ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ 137 ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ ༂Нႁ ȃ೩݃ਦ ȃ྇עᆱ ȃച࡛ይ ȃጿᎵҔ ȃུଗ ȃ྇ෙ݃ 1 2 2 2 1 ҴᇄᢋτᏱၼᏱق ϜѶःفଲҢޑӼኻܓःفϜЗ 1 1,2* 1 2 ᄣ् ҐःفпϛӤҢيಒ 60ȃ90ȃ360 І 540 Љϟҡጶ (Saccharum officinarum L.) ဩб࣐؆ ਠȂໍဩбЇৣӏᜋขۢȂٯпЇৣ౦ዂᔤॏ ᆘፐሎขෛҢࡿ(vegetation index, VI)Ȃզ ᆘڐဩбϟဩᆧષ(chlorophyll, Chl)֥໕Ȅᓎ ҢيСޠቩђȂҡጶဩбဩᆧષІऩᡏፀષ ֥໕ഃᅛЎȄҦЇৣӏᜋϸݚᡘұȂҡጶဩб Ӷ 550 nm ᇅ 710 nm ϟЇৣ౦ᄈՔષ֥໕ᡑϾ ڏԥഷτఄད࡚Ȅпߗकѵӏ ࢳݱ750 nm Їৣ ౦ϸրᇅ 710 nm І 550 nm Їৣ౦ॏᆘෛҢࡿ SRVI (simple ratio vegetation index)ȃNDVI (normalized difference vegetation index)ᇅ GI (greenness index)ȃNDVI ȂпІዂᔤ SPOT ፐቷࢳݱ҂ְЇৣ౦ॏᆘෛҢࡿ SRVI І NDVI ࡤȂᇅဩбՔષ֥໕ໍଠᘫϸ ݚȂѠூژဩᆧષ֥໕զᆘРโԓȄпԫϳಣР โԓզᆘҔளҢߞϟဩбဩᆧષ֥໕Ȃྦڐጃ࡚ ࣻ࿌ାȇկզᆘڨଜძ֥߇ߨષϟဩбဩᆧષ֥ ໕ਣȂࠍԥ݃ᡘϟᇳৰȄҐःف๗ݏᡘұւңЇ ৣӏᜋॏᆘෛҢࡿȂߩખᚾܓӵզᆘҔளҢߞ ݸޒίϟဩбဩᆧષ֥໕ϟᡑϾȂໍՅᆀขձޑ ҢߞݸޒȂ࣐ԥਞѠޠРݳȄ ᜱᗥມȈҡጶȃЇৣ౦ȃፐሎขȃෛҢࡿȃ ဩᆧષȃ߇ߨષȄ Green broad broad ߭ձ, [email protected] ጉСȈ2004 Ԓ 10 У 1 С ௦ڨСȈ2005 Ԓ 1 У 10 С ձޑȃᕘძᇅҢޑၦଊ 2:137-147 (2005) * Crop, Environment & Bioinformatics 2: 137-147 (2005) 189 Chung-Cheng Rd., Wufeng, Taichung Hsien 41301, Taiwan (ROC) Mimicking Satellite Remote Sensing of Chlorophyll Content in Sugarcane (Saccharum officinarum) Leaves Wen-Dar Huang1, Ming-Huang Hsu2, ZhiWei Yang2, Jane-Chang Chen2, Yang-Zenq Tsai1, Shin-Shinge Chang1, and Chi-Ming Yang1,2* 1 2 Deparment of Agronomy, National Taiwan University, Taipei 106, Taiwan (ROC) Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan (ROC) ABSTRACT The reflectance spectra of sugarcane (Saccharum officinarum) leaves at 60, 90, 360 and 540 days after planting were measured to calculate vegetation indices to mimic the satellite remotely estimate of chlorophyll content. The contents of pigments declined following the increasing of days after planting. The signature analysis of reflectance spectra indicated that the maximum sensitivity to chlorophyll content in the leaves of sugarcane was at 550 nm and 710 nm. SRVI (simple ratio vegetation index) and NDVI (normalized difference vegetation index) calculated using reflectance at 750 nm and 710 nm and GI (greenness index) and NDVIGreen calculated using reflectance at 750 nm and 550 nm correlated very well with chlorophyll content. SRVIbroad and NDVIbroad calculated using simulated broad-band reflectance of SPOT satellite also correlated well with chlorophyll content. The developed algorithms predicting leaf chlorophyll from the leaf optics were validated from two independent data. A significant error in chlorophyll prediction of the stressed leaves containing anthocyanin was observed. Results suggest that it is feasible to create indices using reflectance spectra for non-destructive estimation of chlorophyll content, by which to indirectly monitor crop growth under normal environment. Crop, Environment & Bioinformatics, Vol. 2, June 2005 138 Key words: Sugarcane, Satellite remote sensing, Vegetation indices, Chlorophyll, Anthocyanin. ࠊّ ᆧՔෛޑဩб֥ԥτ໕ޠӏӬՔષ (photosynthetic pigments) Ȃ є ࢃ ဩ ᆧ ષ (chlorophyll, Chl) ڸऩᡏፀષ (carotenoid, Car)Ȃԥਞӵ֝ԞѠُӏޠकӏڸᙣӏࢳݱ ໍӏӬձңȂໍՅӏᙾᡑ࣐ϾᏱпٽ ւңȄෛޑဩбޠӏӬՔષ֥໕ϛ༊ӶϛӤޠ ึيࢳԥܛᡑϾȂӶՃϾޠႇโϜҼഃᅛӵ ЎӏӬՔષ֥໕ՅᡑᚠՔȄဤဩෛޑӶऎ ЉဩбՃϾႇโϜȂڐဩбՔષ፵໕Ңᡑ ϾȂဩбᚠՔηӱՅᙾᡑ(Hendry et al. 1987, Matile et al. 1989, Matile et al. 1992)Ȅෛޑ᎐ڨ ଜძਣȂឌԄౄЬȃୂȃାմྤȃଷ૪Ꮩܗ ᙬড়ਣȂဩбՔષ֥໕ᇅᚠՔᡑϾᇅՍดՃ Ͼਣϟࣻםծ(Hendry et al. 1987)ȄӱԫȂ ဩᆧષ֥໕Ѡձ࣐፞ԄӏӬձңΩȃҢߞึ يࢳȃҢΩІଜძ།ড়ϟҢ౪ࡿዀ (Whittaker and Marks 1975, Danks et al. Ȅ ༉ಜޠՔષϸݚРݳᙥҦԥᐡྚᏙޠ ࡤڦпӏႬЩՔॏܗାਞషࣻՔቺϸݳݚ (High Performance Liquid ChromatographyȂ HPLC) ๊ขۢϟ (Arnon 1969, Porra et al. 1989, Yang et al. 1998)Ȃԫࣲ࣐ખᚾܓϟڦኻ РݳȂณݳଭᄈΚᐍဩбӶϛӤਣโϜՔ ષ֥໕ϟᡑϾໍᆀȂйຳਣέϏȄࣻᄈ ӵȂпဩбܗෛࠆЇৣӏᜋขۢဩбՔષ֥ ໕ȂڏԥߩખᚾܓȃץഁέࣹϏϟ੬(ܓBaret et 1983) al. 1987, Baret et al. 1992, Buschmann and Nagel 1993, Chappelle et al. 1992, Curran et al. 1991, Gamon and Qiu 1999, Gitelson and Merzlyak 1994a, b, 1997, Hsu et al. 2003, Sims and Gamon Gausman 1977) 2002, Thomas and ȄҦܼဩᆧષӶकӏІᙣӏݱ ࢳІऩᡏፀષӶᙣӏࢳݱഎڏԥ֝Ԟޠ ੬ܓȂӱԫෛޑဩбܗෛࠆࣲѠᙥԫ੬ܓඣᛳ яڐЇৣӏᜋ੬ኊԣጤ(Fuchs 1990)ȄҦЇৣ ӏᜋޠϸݚᡘұȂϛӤࢳݱЇৣЩঅޠᡑϾᇅ ձޠޑҢ౪ЇᔗІҢߞݸޒԥஞϹᜱ߾(Bauer 1975, Ma et al. 1996, Masoni et al. 1997, ȂՅпϛӤࢳݱЇৣЩঅ ܛॏᆘϟөᆎෛҢࡿ(vegetation index)Ȃࠍ ژڨဩбيึޠІЬϸ֥໕ȃՔષ֥໕ȃಡब ᏪಣԚȃဩߓ८੬ኊІဩбϲഌ๗ᄻ๊ϛӤӱ φϟኈ(Elvidge and Chen 1995)ȄҔளϟᆧ Քෛޑԥ֝ԞᙣӏȃकӏІ੩Їৣकѵӏϟ ੬ܓȂဩᆧષڸऩᡏፀષӶᙣӏϟ֝Ԟݱ ࢳϤԥ२᠓Ȃࢉளၷϛпᙣӏࢳݱզᆘဩᆧ ષ֥໕ȄளңܼෛޑၦྜขޠෛҢࡿȂӼ ٻңकӏᇅᇅߗकѵӏϟЇৣЩঅܗৰঅ (Elvidge and Chen 1995)ȄᇑӱෛޑҢߞ຺ܽ ౿Ȃ֝ڐԞϟकӏ຺ӼІЇৣϟकӏ຺ЎȂՅ Їৣϟߗकѵӏ຺ȂकӏᇅߗकѵӏϟЇৣ ৰ(reflectance discrepancy)ܗЩঅ(ratio)֊ ຺τ (Green et al. 1997, Price and Bausch 1995) Ȅဩбဩᆧષϟकӏ֝Ԟࢳݱङ՞ܼ 675 nm ѿѢȂկહ ޠChl a ܗChl b Ӷकӏୣ 645 І 663 nm ԥ֝ԞȂйྚٸᏙՅԥᡑ ϾȂկৰϛτȄဩбЇৣӏᜋ੬ኊᡘұޠᔗ ϛહޠဩᆧષȂՅဩᆧષҪፓӬᡞ (Chl-protein complex)ϟޠ੬ኊȂ675 nm ᔗ ဩᆧષᇅ࢛ٳҪ፵๗ӬԚ Chl-protein complex ϟ֝ԞȄᗷดဩбဩᆧષӶ 675 nm ѿѢԥ֝ԞȂկԫΚࢳݱጓ൝ϟЇৣ౦ϛᎍ ңܼզᆘဩᆧષ֥໕Ȃӱ࣐ဩᆧષմᐩ࡚ίӶ 675 nm ѿѢࢳݱϟ֝Ԟ֊ϑႁႺڸȂԫΚݱ ࢳᄈմᐩ࡚ϟဩᆧષ֥໕ᡑϾڏԥၷାϟఄ ད࡚Ȃկᄈܼၷାᐩ࡚ဩᆧષ֥໕ᡑϾϟఄ ད࡚ࠍၷմ (Gitelson and Merzlyak 1994a, 1996, 1997, Hsu et al. 2003)ȄᄈܼϑႁႺ֝ڸ Ԟϟၷାᐩ࡚ဩᆧષ֥໕ϟզᆘȂॏᆘෛҢࡿ Walburg et al. 1982) ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ »Í$ õö 550 n 700 nm æçe ÷(Buschman and Nagel 1993, Datt 1998, 1999, Gitelson and Merzlyak 1994a, b, 1996, Hsu et al. 2003, Lichtenthaler et al. 1996, Schepers et al. 1996, Sims and Gamon 2002, Thomas and Gausman 1977, Yoder and / Ґःف,03I5eҡጶ)؆ ਠ!"ٯ,÷ዂᔤ SPOT ፐሎ ¸Iq»Ö¸ ࡛ҴሎÖ¸eዂ ԓ/ Waring 1994) ؆ਠᇅРݳ Κȃၑᡜ؆ਠ Ґःف,პဏᑫഫ\໑7ºeҡጶ (Saccharum officinarum L.) ROC 10 ဵ)؆ ਠ/c 2002 Ԓ 7 УՎ 2003 Ԓ 10 УӒ uѳ״º௵ӓೂ़ºਠ$ N-P O -K O = 195-36-72 kg ha /ì03P ºeҥê%௵~ூI5 60U90U360U 540 Eeҡጶੂ~Fಒήӓe; Æå!"n b e/ 2 5 -1 2 ΡȃЇৣӏᜋขۢ ,ପറᑗu౩ (integrating sphere)ӈe Hitachi U-3010 (spectroradiometer) !"/௮¨¢÷) 600 nm min õöc 200 Վ 900 nm ၍vl) 1 nm/P,ಆሗᎤï)ݗՄ /P,eêë) л÷)ᒮ°Մïݗ ᒮ°e°/ᙐܿIq»(simple ratio vegetation index, SRVI) e ¸ w x ) R /R R )ÜÏ ÷ૢ -1 NIR RED NIR 139 ) 750 Վ 900 nm e% R ) ÷ૢ) 660 Վ 720 nm e/Íᄙ*Ý âIq» (normalized difference vegetation index, NDVI) e¸wԓ) NDVI = (R ɯ R )/(R ɮ R ) ȇ GI (greenness index) e ¸ ϵ ԓ ) GI = R /R ȇ NDVI e ¸ ϵ ԓ ) NDVI = (R -R )/(R +R )/ѫҐः<فዂᔤx SPOT רፐenÜÏ ¸ ቷ (broad-band) e SRVI n NDVI (Hsu et al. 2003)/ RED NIR RED NIR RED NIR Green Green NIR Green Green NIR Green broad broad ήȃဩᆧષ(Chl)Іऩᡏፀ(Car)ޠขۢ ҡጶ,ᄙ෩ࡩ¢տঞٯ,ःನᑒ ¾લ!"տঞVᕎ/dદ~ 0.01 g ࠣ ¾લ, 80%ж⢅}~2 4,500 rpm ᚕ З 5 uយ~αఽ, Hitachi U-2000 A UA n A °/ή uր) Chl aUChl b n Car §/, Porra et al. (1989) ϵԓ¸ Chl a b Chl b ȇ, Holm (1954) wx¸ Car / 663.6 646.6 440.5 ѳȃ߇ߨષขۢ દ~ 0.01g ࠣ¾લ,Å 1 % HCl e ҧ᎖(methanol)}~߇ߨF}~¥ఌ' ె{ഀ៊}~ 2 ϊP¥ 4ʨn 2000 rpm ûᚕЗ 15 uយ~Fαఽ, Hitachi U-2000 uú A657 n A530 °ٯ, Mancinelli et al. (1975) wx¸߇ ߨᖃ/ ๗ݏᇅଇ፤ ҡጶ Chl aUChl b b Car ᓎ I5eቩђ%HIൾú(*(Table 1) j<2e(*α(Fig. 1)/ᓎ I5С» ቩђҡጶ Chl n Car ᖃ =>û७Chl ᖃz 8,721 µg g- ൾ७ 1 Crop, Environment & Bioinformatics, Vol. 2, June 2005 140 e Chl be(*xyb8* 9:;ehi/ yzuv;÷ (â z5(*xyn ú ) 2,905 µg g Chl a/b °¼z 3.84 p 3.58(*mú0j®¯ Chl a ?@ ¢÷b Chl b ?@¢÷hÝ0/Car z 3,636 µg g p) 1,449 µg g Car/Chl °¼2 0.42 0.50 e(*0®¯ Car (*M½ Chl ÊËq[ ´µ¶·/%2 400 700 nm êëe÷klr, 550 nm æç ÷klmús% 700 nm æçe tuêë÷<v®klèkmÕf/2 ,DwC) ;®¯2 8*9:;Chl ?@2 510-600 nm n 690 nm ,Y e÷v®kl(Gitelson and Merzlyak 1994a, 1996)/%; -1 -1 -1 (Gitelson and Merzlyak 1997, Hsu et al. /(âß®¯(âeú ßEe¼ßf/÷er {Ý(standard deviation, STD)®¯m 500 nm ,ûnmä 750 nm ,YeÜÏ (âeúY ä 675 nm |Ü(*e ú<Y/÷(âX úe ä 550 nm |Ü nä 710 nm |Üe (Fig. 2)/ 2003) Table 1. The contents of chlorophyll (Chl) and carotenoid (Car) in sugarcane leaves at various developmental stages. Days after planting Pigments 60 90 360 540 6918 ± 149 5749 ± 132ʳ 4821 ± 144ʳ 2271 ± 44ʳ 1803 ± 19ʳ 1459 ± 47ʳ 1343 ± 96ʳ 634 ± 22ʳ Chl a+b (µg g-1 DW)ʳ 8721 ± 155ʳ 7208 ± 176ʳ 6164 ± 230ʳ 2905 ± 64ʳ Chl a/b ratioʳ 3.84 ± 0.08ʳ 3.94 ± 0.06ʳ 3.60 ± 0.18ʳ 3.58 ± 0.08ʳ Car (µg g-1 DW) 3636 ± 105ʳ 3149 ± 82ʳ 2816 ± 75ʳ 1449 ± 28ʳ Car/Chl ratioʳ 0.42 ± 0.01ʳ 0.44 ± 0.00ʳ 0.46 ± 0.01ʳ 0.50 ± 0.00ʳ Chl a (µg g-1 DW) Chl b (µg g-1 DW) † ʳ † Data presented as mean ± standard error (SE). Fig. 1. Reflectance spectra of sugarcane leaves at 60, 90, 360, 540 days after planting. ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ ߞݱ550 nm І 710 nm ϟЇৣ౦(R ȃ R )ᇅҡጶဩбϟ Chl ֥໕֖౫ା࡚ϟԣጤࣻ ᜱ(Fig. 3)ȄԫҼᡘұȂԫΡࢳݱЇৣ౦ᄈ Chl ֥໕ᡑϾϟఄད࡚ାȂ߾ۢ؛ڐ R অϸր࣐ 0.92 І 0.91ȄңٿॏᆘෛҢࡿпໍՔષ֥ ໕զᆘϟࢳݱȂ҇ᄈՔષ֥໕ڏԥାఄད ࡚ȂйϛܿڐڨуӱφኈȄࣻᄈՅّȂኈ 550 710 2 141 ࢳݱٳЇৣ౦ϟл्ӱφ֊࣐өᆎՔષȄ 550 nm ࢳݱޠІङ 710 nm ߤߗϟࢳݱᄈՔષ ֥໕ڏԥାఄད࡚Ȃ750 Վ 900 nm ϟߗकѵ ӏࢳݱЇৣ౦ (R ) ᄈՔષ֥໕ᡑϾఄད࡚ մȂկѠңܼෛҢࡿϟॏᆘȄҐःٻܛفң ϟෛҢࡿ֊п R ᇅ R ॏᆘ NDVI ȃ SRVIȂпІ R ᇅ R ॏᆘ GI ᇅ NDVI Ȅ NIR 750 750 710 550 Green Fig. 2. Standard deviation (STD) of spectral reflectance obtained from sugarcane leaves. Fig. 3. The reflectance at the wavelengths 710 nm ( ) and 550 nm ( ) versus total Chl content in sugarcane leaves. Crop, Environment & Bioinformatics, Vol. 2, June 2005 142 4aWbcdefghi jGklmnopWb#qrstu gvwxyz{I|PWb}~ vw4hi ,1 Wbw4u SPOT , $br (multispectral scanner)<= *+,W XS1 (500~590 nm)UW XS2 (610~680 nm)SUVW XS3 (790~890 nm)CG\]^ SPOT UWSUVW /0 (broad-band) SRVI NDVI (Hsu et al. 2003) \]^_`-123( Chl (*+ Table 2 _IJ broad broad (9078 ¡¢90 Chl £$%&'( ¤[ 0.86 4a90¥¦(estimation error) Qg 706 T 879 µg g §$£4 NDVI ,¨©$ R =0.91p < 0.0019 0¥¦ª= 706 µg g ,w«¡¢9078 \]^*+4?¬8¬ 8(Table 3)®¢¯°Wb78±²56 ³&4¡¢90´µ¶78 ·w)¸78¹w)56º» $¼½ Fig. 4 ¾ Fig. 5 _4 NDVI SRVINDVI SRVI GI NDVI 90¿ÀÁ¬8 Chl -1 Green 2 -1 broad broad Green Table 2. The algorithms for Chl estimation in sugarcane leaves. Chl = b + a [VI] Vegetation index (VI) R2 a b p value Estimation error NDVI 0.91 21775 -2176 < 0.001 711 SRVI 0.87 4142 -3424 < 0.001 841 NDVIbroad 0.88 33934 -16270 < 0.001 816 SRVIbroad 0.86 2059 -4278 < 0.001 879 GI 0.88 3282 -3322 < 0.001 823 NDVIgreen 0.91 23188 -4783 < 0.001 706 VI, vegetation indices. NDVI and SRVI were calculated using R710 and R750; NDVIbroad and SRVIbroad were calculated using broad-band reflectance, Red: 610-680 nm; NIR: 790-890 nm; GI and NDVIgreen were calculated using R550 and R750. Estimation error was an estimation error of Chl, and R2 was the determination coefficient of samples measured. a, b and estimation error were in µg g-1 dry wt. Table 3. The contents of chlorophyll (Chl), carotenoid (Car), and anthocyanin in sugarcane leaves of two independent data sets for validation of vegetation indices. Validation data sets Pigments Chl a (µg Set 1 g-1 DW) Chl b (µg g-1 DW) Chl a+b (µg g-1 DW)ʳ Chl a/b ratioʳ Car (µg g-1 DW) Car/Chl ratioʳ Anthocyanin [(A530-0.333A657)/g DW] † Data presented as range. 3,200 - 7,434† 807 - 2,089 4,007 - 9,523 3.56 - 4.15 1,808 - 3,822 0.40 - 0.48 0 Set 2 235 - 1,041 227 - 432 463 - 1,376 1.04 - 3.30 362 - 1,041 0.40 - 1.01 9.98 - 83.12 ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ ·w)¹w)%&'( R *+, 0.90 0.920.780.820.930.9190¥¦*+ , 595503816728424470 µg g (Fig. 4)G4¡¢90AÃÄ= ¬8 Chl ·w)Źw) =ÆÇP¦ÈÉ SRVI ¥¦»Ê VNDVINDVI SRVI 90 Chl ·w)Å=ËX9Ì$/ 0Í.ÎTÍÏ)ÐG4 GI NDVI 90 Chl ·w)Å= 9Ì(Fig. 5) Chl gXÑÒ[ 675 nm ÓÔ ÕÖM×ØÙ¾[×ØÙ¾ÕÖ»Ñ Chl 90/0123(_`-U W ÚÛ 700 nm ÓÔ(Gitelson 2 -1 broad broad Green and Merzlyak 1994a, 1994b, 1996, Hsu et al. 2003, Lichtenthaler et al. 1996 Schepers et al. 1996, Sims and Gamon 2002, Thomas and \ ]^£?Â2ÜÝ $ Chl j Þ[Ñ4 R R /0 NDVISRVINDVI SRVI 90 Chl 4¯°¿À±²56³& ß ÆGAÃÄàá>=¬ 8$ Chl ZâgÙ¾ÕÖÑ ÒgUWãäZâåæ Chl PçèGé2ÇêëPìíÐîVgìï ÒUWðñPòópô R Ëêë õ`4±²/0123()»X-49 0 Chl ´é2·w)X[¹w)Ì gö]^£4W /01 23(Z , Chl P3÷ (Buschmann Gausman 1977, Yoder and Waring 1994) 750 broad 710 broad 710 and Nagel 1993, Carter 1993, 1994, Gitelson and Merzlyak 1994a, 1996, 1997, Gitelson et 4 log(R /R )/03(Z , øùhòú Chl 3÷î R /R º) Chl a <=û al. 1996) 800 550 800 550 143 4 Otü1ý, ؆²P]^ R /R Chl <=PG NDVI Å Chl <=P3( (Gitelson and Merzlyak 1997)\]^ GI NDVI Chl § 4?¬8¯°±²56³& ®¢123(90 ûY4= ¬8¯°±²56³&Å GI NDVI 5690pô·w)Ë[¹w )PÌpô¼½CZâ,¬8g W <=ÕÖ(Harborne 1967)õ` gW Áåæ Chl Pç èGêëࢉ/0 GI NDVI ß)ཽ» Gpô Chl 9ìíCस =W =ÕÖ78ß4 W /0123(ձ, Chl 3÷ ûZâཽ७X(Hsu et al. 2003) [¿ÀᕘÄÒ2 $ Chl R R /0 SRVI NDVI <=/0 GI NDVI <=CIJ12 3(Z4-.56¿À Chl vw9 0îVस᎐AÃÄõ` Chl Ç ७Xß4¿ÀᕘÄ2Ò123(9 0 Chl Zâཽ=»ÇP¥¦:;î=ᎍ Ӭ123(5690=¬8 ༂⢅⍈hᄀܗW <=Õ Ö$B78:jEF$gW Õ ÖएഇWb੬ኊࢉ4W /0123(90 Chl ÅሰՄ ኍ=$B78ϔᘚ4 550 700 nm ÓÔ/0123(ᎍ-[90 Chl gÙ¾ÕÖÑ4aßY[ Chl gÙ¾ÕÖÑ4Òß90?ÂýO§ Chl Ù¾ÕÖÑiõs;5iؐ ]^îVg Chl Ò=¬8 (R2>0.88) (Buschmann and Nagel 1993) 750 550 Green Green Green green 750 710 144 Crop, Environment & Bioinformatics, Vol. 2, June 2005 W <=ÕÖ$B78 Chl vw90pô;5i ]^4Wb/0123(Z4 56 û9078 !! T1Wbw&vwZMß9 078"wý2#ï5G· 9ýé$á%9&='[()* +, Fig. 4. The results of validation of vegetation indices by independent data sets in which samples containing no anthocyanin. R2 was the determination coefficient between the predicted and the measured Chl contents. The solid line represents the equation Chlorophyllpred = Chlorophyllmeas. The dotted lines represent error of Chl prediction. ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ 145 Fig. 5. The results of validation of vegetation indices by independent data sets in which samples containing anthocyanin. R2 was the determination coefficient between the predicted and the measured Chl contents. The solid line represents the equation Chlorophyllpred = Chlorophyllmeas. The dotted lines represent error of pigment prediction. 146 Crop, Environment & Bioinformatics, Vol. 2, June 2005 ЖңНᝧ Arnon DI (1969) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-5. Baret F, I Champion, G Guyot, A Podaire (1987) Monitoring wheat canopies with high spectral resolution radiometer. Remote Sens. Environ. 22:367-378. Baret F, S Jacquemoud, G Guyot (1992) Modeled analysis of the biophysical nature of spectral shift and comparison with information content of broad bands. Remote Sens. Environ. 41:133-142. Bauer ME (1975) The role of remote sensing in determining the distribution and yield of crops. Adv. Agron. 27:271-304. Buschmann C, E Nagel (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Intl. J. Remote Sens. 14:711-722. p.323-333. In: Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. NS Goel, JM Norman (eds.) Harwood Acad. Publ. Gmb H, U.K. Gamon JF, H Qiu (1999) Ecological applications of remote sensing at multiple scales. p.805-846. In: Handbook of functional plant ecology. FI Pugnaire, F Valladares (eds.) Marcel Dekker, New York. Gitelson AA, MN Merzlyak (1994a) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143:286-292. Gitelson AA, MN Merzlyak (1994b) Quantitative estimation of Chlorophyll a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. (B) 22:247-252. Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Amer. J. Bot. 80:239-243. Gitelson AA, MN Merzlyak (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148:494-500. Carter GA (1994) Ratios of leaf reflectances in narrow wavebands as indicator of plant stress. Intl. J. Remote Sens. 15:697-703. Gitelson AA, MN Merzlyak (1997) Remote estimation of chlorophyll content in higher plant leaves. Intl. J. Remote Sens. 18:2691-2697. Chappelle EW, MS Kim, JE McMurtrey III (1992) Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39:239-247. Gitelson AA, YJ Kaufman, MN Merzlyak (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sen. Environ. 58:289-298. Green EP, PJ Mymby, AJ Edwards, CD Clark, AC Ellis (1997) Estimating leaf area index of mangroves from satellite data. Aquat. Bot. 58:11-19. Curran PJ, JL Dungan, BA Macler, SE Plummer (1991) The Effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 35:69-76. Harborne JB (1967) Comparative biochemistry of the flavonoids. Academic Press, London. 383pp. Danks SM, EH Evans, PA Wittaker (1983) Photosynthetic Systems. Structure Function and Assembly. Wiley, New York. Hendry GAF, JD Houghton, SB Brown (1987) The degradation of chlorophyll – a biological enigma. New Phytol. 107:255-302. Datt B (1998) Remote sensing of chlorophyll a, Chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sens. Environ. 66:111-121. Holm G (1954) Chlorophyll mutations in barley. Acta Agric. Scand. 4:457-461. Elvidge CD, Z Chen (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 54:38-48. Fuchs M (1990) Canopy thermal infrared observations. Hsu MH, WD Huang, ZW Yang, YZ Tsai, SS Chang, CM Yang (2003) Remote estimation of pigment content in sweet potato leaves by reflectance spectra. (in Chinese) Chinese Agron. J. 13:1-12. Lichtenthaler HK, AA Gitelson, M Lang (1996) Non-destructive determination of chlorophyll ዂᔤፐሎขզᆘҡጶဩбဩᆧષ֥໕ 147 content of leaves of a green and aurea mutant tobacco by reflectance measurements. J. Plant Physiol. 148: 483-493. Rudorff BFT, GT Batista (1990) Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sens. Environ. 33:183-192. Ma BL, MJ Morrison, LM Dwyer (1996) Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 88:915-920. Schepers JS, TM Blackmer, WW Wilhelm, M Resende (1996) Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. J. Plant Physiol. 148:523-529. Mancinelli AL, CP Huang-Yang, P Lindquist, O Anderson, I Rabino (1975) Photocontrol of anthocyaninsynthesis, III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol. 55:251-257. Masoni A, L Ercoli, M Mariotti (1997) Spectral properties of leaves deficient in iron, sulfur, magnesium, and manganese. Agron. J. 88:937-943. Matile P, M Schellenberg, C Peisker (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230-235. Matile P, T Duggelin, M Schellenberg, D Rentsch, K Bortlik, C Peisker, H Thomas (1989) How and why is chlorophyll broken down in senescent leaves? Plant Physiol. Biochem. 27:595-604. Porra RJ, WA Thompson, PE Kriedelman (1989) Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 975:384-394. Price JC, WC Bausch (1995) Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 52:55-65. ɯጢᒯȈᗃӑ Sims DA, JA Gamon (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81:337-354. Thomas JR, HW Gausman (1977) Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 69:799-802. Walburg G, ME Bauer, CS Daughtry, TL Housley (1982) Effects of nitrogen on the growth, yield, and reflectance characteristics of corn. Agron. J. 74:677-683. Whittaker RH, PL Marks (1975) Methods of assessing terrestrial productivity. p.55-118 In: Primary Productivity of the Biosphere. H Lieth, RH Whittaker (eds.) Springer-Verlag, New York. Yang CM, KW Chang, MH Yin, HM Huang (1998) Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122. Yoder BJ, RH Waring (1994) The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations. Remote Sens. Environ. 49: 81-91.
© Copyright 2026 Paperzz