Exploring the QCD Phase Diagram through Relativistic Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER) Outline: Phase diagram of QCD Theoretical and Experimental status Summary 1 QCD Phase Diagram Physical systems undergo phase transitions when external parameters such as the temperature (T) or a chemical potential (μ) are varied. K. Rajagopal and F. Wilczek, Handbook of QCD Conserved Quantities: Baryon Number ~ Electric Charge ~ Q ~ small Strangeness ~ S ~ small Rich phase structure: -- Phases QGP & Hadronic -- Cross over -- 1st order -- Critical Point 2 QCD Phase Diagram - Experimental Conservation in strong interactions -- Charge -- Baryon number -- Strangeness Vary: T, B, S, Q Nature 448 (2007) 302 Vary beam energy to change Temperature & Baryon Chemical Potential 3 Transition Temperature Prog. Theor. Phys. Suppl. 153, 106 (2004) gparton ~ 47 ~ g (2/30) g ~ 3 Nucl. Phys. A 830 (2009) 805c 195 190 Physical ml/ms Tc [MeV] 185 180 HISQ/tree 175 Asqtad 170 165 160 155 Combined continuum extrapolation 150 High Temperature De-confined state of quarks and gluons -2 HISQ/tree: quadratic in N t 145 Asqtad: quadratic in -2 Nt N-2 t 140 135 0 0.005 0.01 0.015 0.02 0.025 Phys.Rev. D85 (2012) 054503 0.03 0.035 4 Cross-over Nature443:675-678,2006 JHEP 1208 (2012) 053 0.2 No significant volume dependence v2 v3 v4 v5 (1/2p) dN/dy pT dpT 5 10 4 10 3 ALICE 0-5% ávn á 10 2 1/2 0.15 IP-Glasma+MUSIC p+ + p+ K +K — p+p 1 10 0 10-1 narrow: h/s(T) wide: h/s=0.2 0.1 0.05 102 10 ATLAS 20-30%, EP 0 0 0.5 1 pT [GeV] 1.5 2 Phys. Rev. Lett. 110, 012302 (2013) 0 0.5 1 1.5 pT [GeV] 2 2.5 At high T and = 0 is a cross over. 5 Establishing Quark Gluon Phase Eur.Phys.J. C72 (2012) 1945 (a) (b) RAA 1.5 CMS PbPb sNN = 2.76 TeV (c) ± h CMS PbPb (0-5%) sNN = 2.76 TeV h± ALICE PbPb (0-5%) sNN = 2.76 TeV h± STAR AuAu (0-5%) sNN = 0.2 TeV p0 PHENIX AuAu (0-10%) sNN = 0.2 TeV W + W W Z0 ALICE pPb sNN = 5.02 TeV STAR dAu sNN = 0.2 TeV 1.0 0.5 Isolated photon CMS PbPb (0-10%) sNN = 2.76 TeV PHENIX AuAu (0-5%) sNN = 0.2 TeV 0.0 1 2 3 4 56 10 20 30 p (GeV/c) T 100 2 4 6 8 10 12 14 16 18 20 22 p (GeV/c) T 20 40 60 80 100 120 p (GeV/c) T initial > c (Lattice) 2 AA 1 d N / dpT dh RAA ( pT ) = TAA d 2s NN / dpT dh STAR: QM2012 At and below 11.5 GeV – Hadronic interactions dominate. Need pA data for a quantitative statement. 6 QGP turned off ? Establishing Quark Gluon Phase v2 = cos 2j = 3 0.12 0.1 px2 - py2 px2 + p2y p + +p - (PHENIX) He+3 He (STAR) - K S (STAR) 0 K + +K (PHENIX) f (STAR) p+p (PHENIX) L (STAR) d+d (PHENIX) v2/nq 0.08 b) 0.2 7.7 GeV Au+Au, 0-80% h-sub EP p L+ X+ W 0.1 pK 0 Ks f 11.5 GeV 19.6 GeV 0.04 0.02 0 39 GeV 27 GeV 62.4 GeV 0 0.5 1 1.5 KET/nq (GeV/c2) 0.1 0 0 STAR Preliminary 0 v2 0.2 0.06 1 2 3 arXiv:1301.2347 40 1 2 3 40 2 mT-m0 (GeV/c ) 1 2 3 4 Partonic Collectivity De-confinement Turned off at low energy ? 7 2 Establishing Quark Gluon Phase QM2012: STAR At and below 11.5 GeV – Hadronic interactions dominate. 8 QCD Phase structure at B ~ 0 Close to zero baryonic chemical potential the QCD transition corresponding to a state of deconfined quarks and gluons takes place at high temperature. First principle QCD calculations suggest it is a cross over. Transition temperature using chiral condensates ~ 154 MeV, using Susceptibilities and Polyakov loop ~ 175 MeV – width around 15 MeV 9 JHEP 1104 (2011) 001 Transition Line - Theory Width of transition line wide Freeze-out line close to transition line at Lower B Larger B deviations of freeze-out curve from transition line Interesting T vs. B dependence at lower beam energies 10 Transition line - Experiment First step: Locate beam energy (T, B) point where the system did not undertake the QCD transition b) 0.2 7.7 GeV Au+Au, 0-80% h-sub EP p L+ X+ W 0.1 pK 0 Ks f 11.5 GeV 19.6 GeV 39 GeV 62.4 GeV v2 0 0.2 27 GeV 0.1 0 0 1 2 3 40 1 2 3 40 2 mT-m0 (GeV/c ) 1 2 3 4 arXiv:1301.2347 At and below 11.5 GeV – Hadronic interactions dominate. Need higher statistics data for a quantitative statement. QM2012: STAR 11 QCD Phase structure at B > T Transition line from lattice QCD has large uncertainties. Transition line close to chemical freeze-out line at small B but deviates at large B. Interesting trends of T vs. B at lower energies. Experimental hints towards no QCD transition to de-confined state ~ 11.5 GeV center of mass energy. 12 Search for Critical Point - Theory Numerical QCD calculations difficult at large B – sign problem Techniques: Reweighting, Taylor expansion & imaginary potential Real world Heavy quarks m QCD critical point DISAPPEARED X 0 mu,d S. Gupta, QM2009 Phys. Rev. D 78, 14503 (2008); Phys.Rev.D71:114014,2005 crossover 1rst ¥ ms Acta Phys.Polon.Supp. 5 (2012) 825-835 JHEP 0404, 50 (2004) Issues (not common to all) : lattice spacing, physical quark mass, continuum limit, Volume Theory still some more work to be done …… need more CPU 13 Search for Critical Point - Experiment Nuclear liquid-gas transition with a critical end point Observables : Related to correlation length or susceptibility < (N)4> - 3 < (N)2>2 ~ 7 < (N)2> ~ 2 < (N)3> ~ 4.5 S ~ Phys.Rev.Lett. 107 (2011) 052301 Phys. Rev. Lett. 102, 032301 (2009) Phys. Rev. Lett. 91, 102003 (2003) Phys. Rev. D 61, 105017 (2000) Challenging to measure : Finite size effects < 6 fm Critical slowing down, finite time effects ~ 2 - 3 fm Phys.Lett. B696 (2011) 459 Phys.Rev.Lett. 105 (2010) 022302 No dynamical theoretical estimates exists. Experimentally look for non-monotonic variations with beam energy (T, B). 14 Search for Critical Point - Experiment Deviations from Poissonian for 0-5% central collisions STAR: QM2012 Phys.Rev.Lett. 105 (2010) 022302 Higher statistics needed at 7.7 & 11.5 GeV + a new data point around ~15 GeV 15 QCD Phase structure: Critical Point Theory: Lattice QCD calculations have uncertainties. Experiment: If signal survives hadronization then ruled out for beam energies > 39 GeV Promising prospects below 39 GeV. High statistics data set needed below 39 GeV. Theory+Experiment: Need quantitative dynamical theory calculations with realistic correlation lengths to compare to data. Science 332 (2011) 1525-1528 16 Phase structure: Interesting Possibilities Rept.Prog.Phys. 74 (2011) 014001 Quarkyonic phase (Theoretical) Experimental signature Nucl.Phys. A830 (2009) 709C-712C (Baryon correlations, Photons) ? Nucl. Phys. A 796, 83 (2007 arXiv:1302.1119 17 Summary What is known about the QCD phase diagram and to what degree ? De-confined transition: Exists, – Theory & experiment Cross over: Exists, B ~ 0 Theory & experiment (indirectly) Critical point: Search on, Theory (Uncertain) & experiment (inconclusive) Transition line: Theory (some uncertainties) & Experiment (indications) QGP properties: Progress - Theory (EOS at B = 0, need better handle for EOS at large B & Experiment tremendous progress Hadronic properties: Progress - Theory (Freeze-out properties using QCD) Experiment tremendous progress Phys. Lett. B 696 (2011) 459 Phys.Rev.Lett. 109 (2012) 192302 New Phases: Theory (Quarkyonic) and experiment (signatures ?) Theory predicted signals needed. 18
© Copyright 2025 Paperzz