An Infinite Sequence of Exact Solutions of The Reaction

J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
Journal of Research in Applied Sciences. Vol., 2(4): 101-107, 2015
Available online at http://www.jrasjournal.com
ISSN 2148-6662 © Copyright 2015
ORIGINAL ARTICLE
An Infinite Sequence of Exact Solutions of
The
Reaction-convection-diffusion
Equation
According To A Riccati-Bernoulli Sub-ODE
Method
Emad H.M. Zahrana, Mostafa M. A. Khaterb*
a
Department of Engineering Mathematics and Physics, Faculty of Engineering Shubra, Benha University,
Egypt
b
Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
*Corresponding Author Email: [email protected]
Abstract: In this article, the exact solutions of the reaction-convection-diffusion equation which play an
important role in many branches of physics and biology is investigate as the first time in the framework of
Riccat-Bernoulli Sub-ODE method. The solutions obtained can be generating an infinite sequence of exact
solutions according to Backlund transformation. The proposed method also can be used for many other
nonlinear evolution equations.
Keywords: Riccati-Bernoulli Sub-ODE method, Bäcklund transformation of the Riccati-Bernoulli equation,
Reaction-convection-diffusion equation, Traveling wave solution, Solitary wave solution.
AMS subject classifications: 35A05, 35A20, 65K99, 65Z05, 76R50, 70K70.
Introduction
al., 2009), trigonometric function series method
The nonlinear equations of mathematical
physics are major subjects in physical science
(Ablowitz & Segur, 1981). Exact solutions for
these equations play an important role in many
phenomena in physics such as fluid mechanics,
hydrodynamics, Optics, Plasma physics and so
on. Recently many new approaches for finding
these solutions have been proposed, for example,
tanh - sech method (Maliet, 1992, 1996;
Wazwaz, 2004), extended tanh – method (ELWakil & Abdou, 2007; Fan, 2000; Wazwaz,
2007), sine - cosine method (Yan, 1996;
Wazwaz, 2004, 2005), homogeneous balance
method (Fan, 1998) and (Wang , 1996), Jacobi
elliptic function method (Liu et al., 2001; Fan &
Zhang, 2002; Dai & Zhang, 2006; Zhao et al.,
2006), F-expansion method (Ren & Zhang,
2006; Zhang et al., 2006; Abdou, 2007), expfunction method (He & Wu, 2006; Aminikhad et
(Zhang, 2008), ( ) - expansion method (Wang
𝐺
et al., 2008; Zhang et al., 2008; Zayed &
Gepreel, 2009; Zayed, 2009), the modified
simple equation method (Jawad et al., 2010;
Zayed, 2011; Zayed & Hoda Ibrahim, 2012,
2013; Zayed & Arnous, 2012) and so on.
In the present paper, we shall propose a new
method which is called the Riccati-Bernoulli
Sub-ODE method (Xiao-Feng et al., 2015) to
seek traveling wave solutions of nonlinear
evolution equations. We can obtain a new
infinite sequence of solutions of the NLPDEs by
using a Bäcklund transformation. The paper is
organized as follows: In section 2, we give the
description of the Riccati-Bernoulli Sub-ODE
method. In section 3, Bäcklund transformation of
the Riccati-Bernoulli equation. In section 4, we
use this method to find infinite sequence of exact
solutions for the perturbed nonlinear Schrodinger
101
𝐺′
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
equation with Kerr law non linearity pointed out
above and some figures of our results are drawn.
In section 5, conclusion is given.
Description of the Riccati-Bernoulli Sub-ODE
method
Consider the following nonlinear evolution
equation
𝑃(𝑒, 𝑒𝑑 , 𝑒π‘₯ , 𝑒𝑑𝑑 , 𝑒π‘₯π‘₯ , … . . ) = 0,
where P is in general a polynomial function of its
arguments, the subscripts denote the partial
derivatives. The Riccati-Bernoulli Sub-ODE
method consists of three steps.
with
(2.1)
Step 1. Combining the independent variables x
and t into one variable
 = π‘˜(π‘₯ + 𝑉𝑑),
(2.2)
𝑒(π‘₯, 𝑑) = 𝑒(),
(2.3)
where the localized wave solution 𝑒() travels with speed 𝑉, by using Eqs.(2.2) and (2.3), one can
transform Eq.(2.1) to an ODE
𝑃(𝑒, 𝑒′ , 𝑒′′ , 𝑒′′′ , … . . ) = 0,
(2.4)
𝑑𝑒
where 𝑒′ denotes 𝑑
Step 2. Suppose that the solution of Eq.(2.4) is the solution of the Riccati-Bernoulli equation
𝑒′ = π‘Žπ‘’2βˆ’π‘š + 𝑏𝑒 + π‘π‘’π‘š ,
(2.5)
where a, b, c, and m are constants to be determined later. From Eq.(2.5) and by directly calculating, we get
2βˆ’π‘š
3βˆ’2π‘š
2π‘šβˆ’1
𝑒′′ = π‘Žπ‘(3 βˆ’ π‘š)(𝑒(π‘₯))
+ π‘Ž2 (2 βˆ’ π‘š)(𝑒(π‘₯))
+ π‘šπ‘ 2 (𝑒(π‘₯))
π‘š
𝑏𝑐(π‘š + 1)(𝑒(π‘₯)) + (2π‘Žπ‘ + 𝑏 2 )𝑒,
+
𝑒′′′ = (π‘Žπ‘(3 βˆ’ π‘š)(2 βˆ’ π‘š)𝑒1βˆ’π‘š + π‘Ž2 (2 βˆ’ π‘š)(3 βˆ’ 2π‘š)𝑒2βˆ’2π‘š + π‘š(2π‘š βˆ’ 1)𝑐 2 𝑒2π‘šβˆ’2 +
𝑏𝑐(π‘š + 1)π‘’π‘šβˆ’1 + 2π‘Žπ‘ + 𝑏 2 )𝑒′ ,
Remark: When ac ο‚Ή 0and m = 0, Eq.(2.5) is a
Riccati equation. When a ο‚Ή 0, c = 0, and m ο‚Ή 1,
Eq.(2.5) is a Bernoulli equation. Obviously, the
Riccati equation and Bernoulli equation are
special cases of Eq.(2.5). Because Eq.(2.5) is
(2.6)
(2.7)
firstly proposed, we call Eq.(2.5) the RiccatiBernoulli equation in order to avoid introducing
new terminology. Equation (2.5) has solutions as
follows:
Case 1. When m = 1, the solution of Eq. (2.5) is
𝑒() = 𝐢𝑒 (π‘Ž+𝑏+𝑐) ,
(2.8)
Case 2. When m ο‚Ή 1, b = 0 and c = 0, the solution of Eq. (2.5) is
1
𝑒() = (π‘Ž(π‘š βˆ’ 1)( + 𝐢))(1βˆ’π‘š) ,
(2.9)
Case 3. When m ο‚Ή 1, b ο‚Ή 0 and c = 0, the solution of Eq. (2.5) is
1
𝑒() =
102
π‘Ž
(βˆ’
𝑏
+ 𝐢𝑒
𝑏(π‘šβˆ’1) (π‘šβˆ’1)
)
,
(2.10)
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
Case 4. When m ο‚Ή 1, a ο‚Ή 0 and 𝑏 2 βˆ’ 4π‘Žπ‘ < 0, the solution of Eq. (2.5) is
1
βˆ’π‘
( 2π‘Ž
𝑒() =
+
√4π‘Žπ‘βˆ’π‘2 π‘‘π‘Žπ‘›(1/2(1βˆ’π‘š)√4π‘Žπ‘βˆ’π‘2 (+𝐢)) (1βˆ’π‘š)
)
2π‘Ž
(2.11)
,
and
1
βˆ’π‘
𝑒() = ( 2π‘Ž +
√4π‘Žπ‘βˆ’π‘2 π‘π‘œπ‘‘(1/2(1βˆ’π‘š)√4π‘Žπ‘βˆ’π‘2 (+𝐢)) (1βˆ’π‘š)
)
2π‘Ž
(2.12)
,
Case 5. When m ο‚Ή 1, a ο‚Ή 0 and 𝑏 2 βˆ’ 4π‘Žπ‘ > 0, the solution of Eq. (2.5) is
1
𝑒() =
βˆ’π‘
( 2π‘Ž
+
βˆšπ‘2 βˆ’4π‘Žπ‘π‘π‘œπ‘‘β„Ž(1/2(1βˆ’π‘š)βˆšπ‘2 βˆ’4π‘Žπ‘(+𝐢)) (1βˆ’π‘š)
)
2π‘Ž
(2.13)
,
and
1
𝑒() =
βˆ’π‘
( 2π‘Ž
+
βˆšπ‘2 βˆ’4π‘Žπ‘π‘‘π‘Žπ‘›β„Ž(1/2(1βˆ’π‘š)βˆšπ‘2 βˆ’4π‘Žπ‘(+𝐢)) (1βˆ’π‘š)
)
2π‘Ž
(2.14)
,
Case 6. When m ο‚Ή 1, a ο‚Ή 0 and 𝑏 2 βˆ’ 4π‘Žπ‘ = 0 the solution of Eq. (2.5) is
1
(2.15)
1
𝑏 (1βˆ’π‘š)
βˆ’ )
,
π‘Ž(π‘šβˆ’1)(+𝐢)
2π‘Ž
𝑒() = (
where C is an arbitrary constant.
Step 3. Substituting the derivatives of 𝑒 into
Eq.(2.4) yields an algebraic equation of 𝑒.
Noticing the symmetry of the right-hand item of
Eq.(2.5) and setting the highest power exponents
of 𝑒 to equivalence in Eq.(2.4), m can be
determined. Comparing the coefficients of 𝑒𝑖
yields a set of algebraic equations for a, b, c, and
𝑉. Solving the set of algebraic equations and
substituting m, a, b, c, 𝑉, and  = π‘˜(π‘₯ + 𝑉𝑑) into
since,
𝑒𝑛′ =
Eq.(2.8)-(2.15), we can get traveling wave
solutions of Eq.(2.1).
Bäcklund transformation of the RiccatiBernoulli equation
When π‘’π‘›βˆ’1 ()and 𝑒𝑛 () are solutions of
Eq.(2.5), then
𝑒𝑛′ = π‘Žπ‘’π‘›2βˆ’π‘š + 𝑏𝑒𝑛 + π‘π‘’π‘›π‘š ,
(3.1)
β€²
2βˆ’π‘š
π‘š
π‘’π‘›βˆ’1
= π‘Žπ‘’π‘›βˆ’1
+ π‘π‘’π‘›βˆ’1 + π‘π‘’π‘›βˆ’1
,
(3.2)
𝑑𝑒𝑛 ()
𝑑𝑒𝑛 () π‘‘π‘’π‘›βˆ’1 ()
𝑑𝑒𝑛 ()
2βˆ’π‘š
π‘š ]
[π‘Žπ‘’π‘›βˆ’1
=
=
+ π‘π‘’π‘›βˆ’1 + π‘π‘’π‘›βˆ’1
𝑑
π‘‘π‘’π‘›βˆ’1 ()
𝑑
π‘‘π‘’π‘›βˆ’1 ()
Now, from Eq.(3.1) and (3.3), we obtain
𝑑𝑒𝑛 ()
2βˆ’π‘š
[π‘Žπ‘’π‘›βˆ’1
π‘›βˆ’1 ()
π‘Žπ‘’π‘›2βˆ’π‘š + 𝑏𝑒𝑛 + π‘π‘’π‘›π‘š = 𝑑𝑒
i. e.
π‘Žπ‘’π‘›2βˆ’π‘š
π‘š ],
+ π‘π‘’π‘›βˆ’1 + π‘π‘’π‘›βˆ’1
𝑑𝑒𝑛 ()
π‘‘π‘’π‘›βˆ’1 ()
2βˆ’π‘š
π‘š
π‘š =
+ 𝑏𝑒𝑛 + 𝑐𝑒𝑛
π‘Žπ‘’π‘›βˆ’1 + π‘π‘’π‘›βˆ’1 + π‘π‘’π‘›βˆ’1
(3.3)
(3.4)
(3.5)
Integrating above equation once with respect to , we get
1βˆ’π‘š
1
1βˆ’π‘š
βˆ’π‘π΄1 + π‘Žπ΄2 (π‘’π‘›βˆ’1 ())
𝑒𝑛 () = (
)
1βˆ’π‘š
𝑏𝐴2 + π‘Žπ΄1 (π‘’π‘›βˆ’1 ())
103
(3.6)
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
Application
Here, we will apply A Riccati-Bernoulli SubODE method described in sec.2 to find the exact
traveling wave solutions and then the solitary
wave solutions of reaction-convection-diffusion
equation. Consider the following reactionconvection-diffusion equation of the form
where 𝐴1 and 𝐴2 are arbitrary constants.
According to Eq.(3.6), we can get infinite
sequence of solutions of Eq.(2.5) and hence we
can get infinite sequence of solutions of Eq.(2.1).
𝑒𝑑 = ( + 0 𝑒)𝑒π‘₯π‘₯ + 1 𝑒𝑒π‘₯ + 2 𝑒 βˆ’ 3 𝑒3,
(4.1)
where , 0 , 1 , 2 and 3 are real constants (Zayed & Arnous, 2012). In the particular case  = 1and 0 =
0, this equation coincides with the Murray equation
𝑒𝑑 = 𝑒π‘₯π‘₯ + 𝑒𝑒π‘₯ + 2 𝑒 βˆ’ 3 𝑒2 ,
(4.2)
which itself is a generalization of the well-known Fisher equation when 1 = 0. When both 2 and 1 are
zero, it is reduced to the classical Burgers equation. We introduce the traveling wave variable 𝑒(π‘₯, 𝑑) =
𝑒();  = π‘˜(π‘₯ + 𝑑) into Eq. (4.2) to find
π‘˜ 2 𝑒′′ βˆ’ 1 π‘˜π‘’π‘’β€² + 2 𝑒 βˆ’ 3 𝑒2 βˆ’ ο¬π‘˜π‘’β€² = 0,
(4.3)
where prime denotes the derivatives with respect to . Substituting Eq.(2.5) and its derivatives into
Eq.(4.3), we get
π‘˜ 2 π‘Žπ‘(3 βˆ’ π‘š)𝑒2βˆ’π‘š + π‘˜ 2 π‘Ž2 (2 βˆ’ π‘š)𝑒3βˆ’2π‘š + π‘šπ‘˜ 2 𝑐 2 𝑒2π‘šβˆ’1 + π‘˜ 2 𝑏𝑐(π‘š + 1)π‘’π‘š +
π‘˜
+ 𝑏 2 )𝑒 + 1 π‘˜(π‘Žπ‘’3βˆ’π‘š + 𝑏𝑒2 + π‘π‘’π‘š+1 ) βˆ’ ο¬π‘˜(π‘Žπ‘’2βˆ’π‘š + 𝑏𝑒 + π‘π‘’π‘š ) + 2 𝑒 βˆ’
3 𝑒2 = 0,
(4.4)
2 (2π‘Žπ‘
Setting m = 2 and c = 0, we get
π‘˜ 2 π‘Žπ‘ + π‘˜ 2 𝑏2 𝑒 + 1 π‘˜π‘Žπ‘’ + 1 π‘˜π‘π‘’2 βˆ’ ο¬π‘˜π‘π‘’ βˆ’ ο¬π‘˜π‘Ž + 2 𝑒 βˆ’ 3 𝑒2 = 0,
(4.5)
setting the coefficient of 𝑒𝑖 , i = 0, 1, 2 to zero, we get
𝑒2 : 1 π‘˜π‘ βˆ’ 3 = 0,
(4.6)
𝑒1 : π‘˜ 2 𝑏 2 + 1 π‘˜π‘Ž + 2 βˆ’ ο¬π‘˜π‘ = 0,
(4.7)
𝑒0 : π‘˜ 2 π‘Žπ‘ βˆ’ ο¬π‘˜π‘Ž = 0,
(4.8)
π‘˜π‘ = ,
(4.9)
Solving (4.6)-(4.8), we get
π‘˜π‘Ž =
βˆ’ο¬ 2
(4.10)
1
Case A. When m ο‚Ή 1, b ο‚Ή 0 and c = 0, the solution of Eq. (4.3) is
2
1
𝑒() = (
+ 𝐢𝑒 (π‘₯+𝑑) ),
Case B. When m ο‚Ή 1, a ο‚Ή 0 and 𝑏 2 βˆ’ 4π‘Žπ‘ > 0, the solution of Eq. (4.3) is
104
(4.11)
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
𝑒() =

( 1
22
+
βˆ’1
βˆšπ‘2 (π‘˜(π‘₯+𝑑)+𝐢))
2
βˆšπ‘2 π‘π‘œπ‘‘β„Ž(
βˆ’1
(4.12)
) ,
2π‘Ž
and
𝑒() =

(21
2
+
βˆ’1
βˆšπ‘2 (π‘˜(π‘₯+𝑑)+𝐢))
2
βˆšπ‘2 π‘‘π‘Žπ‘›β„Ž(
βˆ’1
(4.13)
) ,
2π‘Ž
a
b
Eq.(4.11
)
Eq.(4.12
)
c
Eq.(4.13
)
Figure 1. Solarity wave solutions of Eqs.(4.11),(4.12) and (4.13).
Conclusion
In this paper, we note that the Riccati-Bernoulli
Sub- ODE method is given a more accurate and a
wide range of solutions of nonlinear partial
105
differential equations where the physical
meaning of figures: when the parameters takes
the values (x= -5:5, t= -5:5) give the bell singular
solution, kink shape solution and dark periodic
solution of the above figures respectively and
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
furthermore infinite sequence of exact solutions
of the reaction-convection-diffusion equation can
be obtained according to a Backlund
transformation of the Riccati-Bernoulli equation.
Also, the new method can be used for many
other nonlinear evolution equations.
Conflict of interest
The authors declare no conflict of interest.
References
Abdou MA, 2007. The extended F-expansion
method and its application for a class of
nonlinear evolution equations, Chaos
Solitons Fractals. 31: 95-104.
Ablowitz MJ, Segur H, 1981. Solitions and
Inverse
Scattering
Transform.
Philadelphia: SIAM Publications.
Aminikhad H, Moosaei H, Hajipour M, 2009.
Exact solutions for nonlinear partial
differential equations via Exp-function
method. Numer Methods Partial Differ
Equations. 26: 1427-1433.
Dai CQ, Zhang JF, 2006. Jacobian elliptic
function
method
for
nonlinear
differential? difference equations. Chaos
Solutions Fractals. 27: 1042-1049.
EL-Wakil SA, Abdou MA, 2007. New exact
travelling wave solutions using modified
extended tanh-function method. Chaos
Solitons Fractals. 31: 840-852.
Fan E, 2000 Extended tanh-function method and
its applications to nonlinear equations.
Phys Lett A. 277: 212-218.
Fan E, Zhang H, 1998. A note on the
homogeneous balance method. Phys Lett
A. 246: 403-406.
Fan E, Zhang J, 2002. Applications of the Jacobi
elliptic function method to special-type
nonlinear equations. Phys Lett A. 305:
383-392.
He JH, Wu XH, 2006. Exp-function method for
nonlinear wave equations. Chaos Solitons
Fractals. 30: 700-708.
Jawad AJM, Petkovic MD, Biswas A, 2010.
Modified simple equation method for
nonlinear evolution equations. Appl Math
Comput. 217: 869-877.
Liu S, Fu Z, Liu S, Zhao Q, 2001. Jacobi elliptic
function expansion method and periodic
wave solutions of nonlinear wave
equations. Phys Lett A. 289: 69-74.
106
Maliet W, 1992. Solitary wave solutions of
nonlinear wave equation. Am J Phys. 60:
650-654.
Maliet W, Hereman W, 1996. The tanh method:
Exact solutions of nonlinear evolution and
wave equations. Phys Scr. 54: 563-568.
Ren YJ, Zhang HQ, 2006. A generalized Fexpansion method to find abundant
families of Jacobi elliptic function
solutions of the (2+1)-dimensional
Nizhnik-Novikov-Veselov
equation.
Chaos Solitons Fractals. 27: 959-979.
Wang ML, 1996.
Exact solutions for a
compound KdV-Burgers equation. Phys
Lett A. 213: 279-287.
𝐺′
Wang ML, Zhang JL, Li XZ, 2008. The ( ) 𝐺
expansion method and travelling wave
solutions
of
nonlinear
evolutions
equations in mathematical physics. Phys
Lett A. 372: 417-423.
Wazwaz M, 2004. A sine-cosine method for
handling nonlinear wave equations. Math
Comput Modelling. 40: 499-508.
Wazwaz M, 2004. The tanh method for
travelling wave solutions of nonlinear
equations. Appl Math Comput. 154: 714723.
Wazwaz M, 2005. Exact solutions to the double
sinh-Gordon equation by the tanh method
and a variable separated ODE. Method.
Comput Math Appl. 50: 1685-1696.
Wazwaz M, 2007. The extended tanh method for
abundant solitary wave solutions of
nonlinear wave equations. Appl Math
Comput. 187: 1131-1142.
Xiao-Feng Y, Zi-Chen, Wei Y, 2015. A RiccatiBernoulli sub-ODE method for nonlinear
partial differential equations and its
application. Advances in Difference
Equations. 1: 1-17.
Yan C, 1996. A simple transformation for
nonlinear waves. Phys Lett A. 224: 77-84.
𝐺′
Zayed EME, 2009. The ( ) - expansion method
𝐺
and its applications to some nonlinear
evolution equations in mathematical
physics. J Appl Math Computing. 30: 89103.
Zayed EME, 2011. A note on the modified
simple equation method applied to
Sharam-Tasso- Olver equation. Appl
Math Comput. 218: 3962-3964.
Zayed EME, Arnous AH, 2012. Exact solutions
of the nonlinear ZK-MEW and the
potential YTSF equations using the
J. Res. Appl. Sci. Vol., 2(4): 101-107, 2015
modified simple equation method. AIP
Conf Proc. 1479: 2044-2048.
𝐺′
Zayed EME, Gepreel KA, 2009. The ( ) 𝐺
expansion method for finding traveling
wave solutions of nonlinear partial
differential equations in mathematical
physics. J Math Phys. 50: 013502013513.
Zayed EME, Hoda Ibrahim SA, 2012. Exact
solutions of nonlinear evolution equation
in mathematical physics using the
modified simple equation method. Chin
Phys Lett. 29: 060201-4.
Zayed EME, Hoda Ibrahim SA, 2013. Modified
simple equation method and its
applications for some nonlinear evolution
equations in mathematical physics. Int J
Computer Appl. 67: 39-44.
107
Zhang JL, Wang ML, Wang YM, Fang ZD,
2006. The improved F-expansion method
and its applications. Phys Lett A. 350:
103-109.
Zhang S, Tong JL, Wang W, 2008. A
𝐺′
generalized ( ) - expansion method for
𝐺
the mKdv equation with variable
coefficients. Phys Lett A. 372: 22542257.
Zhang ZY, 2008. New exact traveling wave
solutions for the nonlinear Klein-Gordon
equation. Turk J Phys. 32: 235-240.
Zhao XQ, Zhi HY, Zhang HQ, 2006. Improved
Jacobi-function method with symbolic
computation to construct new doubleperiodic solutions for the generalized Ito
system. Chaos Solitons Fractals. 28: 112126.