习题评述
• 在计算Seidel 的迭代法的收敛性时
det( I B) det( I ( I L) 1U )
det ( I L) 1 det D 1 det( D( I L) DU )
det( I B) 0 det( D( I L) DU ) 0
a11 a12
a
a
21
22
求解 det
an1 an 2
a1n
a2 n
0 即可
ann
f(3)= -0.9107
f (3)= 0.2440
关于牛顿迭代法的程序
function z=newton(f,x0,y0,e)
x = sym('x'); y=sym('y')
Jx=det([diff(f,y,1),f]); Jy=det([f,diff(f,x,1)]);
J=det([diff(f,x,1),diff(f,y,1)]);
x=x0; y=y0; n=1
x1=x0+eval(Jx)/eval(J);
y1=y0+eval(Jy)/eval(J);
while abs(x1-x0)>e & abs(y1-y0)>e & n<1000
x0=x1; y0=y1; x=x1; y=y1; n=n+1;
x1=x0+eval(Jx)/eval(J);
y1=y0+eval(Jy)/eval(J);
end
x=x1; y=y1; eval(f), z=[x1,y1,n];
function f=myfun1
syms x; syms y
f=[x^2+y^2-1;x^3-y];
newton(myfun1,0.8,0.6,1e-6)
ans =
1.0e-011 *
0.1267
0.2556
ans =
0.8260 0.5636 3.0000
© Copyright 2026 Paperzz