Multiple-scale asymptotics of the interaction between gravity waves and synoptic-scale flow and its implications for soundproof modelling Ulrich Achatz Goethe-Universität Frankfurt am Main Gravity waves in the atmosphere GW radiation: Spontaneous Imbalance Source: ECMWF Gravity Waves in the Middle Atmosphere Becker und Schmitz (2003) Gravity Waves in the Middle Atmosphere Becker und Schmitz (2003) Gravity Waves in the Middle Atmosphere Without GW parameterization Becker und Schmitz (2003) GWs and Clear-Air Turbulence Koch et al (2008) Impact GWs on Weather Forecasts Without GWs Analysis Palmer et al (1986) Impact GWs on Weather Forecasts without GWs with GWs Analysis Palmer et al (1986) Open Questions Open Questions and Research Strategy • How well do present parameterizations describe the GW impact? (theory needed!) (e.g. Linzen 1981, Palmer et al 1986, McFarlane 1987, Medvedev and Klaassen 1995, Hines 1997, Lott and Miller 1997, Alexander and Dunkerton 1999, Warner and McIntyre 2001) • How well do we understand GW breaking? • How well do we understand GW propagation? • Presently no parameterization of spontaneous imbalance Open Questions and Research Strategy • How well do present parameterizations describe the GW impact? (theory needed!) (e.g. Linzen 1981, Palmer et al 1986, McFarlane 1987, Medvedev and Klaassen 1995, Hines 1997, Lott and Miller 1997, Alexander and Dunkerton 1999, Warner and McIntyre 2001) • How well do we understand GW breaking? • How well do we understand GW propagation? • Presently no parameterization of spontaneous imbalance • Approach: DNS (everything resolved) LES (turbulence parameterized, GWs resolved) GW parameterization DNS and LES of breaking IGW (Boussinesq) Perturbation IGW by leading transverse SV: snapshot 1152 x 1152 direct numerical simulation 288 x 288 simulation with ALDM (INCA) Fruman, Achatz (GU Frankfurt), Remmler and Hickel (TU München) DNS and LES of breaking IGW (Boussinesq) Random perturbation IGW Random perturbation NH GW Horizontally averaged vertical spectrum of total energy density vs. wavenumber Fruman, Achatz (GU Frankfurt), Remmler and Hickel (TU München) GW breaking in the middle atmosphere • Conservation v 2 0 2 v 1 0 • Instability at large altitudes • Momentum deposition… Rapp et al. (priv. comm.) GW breaking in the middle atmosphere • Conservation v 2 0 2 v 1 0 • Instability at large altitudes • Momentum deposition… • Competition between wave growth and dissipation: – not in Boussinesq theory Rapp et al. (priv. comm.) GW breaking in the middle atmosphere • Conservation v 2 0 2 v 1 0 • Instability at large altitudes • Momentum deposition… • Competition between wave growth and dissipation: – not in Boussinesq theory – Soundproof candidates: – Anelastic (Ogura and Philips 1962, Lipps and Hemler 1982) – Pseudo-incompressible (Durran 1989) Rapp et al. (priv. comm.) GW breaking in the middle atmosphere • Conservation v 2 0 Which soundproof Rapp et al. (priv. comm.) 2 v 1 0 • Instability at large altitudes • Momentum deposition… • Competition between wave model should be used? growth and dissipation: – not in Boussinesq theory – Soundproof candidates: – Anelastic (Ogura and Philips 1962, Lipps and Hemler 1982) – Pseudo-incompressible (Durran 1989) Interaction between LargeAmplitude GW and Mean Flow: Strong Stratification No Rotation Achatz, Klein, and Senf (2010) Scales: time and space • for simplicity from now on: 2D • non-hydrostatic GWs: same spatial scale in horizontal and vertical x xˆ / K z zˆ / K K characteristic wave number • time scale set by GW frequency t tˆ / dispersion relation for 2 K 1 / 2H N 2k 2 k 2 m2 characteristic frequency 1 4H 2 Achatz, Klein, and Senf (2010) N 2k 2 2 k m2 N 2 Scales: time and space • for simplicity from now on: 2D • non-hydrostatic GWs: same spatial scale in horizontal and vertical x Lxˆ z Lzˆ L 1 / K characteristic length scale • time scale set by GW frequency t tˆ / dispersion relation for 2 K 1 / 2H N 2k 2 k 2 m2 characteristic frequency 1 4H 2 Achatz, Klein, and Senf (2010) N 2k 2 2 k m2 N 2 Scales: time and space • for simplicity from now on: 2D • non-hydrostatic GWs: same spatial scale in horizontal and vertical x Lxˆ z Lzˆ L 1 / K characteristic length scale • time scale set by GW frequency t Ttˆ dispersion relation for 2 characteristic time scale K 1 / 2H N 2k 2 k 2 m2 T 1/ 1 4H 2 Achatz, Klein, and Senf (2010) N 2k 2 2 k m2 N 2 Scales: time and space • for simplicity from now on: 2D • non-hydrostatic GWs: same spatial scale in horizontal and vertical x Lxˆ z Lzˆ L 1 / K characteristic length scale • time scale set by GW frequency t Ttˆ linear dispersion relation for 2 N 2k 2 k 2 m2 1 4H 2 Achatz, Klein, and Senf (2010) T 1/ characteristic time scale K 1 / 2H N 2k 2 2 k m2 N g c pT00 Scales: velocities • winds determined by linear polarization relations: u~ m ~ b 2 k N ~ i 2b N i ~ w what is ~ b? • most interesting dynamics when GWs are close to breaking, i.e. locally ' d b' 0 N 2w 0 z dz z ~ N2 b m Achatz, Klein, and Senf (2010) v Uvˆ U K Scales: velocities • winds determined by linear polarization relations: u~ m ~ b 2 k N ~ i 2b N i ~ w what is ~ b? • most interesting dynamics when GWs are close to breaking, i.e. locally ' d b' 0 N 2w 0 z dz z ~ N2 b m Achatz, Klein, and Senf (2010) v Uvˆ L U K T Non-dimensional Euler equations • using: x Lxˆ t Ttˆ v Uvˆ ˆ T ˆ 0 yields 2 Dvˆ ˆ ˆ e ˆ z 2 Dtˆ Dˆ ˆˆ vˆ 0 Dtˆ 1 Dˆ 0 Dtˆ Achatz, Klein, and Senf (2010) 1 1 KH 1 1 d N 2 H dz g Non-dimensional Euler equations • using: x Lxˆ t Ttˆ v Uvˆ ˆ T ˆ 0 yields Dvˆ ˆ ˆ e ˆ z Dtˆ Dˆ ˆˆ vˆ 0 Dtˆ 1 Dˆ 0 ˆ Dt 2 Achatz, Klein, and Senf (2010) L 1 H H cp R H c pT00 g isothermal potentialtemperature scale height Scales: thermodynamic wave fields ~ N2 b m • potential temperature: ' T0 ~ b T0 g O Achatz, Klein, and Senf (2010) Scales: thermodynamic wave fields ~ N2 b m • potential temperature: ' T0 ~ b T0 g O • Exner pressure: ~ i 2 m ~ 2 b ' O N 2 cp Tk 2 Achatz, Klein, and Senf (2010) Multi-Scale Asymptotics Additional vertical scale needed: • and have vertical scale H L • scale of wave growth is H H 2 2 2K Therefore: Multi-scale-asymptotic ansatz (i ) vˆ v (i ) i ˆ xˆ , tˆ, ˆ i 0 (i ) also assumed: ˆ ( 0) 0 Achatz, Klein, and Senf (2010) zˆ Multi-Scale Asymptotics Additional vertical scale needed: and have vertical scale H L H L • scale of wave growth is H 2 2 2 • Therefore: Multi-scale-asymptotic ansatz (i ) vˆ v (i ) i ˆ xˆ , tˆ, ˆ i 0 (i ) also assumed: ˆ ( 0) 0 Achatz, Klein, and Senf (2010) zˆ Multi-Scale Asymptotics Additional vertical scale needed: and have vertical scale H L H L • scale of wave growth is H 2 2 2 • • here assumed: O(1) Achatz, Klein, and Senf (2010) Large-amplitude WKBb vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Mean flow with only large-scale dependence Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Wavepacket with • large-scale amplitude • wavenumber and frequency with large-scale dependence Achatz, Klein, and Senf (2010) k ( , ) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Next-order mean flow Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 Harmonics of the wavepacket due to nonlinear interactions Achatz, Klein, and Senf (2010) Large-amplitude WKB vˆ ~ v (0) ~ ˆ ˆ ( 0) (1) ˆ ˆ ( 0) 2~ ( 2) ~ ˆ ( 0 ) V ˆ (1) o v (0) V (e.g.) ˆ (0) i (0) (0) ˆ ˆ ˆ ˆ V V0 (t , x, zˆ ) V1 ( , , ) exp , , ˆ (1) i (1) (1) ˆ ˆ V V0 ( , , ) V ( , , ) exp , , 1 • collect equal powers in • collect equal powers in exp i / • no linearization! Achatz, Klein, and Senf (2010) Large-amplitude WKB: leading order ˆ (0) 0 ik V 1 ˆ (0) U 0 0 ik 1 iˆ ( 0 ) Wˆ 1 iˆ N im 0 1 ˆ (1) 0 0 1 N iˆ 0 N ˆ ( 0 ) ik im 0 0 ˆ ( 0 ) ˆ ( 2) 1 M ˆ , k ˆ kUˆ 0( 0) intrinsic frequency Achatz, Klein, and Senf (2010) Large-amplitude WKB: leading order ˆ (0) 0 ik V 1 ˆ (0) U 0 0 ik 1 iˆ ( 0 ) Wˆ 1 iˆ N im 0 1 ˆ (1) 0 0 1 N iˆ 0 N ˆ ( 0 ) ik im 0 0 ˆ ( 0 ) ˆ ( 2) 1 M ˆ , k ˆ kUˆ 0( 0) intrinsic frequency dispersion relation and structure as from Boussinesq Achatz, Klein, and Senf (2010) det M 0 k2 ˆ N 2 k m2 Uˆ 1( 0 ) ( 0 ) Wˆ1 1 ˆ (1) Nullvector of M 1 N ˆ ( 0) ˆ ( 0 ) ˆ 1( 2) 2 2 Large-amplitude WKB: 1st order Uˆ 1(1) ( 1 ) Wˆ1 ˆ ( 2) M ˆ , k 1 1 ( 0 ) ( 0 ) ˆ ˆ (0) U W 1 ˆ N 1 1 ˆ ( 0 ) ˆ (3) 1 Achatz, Klein, and Senf (2010) Wˆ1( 0 ) ˆ ( 0) ˆ ( 0 ) Large-amplitude WKB: 1st order Uˆ 1(1) ( 1 ) Wˆ1 ˆ ( 2) M ˆ , k 1 1 ( 0 ) ( 0 ) ˆ ˆ (0) U W 1 ˆ N 1 1 ˆ ( 0 ) ˆ (3) 1 Solvability condition leads to wave-action conservation (Bretherton 1966, Grimshaw 1975, Müller 1976) Wˆ1( 0 ) ˆ ( 0) ˆ ( 0 ) E' E' 0 , c g ˆ ˆ 2 2 (0) ˆ (0) (0) V ˆ ˆ 1 1 1 E' wave energy 2 ˆ (0) 2 2 2N ˆ ( 0 ) ˆ ˆ c g U 0 , group velocity k m Achatz, Klein, and Senf (2010) Large-amplitude WKB: 1st order Uˆ 1(1) ( 1 ) Wˆ1 ˆ ( 2) M ˆ , k 1 1 ( 0 ) ( 0 ) ˆ ˆ (0) U W 1 ˆ N 1 1 ˆ ( 0 ) ˆ (3) 1 Wˆ1( 0 ) ˆ ( 0) ˆ ( 0 ) Same result from pseudo-incompressible and from Solvability condition E' E ' anelastic theory (Klein 2011) , c g 0 leads to wave-action ˆ ˆ conservation (Bretherton 1966, Grimshaw 1975, Müller 1976) 2 (0) ˆ ˆ ( 0) V1 1 E' 2 2 2N 2 ˆ ( 0 ) ˆ ˆ c g U 0 , k m Achatz, Klein, and Senf (2010) ˆ (0) 1 ˆ ( 0) 2 wave energy group velocity Large-amplitude WKB: 1st order, 2nd harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) Achatz, Klein, and Senf (2010) Large-amplitude WKB: 1st order, 2nd harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) 2: Uˆ 2(1) ( 1 ) Wˆ 2 ˆ ( 2) M 2ˆ ,2k 1 2 ( 0 ) N ˆ ˆ ( 0 ) ˆ ( 3) 2 Achatz, Klein, and Senf (2010) Large-amplitude WKB: 1st order, 2nd harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) 2: Uˆ 2(1) ( 1 ) Wˆ 2 ˆ ( 2) M 2ˆ ,2k 1 2 ( 0 ) N ˆ ˆ ( 0 ) ˆ ( 3) 2 Uˆ 2(1) ( 1 ) Wˆ 2 1 1 ( 2 ) ˆ M 2ˆ ,2k 2 ( 0 ) N ˆ ˆ ( 0 ) ˆ ( 3) 2 2nd harmonics are slaved Achatz, Klein, and Senf (2010)v Large-amplitude WKB: 1st order, higher harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) Achatz, Klein, and Senf (2010) Large-amplitude WKB: 1st order, higher harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) 2: 2: Uˆ (1) ( 1 ) Wˆ ˆ ( 2) 0 M ˆ , k 1 N ˆ ( 0 ) ˆ ( 0 ) ˆ ( 3) Achatz, Klein, and Senf (2010) Large-amplitude WKB: 1st order, higher harmonics ˆ V ˆ (1) i V ( , , ) exp , , 1 (1) 2: 2: Uˆ (1) ( 1 ) Wˆ ˆ ( 2) 0 M ˆ , k 1 N ˆ ( 0 ) ˆ ( 0 ) ˆ ( 3) Uˆ (1) ( 1 ) Wˆ 1 ˆ ( 2) 0 N ˆ ( 0 ) ˆ ( 0 ) ˆ ( 3) 2 higher harmonics vanish (nonlinearity is weak) Achatz, Klein, and Senf (2010) Large-amplitude WKB: mean flow ~ ˆ ( 0) V ˆ (1) o v (0) V ˆ (0) V ˆ ( 0) ( , , ) V 0 ˆ (1) V ˆ (1) ( , , ) V 0 Achatz, Klein, and Senf (2010) (e.g.) Large-amplitude WKB: mean flow ~ ˆ ( 0) V ˆ (1) o v (0) V ˆ (0) V ˆ ( 0) ( , , ) V 0 Uˆ 0( 0 ) 0 Wˆ ( 0 ) 0 ˆ (1) V ˆ (1) ( , , ) V 0 • acceleration by GWmomentum-flux divergence 0 ˆ (1) 0 0 ˆ (00 ) Uˆ 0( 0 ) ˆ ( 0 ) U Fˆ GW (1) 2 1 ˆ ˆ ( 0 ) W ˆ ˆ FGW 2 ˆ 2ˆ ( 0 ) ˆ (0) ( 1 ) Wˆ0 Fˆ GW 0 (0) 0 (e.g.) ( 2) 0 (0) Achatz, Klein, and Senf (2010) Large-amplitude WKB: mean flow Uˆ 0( 0 ) 0 Wˆ ( 0 ) 0 ~ ˆ ( 0) V ˆ (1) o v (0) V ˆ (0) V ˆ ( 0) ( , , ) V 0 ˆ (1) V ˆ (1) ( , , ) V 0 • acceleration by GWmomentum-flux divergence 0 ˆ (1) 0 0 ˆ (00 ) Uˆ 0( 0 ) ˆ ( 0 ) U Fˆ GW 2 (1) (0) ( 2) ˆ ˆ 0 1 W ˆ ( 0 ) (00 ) FˆGW 2 ˆ 2ˆ ( 0 ) (0) ˆ Wˆ0(1) Fˆ GW 0 Achatz, Klein, and Senf (2010) (e.g.) • p.-i. wave-correction of hydrostatic balance not appearing in anelastic dynamics Large-amplitude WKB: Validation 1D GW packet in isothermal atmosphere at rest Pseudo-Incompressible WKB Buoyancy Wave 1 z Buoyancy Wave 2 Buoyancy Wave 3 t Rieper, Achatz and Klein (submitted) Large-amplitude WKB: Validation 2D GW packet in isothermal atmosphere at rest Pseudo-Incompressible WKB Mean horizontal wind t z Horizontal gradient mean buoyancy Horizontal gradient Exner pressure x Rieper, Achatz and Klein (submitted) Large-amplitude WKB: Pseudo-Incompressible Effect 2D GW packet in isothermal atmosphere at rest (1) 2 1 ˆ ˆ ( 0 ) W ˆ ˆ FGW 2ˆ ( 0) 2 ˆ term2 term0 term1 (0) 0 ( 2) 0 (0) Rieper, Achatz and Klein (submitted) Large-amplitude WKB: Pseudo-Incompressible Effect 2D GW packet in isothermal atmosphere at rest (1) 2 1 ˆ ˆ ( 0 ) W ˆ ˆ FGW 2ˆ ( 0) 2 ˆ term2 term0 term1 (0) 0 ( 2) 0 (0) Rieper, Achatz and Klein (submitted) p.i. effect 30% ~ O() Interaction between Large-Amplitude GW and Synoptic-Scale Flow: Near-Isothermal Stratification With Rotation Achatz, Senf, and Klein (in prep.) WKB in Near-Isothermal Stratification: QG Scaling QG theory for synoptic-scale flow: Basic assumptions and consequences Vertical scale: 𝐻𝑠 = 𝐻𝜌 ≈ 𝑅𝑇00 𝑔 𝐿2 𝑂 1 = Internal Rossby deformation radius thus 𝜿= 𝑹 𝒄𝒑 = 𝑶 𝑹𝒐 ≪ 𝟏 Geostrophic scaling → … → 𝑑 𝐿2𝑠 𝐿2𝑑𝑖 𝑠 = 0 𝐿2𝑠 𝑁2 𝐻𝑠2 /𝑓02 𝑼𝒔 = 𝜿𝟑/𝟐 𝑹𝑻𝟎𝟎 𝑳𝒔 = 𝜿𝟏/𝟐 𝑹𝑻𝟎𝟎 /𝒇𝟎 𝑯𝒔 = 𝜿𝟗/𝟐 𝑹𝑻𝟎𝟎 /𝒇𝟎 𝑾𝒔 = 𝜿𝟏𝟏/𝟐 𝑹𝑻𝟎𝟎 /𝒇𝟎 𝒈 = 𝜿−𝟗/𝟐 𝒇𝟎 𝑹𝑻𝟎𝟎 𝒑′ 𝒑 𝜽′ 𝜽 Achatz, Senf, and Klein (in prep.) 𝐿2 𝑂 𝑅𝑜 = 𝐿2𝑠 = 𝑔𝐻 𝑠/𝑓2 External Rossby deformation radius 𝟐 = 𝑶 𝜿 = 𝑶 𝜿𝟐 𝝆′ 𝝆 𝝅′ 𝝅 ≈ 𝑅 𝐿2𝑠 𝑐𝑝 𝑔𝐻𝑠 /𝑓02 = 𝑶 𝜿𝟐 = 𝑶 𝜿𝟑 WKB in Near-Isothermal Stratification: IGW Scaling Scaling and non-dimensionalization for IGW close to breaking: • IGW shorter and faster than synoptic-scale flow • large amplitude close to static instability • linear polarization relations Then 𝑳 = 𝜿𝑳𝒔 = 𝜿𝟑/𝟐 𝑹𝑻𝟎𝟎 /𝒇𝟎 𝜿 𝟏𝟏/𝟐 𝑯 𝑻 = = 𝜿𝑯𝒔 𝜿𝑻𝒔 = = 𝑹𝑻𝟎𝟎 /𝒇𝟎 𝟏/𝒇𝟎 𝑼 = 𝑼𝒔 = 𝜿𝟑/𝟐 𝑹𝑻𝟎𝟎 𝑾 = 𝑾𝒔 = 𝜿𝟏𝟏/𝟐 𝑹𝑻𝟎𝟎 ′ 𝜽 𝜽 𝝅′ 𝝅 = ⇒ 𝜿𝟒 𝑫𝒖 + 𝒇𝒆𝒛 × 𝒖 𝑫𝒕 𝑫𝒘 𝜿𝟏𝟐 𝑫𝒕 𝑫𝜽 𝑫𝒕 𝑫𝝆 + 𝝆𝛁 ⋅ 𝒗 𝑫𝒕 −𝜽𝛁𝒉 𝝅 = −𝜽 = 𝟎 = 𝟎 𝑶 𝜿𝟐 𝝆 = = 𝑶 𝜿𝟒 Achatz, Senf, and Klein (in prep.) = 𝝏𝝅 − 𝜿𝟐 𝝏𝒛 𝟏−𝜿 𝝅 𝜿 𝜽 Large-Amplitude WKB in Near-Isothermal Stratification Multiple-Scale Ansatz, WKB: near-isothermal stratification ⇒ reference atmosphere 𝜽, 𝝅 = 𝜽, 𝝅 (𝜻 = 𝜿𝟐 𝒛) Slow and long scales for synoptic scales and wave amplitude 𝑋, 𝑻 = 𝜅𝑥, 𝜅𝑡 thus WKB multi-scale ansatz field = reference + synoptic-scale part + wave ∞ ∞ 𝒋 𝜿𝒋 𝑽𝟎 𝑿, 𝑻 + 𝕽 𝒗= 𝒋=𝟎 ∞ 𝟎 𝜽 = 𝚯𝟎 𝒋 𝜿𝒋 𝚯𝟎 𝑿, 𝑻 + 𝕽 𝜻 + 𝟎 𝑿, 𝑻 𝒆𝒊 𝝓(𝑿,𝑻)/𝝐 𝒋 𝑿, 𝑻 𝒆𝒊 𝝓(𝑿,𝑻)/𝝐 𝒋 𝑿, 𝑻 𝒆𝒊 𝝓(𝑿,𝑻)/𝝐 𝜿𝒋 𝚯𝒋 𝒋=𝟐 ∞ 𝒋 𝜿𝒋 𝚷𝟎 𝑿, 𝑻 + 𝕽 𝜻 + 𝒋 𝒋=𝟎 ∞ 𝒋=𝟐 ∞ 𝝅 = 𝚷𝟎 𝜿𝒋 𝑽𝒋 𝒋=𝟑 Achatz, Senf, and Klein (in prep.) 𝜿𝒋 𝚷𝒋 𝒋=𝟒 WKB in Near-Isothermal Stratification: Balance Equations • Hydrostatic equilibrium reference atmosphere 𝟎 𝒅𝚷𝟎 𝟏 = − (𝟎) 𝒅𝜻 𝚯 𝟎 • Hydrostatic and geostrophic equilibrium synoptic-scale flow 𝟑 𝟎 𝟎 = −𝚯𝟎 (𝟎) 𝟎 𝟐 𝝏𝚷𝟎 𝚯𝟎 + 𝟎 𝝏𝒛 𝚯𝟎 𝟑 𝒇𝒆𝐳 × 𝑼𝟎 = −𝚯𝟎 𝛁𝒙,𝒉 𝚷𝟎 , 𝟎 𝑾𝟎 = 𝟎 WKB in Near-Isothermal Stratification: Wave Dynamics • Dispersion relation and polarization relations from (𝟎) −𝒊𝝎 −𝒇 𝟎 𝒇 −𝒊𝝎 𝟎 𝟎 𝟎 −𝒊𝝎𝜿𝟖 𝟎 𝟎 𝑵𝟎 𝒊𝒌 𝒊𝒍 𝒊𝒎 𝟎 𝟎 −𝑵𝟎 −𝒊𝝎 𝟎 𝒊𝒌 𝒊𝒍 𝒊𝒎 𝟎 𝟎 𝑼𝟏 𝟎 𝑽𝟏 (𝟎) 𝑾𝟏 =𝟎 𝟐 𝑩𝟏 /𝑵𝟎 (𝟎) (𝟎) 𝚯𝟎 𝚷𝟏 ⇒ 𝟐 𝟐 𝟐 𝒎𝟐 𝑵 𝒌 + 𝒇 𝟎 𝒉 𝝎𝟐 = 𝟖 𝟐 𝜿 𝒌𝒉 + 𝒎𝟐 … • Wave-action conservation as before 𝜕𝐴 𝜕𝑡 + 𝛻 ⋅ 𝑐𝑔 𝐴 = 0 WKB in Near-Isothermal Stratification: Wave Dynamics • Dispersion relation and polarization relations from (𝟎) −𝒊𝝎 −𝒇 𝟎 𝒇 −𝒊𝝎 𝟎 𝟎 𝟎 −𝒊𝝎𝜿𝟖 𝟎 𝟎 𝑵𝟎 𝒊𝒌 𝒊𝒍 𝒊𝒎 𝟎 𝟎 −𝑵𝟎 −𝒊𝝎 𝟎 𝒊𝒌 𝒊𝒍 𝒊𝒎 𝟎 𝟎 𝑼𝟏 𝟎 𝑽𝟏 (𝟎) 𝑾𝟏 =𝟎 𝟐 𝑩𝟏 /𝑵𝟎 No Linearization! (𝟎) (𝟎) 𝚯𝟎 𝚷𝟏 ⇒ 𝟐 𝟐 𝟐 𝒎𝟐 𝑵 𝒌 + 𝒇 𝟎 𝒉 𝝎𝟐 = 𝟖 𝟐 𝜿 𝒌𝒉 + 𝒎𝟐 … • Wave-action conservation as before 𝜕𝐴 𝜕𝑡 + 𝛻 ⋅ 𝑐𝑔 𝐴 = 0 WKB in Near-Isothermal Stratification: Mean Flow (1) • Mean flow: 𝝏 (𝟎) (𝟎) (𝟎) (𝟏) + 𝑼𝟎 ⋅ 𝛁𝐗 𝑼𝟎 + 𝜷𝒀𝒆𝒛 × 𝑼𝟎 + 𝒇(𝟎) 𝒆𝒛 × 𝑼𝟎 𝝏𝑻 𝟏 𝟏 (𝟎) 𝟎 𝟎 𝟒 𝟎 ∗ = −𝚯𝟎 𝛁𝑿,𝒉 𝚷𝟎 − ℜ 𝟎 𝛁𝑿 ⋅ 𝝆𝟎 𝑽𝟏 𝑼𝟏 𝟐 𝝆 𝝏 (𝟎) (𝟐) + 𝑼𝟎 ⋅ 𝛁𝐗 𝚯𝟎 + 𝝏𝑻 𝟎 𝟎 𝒅𝚯 (𝟏) 𝟎 𝑾𝟎 𝒅𝜻 𝟎 𝟏 𝟏 (𝟎) 𝟎 𝟐 ∗ = − ℜ 𝟎 𝛁𝑿 ⋅ 𝝆𝟎 𝑽𝟏 𝚯𝟏 𝟐 𝝆 𝟎 𝟏 𝛁𝑿 ⋅ 𝝆𝟎 𝑽𝟎 =𝟎 • Same result in both pseudo-incompressible and anelastic theory! • There is a higher-order correction to hydrostatic equilibrium 4 3 𝜕Π Θ 𝟏 𝟏 (𝟎) 𝟎 0 𝟎 ∗ 0 0 −Θ0 + 0 = − ℜ 𝟎 𝛁𝑿 ⋅ 𝝆𝟎 𝑽𝟏 𝑾𝟏 𝜕𝑍 𝟐 𝝆 Θ 0 𝟎 but this has no non-anelastic correction, and it does not matter anyway! WKB in Near-Isothermal Stratification: Mean Flow (2) Final Result:PV conservation in QG approximation 𝝏 𝝏 𝟏 (𝟎) + 𝑼𝟎 ⋅ 𝛁𝐗 𝑷 = − 𝛁 ⋅ 𝒄𝒈 𝒍𝑨 𝝏𝑻 𝝏𝑿 𝝆 𝟎 𝑿 𝟎 (𝟎) (𝟑) 𝟐 𝑷 = 𝛁𝑿,𝒉 𝚯𝟎 𝚷𝟎 Balanced (EP flux) flow forced +𝒇 𝟎 by + 𝜷𝒀 + 𝒇 𝟎 𝟎 𝝆𝟎 𝝏 𝟏 + 𝛁 ⋅ 𝒄𝒈 𝒌𝑨 𝝏𝒀 𝝆 𝟎 𝑿 𝟎 𝟎 𝝏 𝝆𝟎 𝝏 (𝟎) (𝟑) 𝚯 𝚷 𝝏𝒁 𝑵𝟐𝟎 𝝏𝒁 𝟎 𝟎 pseudo-momentum-flux convergencies Summary • multi-scale asymptotics of dynamics of GWs in interaction with synoptic-scale flow • large-amplitude WKB theory through a distinguished limit • Pseudo-incompressible theory yields same results as general equations • Differences anelastic theory to pseudo-incompressible theory become negligible to the same precision as QG theory holds, i.e. as 𝑹 𝜿= →𝟎 𝒄𝒑 • consistent with Smolarkiewicz and Dörnbrack (2008), Klein (2009), Smolarkiewicz and Szmelter (2011)
© Copyright 2025 Paperzz