV vs. I-II Grade: 3 vs. 1,2 Histology: serous vs. others Residual disease: >1cm vs. <1cm 2 MITO2 miRNA profiling: conclusions Punti di forza: prima meta-analysis di miRNAs su EOC EOC dataset al momento più numeroso (n=894; OC179 da MITO2; OC263 da INT-CRO; OC452 da TCGA) meta-analysis su diverse piattaforme gli approcci “baseline” e subtyping individuano un gruppo di tumori (cluster4/Cl4) con prognosi molto sfavorevole questo cluster si ritrova nei validation sets Punti critici: annotazioni diverse tra piattaforme riduzione dei miRNA comuni continuo aggiornamento miRBASE Take home message: analisi dei casi del clusterC/Cl4 individuazione di miRNA per validazione funzionale/biologica ClusterC/Cl4 quale gruppi di pazienti vanno utilizzati per la costruzione di un corretto modello prognostico?????
© Copyright 2026 Paperzz