Power System Economics and Market Modeling M8: Developing an LMP Analysis for a Large Case 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 [email protected] http://www.powerworld.com LMP Analysis: Outline • Sample PJM study: process overview – One possible “step by step” approach for developing LMP Analysis on a large case – Use of Super Area to model ISO control – Unenforceable constraints • More on unenforceable constraints and other OPF challenges M8: LMP Large System © 2014 PowerWorld Corporation 2 Sample PJM Study M8: LMP Large System © 2014 PowerWorld Corporation 3 Process Overview • Case Development – Select area(s) of interest for study – Establish the set of OPF controls: OPF, unit commitment, and AGC settings – Establish the set of OPF constraints: Limit Monitoring settings • Load cost curves for thermal generators • Solve unconstrained OPF for area lambdas • Set hydro dispatch to historical levels and hydro cost curves to unconstrained area lambdas • Solve OPF • Review results, analyze unenforceable constraints, and iterate process as necessary M8: LMP Large System © 2014 PowerWorld Corporation 4 Case Development Suggestions • Full OPF analysis on a large case may be time consuming • For extremely congested cases, there may be no solution that satisfies all constraints • For meaningful results, it is recommended that the scope of analysis be limited to a region of interest such as a few control areas or a single RTO territory M8: LMP Large System © 2014 PowerWorld Corporation 5 Case Development Suggestions • Align the part of the system to be optimized with the generator controls to remove the constraints • Do not monitor elements in the part of the system not on OPF control • Only place the part of the system to be studied on OPF control M8: LMP Large System © 2014 PowerWorld Corporation 6 Eastern.pwb Eastern Interconnect Case • Load the Eastern.pwb case – 3964 total generating units – 143 branch thermal violations in base case • Suppose we wish to model an LMP market for the Eastern portion of the PJM Interconnect – 11 separate control areas – 593 total generating units, 407 committed generating units – 37 branch thermal violations in base case M8: LMP Large System © 2014 PowerWorld Corporation 7 Starting Case with Overloads on High‐ Voltage Grid Note use of Emphasis, Dynamic Formatting, and dynamically‐ sized pie charts on one‐line diagram M8: LMP Large System © 2014 PowerWorld Corporation 8 Case Development • Area/Zone Filters: show areas 25‐35 only • OPF Controls – Set areas 25‐35 on OPF control – Set AGC to YES for all generators in areas 25‐35 except hydro (settings stored in cost curve aux file) • Limit Monitoring Settings – Report limits for areas 25‐35 only, 100 kV and above – Do not monitor radial lines M8: LMP Large System © 2014 PowerWorld Corporation 9 Limit Monitoring M8: LMP Large System © 2014 PowerWorld Corporation 10 Cost Curves • Load cost curves for thermal units: stored in aux file M08_LMP Large System\EasternCostCurvePJM.aux M8: LMP Large System © 2014 PowerWorld Corporation 11 Solve Unconstrained OPF • Do not enforce branch or interface constraints M8: LMP Large System © 2014 PowerWorld Corporation 12 Set Cost Curves for Hydro Units • For each Hydro Unit (advanced filter Hydro PJM) – Set offer price (MWh Price 1) equal to MW Marginal Cost of its bus – Set AGC = YES M8: LMP Large System © 2014 PowerWorld Corporation 13 Solve Constrained OPF • Enable constraint enforcement (on Constraint Options) • Solve OPF, note several unenforceable constraints M8: LMP Large System © 2014 PowerWorld Corporation 14 LMP Contour • Note high LMPs on receiving end of constrained lines and areas with low reserve margin M8: LMP Large System © 2014 PowerWorld Corporation 15 Effect of Line Constraints ROXBURY 0.0 MW 0.0 Mvar Bus: ROXBURY (221) Nom kV: 115.00 Area: PENELEC (26) Zone: PN 115KV (5) 0.99 pu 114.17 KV 22.42 Deg 329.56 $/MWh 0.00 MW 0.00 Mvar ID 1 A 15.9 MW 10.1 Mvar 18.8 MVA 109.3 MW -26.9 Mvar 112.6 MVA 87% 0.9780 tap MVA A CKT 1 ROXBURY A 99% 233 01GRANDP 20187 0.98 pu 135.84 KV AP 0.00 $/MWh Note difference in LMP on each end of constrained line A Amps etc… Amps CKT 1 CARLISLE 205 0.99 pu 113.87 KV 275.59 $/MWh CKT 1 SHADE GP 223 1.01 pu 116.61 KV -448.11 $/MWh 86% 0.9790 tap MVA CKT 1 ROXB SUB 256 CARL PKE 260 CARLISLE 205 0.99 pu 113.87 KV 275.59 $/MWh LMP M8: LMP Large System 18.6 MW -1.9 Mvar 18.7 MVA 112.0 MW 18.7 Mvar 113.6 MVA © 2014 PowerWorld Corporation 16 Options for Further Analysis • Increase available units (and reserve margin) in areas with limited supply – Many generators at their max output – Only 4.4% operating reserves – A competitive market would likely have more units committed – more controls • Place PJM Areas on Super Area Control M8: LMP Large System © 2014 PowerWorld Corporation 17 Unit Commitment and Reserves • Most generators in high‐LMP area DP&L on Delmarva Peninsula are at max M8: LMP Large System © 2014 PowerWorld Corporation 18 PJM Super Area Hydro Price = $57 M8: LMP Large System © 2014 PowerWorld Corporation 19 Options for Further Analysis • Check sensitivities on unenforceable constraints – Optionally ignore or raise limits, change unit commitment, or include demand response (curtailable load) – Some unenforceable constraints may be unavoidable due to load pockets • Incorporate contingencies with Contingent Interfaces (flowgates) • Change cost curves (e.g. model a 10% increase in fuel cost) M8: LMP Large System © 2014 PowerWorld Corporation 20 Unenforceable Constraints • Examine LP Basis Matrix • Run multiple element TLR on overloaded lines to understand relationship between flows and generator and load values M8: LMP Large System © 2014 PowerWorld Corporation 21 LP Basis Matrix • Marginal controller sensitivities have very low absolute value – suggests presence of load pockets • The sensitivity vector of each control has a mix of signs – adjusting the control to relieve one constraint makes another worse M8: LMP Large System © 2014 PowerWorld Corporation 22 Multiple Element TLR • TLR on overloaded lines with Super Area as buyer • Negative values on de‐ committed generators indicate units that may relieve congestion if committed • Positive values on committed generators (especially those at Min MW) indicate that de‐committing may help M8: LMP Large System © 2014 PowerWorld Corporation 23 Multiple Element TLR • Add ETLR field to generator display and sort • Note how committed units with most negative ETLR are generally maxed out • Try committing more units with negative ETLR or those with highest product of ETLR and Max MW (custom expression “TLR Potential”) • Solve power flow, then Re‐ solve OPF M8: LMP Large System © 2014 PowerWorld Corporation 24 Demand Response • Loads may have benefit functions, allowing them to respond to price signals in the OPF • Load the aux file EasternLoadBenefitModels.aux: includes benefit functions for 156 loads that impact unenforceable constraints • Enable load controls in OPF Options and Results and re‐solve OPF M8: LMP Large System © 2014 PowerWorld Corporation 25 Demand Response • OPF Load Records display or Difference Flows may be used to identify curtailed loads and marginal benefit • Unenforceable constraints due to load pockets are relieved M8: LMP Large System © 2014 PowerWorld Corporation 26 Price Contour with Demand Response M8: LMP Large System © 2014 PowerWorld Corporation 27 Incorporate Contingencies with Flowgates • Load EasternContingentInterfaces.aux • Each flowgate interface includes a monitored element and a contingent element • Make sure Contingent Interface Elements are Enforced in OPF (Simulator Options ‐> General tab or OPF ‐> Interfaces Display) • Re‐solve OPF M8: LMP Large System © 2014 PowerWorld Corporation 28 More on OPF Challenges M8: LMP Large System © 2014 PowerWorld Corporation 29 OPF Formulation and Solution • More on Unenforceable Constraints – Radial Elements – Mvar loops in AC power flow – Unusual modeling parameters • Insufficient Reserves: not enough controls to satisfy area ACE constraint • Too Much Power Transfer M8: LMP Large System © 2014 PowerWorld Corporation 30 Eastern2.pwb Analysis of Unenforceable Constraints • Example: Load Eastern2.pwb (has cost info) • Choose Add Ons ribbon tab Primal LP – We end up with 46 unenforceable constraints • Of these many seem to be caused by radial – Change Limit Monitoring Settings to Ignore Radial Lines and Buses • Radial Bus is connected to the system by only one transmission line • Radial Line is a line connected to a radial bus. – Choosing this reduces the unenforceable list to 30 constraints. M8: LMP Large System © 2014 PowerWorld Corporation 31 Unenforceable Constraints • If you look at the MW and MVar flows on these lines you’ll find that many have VERY large MVar flows – Add Columns for Max MW and Max MVar on Add Ons ribbon tab OPF Case Info OPF Lines and Transformers • If you look through the case, you’ll find many very strange LTC tap ratio settings • Also some are due to phase‐shifters being in series with an overloaded branch M8: LMP Large System © 2014 PowerWorld Corporation 32 Reset LTC Taps • Set all transformers on LTC control to a tap ratio of 1.00 – AUX File: M08_LMP Large System\Eastern2ChangeTransformers.aux • Re‐solve power flow, then OPF • May also examine Circulating Mvar Flows – Tools ‐> Connections ‐> Find Circulating MW or Mvar Flows – Check relative tap ratios in Flow Cycles with high Loss Mvar Reduction M8: LMP Large System © 2014 PowerWorld Corporation 33 Unenforceable Constraints • This results in a reduced list of 20 unenforceable constraints M8: LMP Large System © 2014 PowerWorld Corporation 34 Phase‐Shifting Transformers • Phase Shifters have three control options – None – leave at a fixed angle – Power Flow – Allow the power flow solution to dispatch according to the MW setpoints of the controller – OPF – Allow the OPF’s linear program to “dispatch” the transformer for a more global optimization • OPF phase‐shifter control is often necessary if load is varied with the time‐step simulation, unless appropriate phase‐shifter control settings are known for each load level M8: LMP Large System © 2014 PowerWorld Corporation 35 Use Caution with Phase‐Shifter OPF Control • Phase‐shifter setpoints are often important for stability • The setpoints may vary with load or seasonal generation pattern • Options to consider: – ignore MVA/Amp limit enforcement where obvious conflicts occur between limit and phase‐shifter setpoints (e.g. overloaded line in series with phase‐shifter) – allow only a few phase shifters to operate on OPF control where it is known that stability margins are sufficient – choose to Enforce MW Regulation Limits in OPF (branch field for phase‐shifters) – tighten the angle limits of phase shifters to limit range of OPF dispatch M8: LMP Large System © 2014 PowerWorld Corporation 36 Conflict between Phase‐Shifter Setpoint and Line Limits WP PH.S1 Bus: WP PH.S1 (6372) Nom kV: 34.50 Area: BGE (32) Zone: 32 (32) 0.00 MW 0.00 Mvar 1.01 pu 34.80 KV -43.78 Deg -2293.83 $/MWh 64.8 MW -11.9 Mvar 65.9 MVA 45.00 MVA 64.8 MW 11.9 Mvar 65.9 MVA 41.00 MVA A 161% 1.0000 tap MVA A Phase‐shifter setpoint is 60.3 – 72.9 MW, but line limits are <=45 MVA; ignore these lines Limts M8: LMP Large System CKT 1 GOULDST 6361 1.00 pu 33.94 KV NEWGT871 6287 NEWGT872 6288 WP PH.S2 6373 GOULDST 5906 GOULDST 6596 GOULDST 6599 146% 1.0000 tap MVA CKT 1 WESTPORT 6362 1.01 pu 13.96 KV WSPT521 6045 WSPT525 6177 WESTPORT 6367 © 2014 PowerWorld Corporation 37 A Closer Look • Look more closely at the majority of the remaining unenforceable constraints – Continues to show a large number of under radial elements which should probably just be ignored • A handful of elements require greater study – Draw a oneline diagram to represent this part of the system – You will start to see what the problem is • Changes described in following slides may be automatically loaded with M08_LMP Large System\Eastern2Monitor Changes.aux M8: LMP Large System © 2014 PowerWorld Corporation 38 Example: Internal Shawville 0.0 Mvar 13.10 Mvar 178.42 $/MWh 0.96 pu MVA 228 TYRONEN -32.64 $/MWh 0.97 pu 17.5 MW 0.0 Mvar 265 0.0 MW P-BURG 1 0.0 Mvar -146.43 $/MWh 0.95 pu 235 MADERA 15.43 $/MWh 1.00 pu A A 0.0 MW 0.0 Mvar 360 P-BURG 2 -142.60 $/MWh 0.99 pu A 99% MVA MVA MVA A -26.95 $/MWh 0.98 pu 426 MADERA 465 WESTOVER A MVA 0.3 MW 0.0 Mvar -33.74 $/MWh 0.98 pu MVA 421 DUBOIS A A MVA 425 PHILIPSB -146.43 $/MWh 0.97 pu 15.1 MW -13.0 Mvar 15.1 MW 8.3 Mvar 368 SHAWVILL -71.26 $/MWh 1.04 pu A 98% A MVA MVA 7.5 Mvar A A 152% 431 SHAWVILL MVA -5002.14 $/MWh 0.94 pu 101% 435 SHAWVILL MVA -17008.59 $/MWh 0.96 pu 50.2 MW 21.0 Mvar A 373 M8: LMP Large System A A 424 SHAWVILL -5032.14 $/MWh 0.96 pu MVA 428 SHAWVILL -7263.56 $/MWh 1.00 pu MVA A 4.2 MW 5.5 Mvar MVA 100% MVA MVA Four of the stepup transformers experience high loadings. We could choose to ignore these limits. A A MVA A -7285.82 $/MMVA Wh 0.97 pu MVA 434 A SHAWVILL 300 ROCK MT MVA 423 SHAWVILL -61.44 $/MWh 0.98 pu 151% SHAWVILL -17075.95 $/MWh 1.05 pu -53.10 $/MWh 0.97 pu A MVA A A MVA A MVA 422 ROCKTONM A A 257 SHAWVILL -65.73 $/M Wh MVA 0.99 pu 15.6 MW 8.5 Mvar 18.7 MW 436 SHAWVILL -61.14 $/MWh 0.98 pu -50.38 $/MWh 0.98 pu MVA Rest of the System 419 SHAWVILL -17055.17 $/MWh 1.01 pu 50.1 MW 17.1 Mvar The lines from 426-228 and 423 - 426 also experience high loadings because the generators are all at their low limits and can not back down far enought to remove these problems. We could turn off generators at buses 431 and 424 to fix this. MVA 372 SHAWVILL -16997.95 $/MWh 1.08 pu 126.0 MW 20.3 Mvar 119.7 MW -9.1 Mvar © 2014 PowerWorld Corporation 39 Example: Internal Merck 59.29 $/MWh 1.0131 pu 4212 NWALES 82.2 MW 14.1 Mvar 82.2 MW 25.2 Mvar A MVA 4217 N WALES4 59.64 $/MWh A 23.2 MW 99% 9.0 Mvar 90.5 Mvar MVA 4216 NWALES 1.0185 pu MVA 20.9 Mvar A 113% 4214 NWALES 82.2 MW 25.2 Mvar 59.63 $/MWh 1.0186 pu A A A MVA MVA 4215 NWALES 59.63 $/MWh 1.0186 pu MVA 59.63 $/MWh 1.0186 pu A MVA A A MVA MVA 4217-4216 line has a large impedance of 0.15 compared to the lines 4214-4217, 4214-4215, 4216-4215 which have impedances of 0.0002 This means that 4216-4217 will NEVER have any flow on it. Thus the line 4214-4217 is essentially radial. 3.9 MW 1.6 Mvar 4153 59.63 $/MWh L 10700 1.0184 pu 59.63 $/MWh 1.0184 pu A A MVA MVA 59.64 $/MWh 1.0181 pu 4195 MERCK A A MVA MVA A MVA 4544 MERCK 3 59.62 $/MWh 1.0149 pu 4196 MERCK 59.64 $/MWh 1.0283 pu 0.0 MW 0.0 Mvar M8: LMP Large System 4154 L 16000 1.4 MW -1.5 Mvar © 2014 PowerWorld Corporation 40 Siegfried – Nazareth Limits 463.58 $/MWh A MWh A A 3081 1.01 pu 42.2 SIEGFRIE 1.03 3061 EPALMERT MVA MVA MVA A A MVA A A MVA MVA 81% A MVA 3151.26 $/MWh M VA 3391 0.98 pu KEY CM 2 A 28.96 Mvar 18.37 Mvar 1202.26 $/MWh 3376 EPALMERT 2858.32 $/MWh 11.02 Mvar 3403 0.96 pu 1.01 pu A A A MVA MVA 3404 MVA -32 MW -32 MW 21.61 Mvar 3399 A 106% -2645.85 $/MWh MV A 64.0 MW 71.3 MW 0.98 pu 24.3 Mvar 10.8 Mvar 64.0 MW 64.0 MW 24.3 Mvar 24.3 Mv ar 64.0 MW 24.3 Mvar PALM T2 1211.81 $/MWh 1.01 pu 59.7 59.7 MW MW -0.1 -0.1 Mvar Mvar MVA 3408 SIEGFRIE MVA -5347.63 $/MWh 1.02 pu A A PALM T1 11.02 Mvar MVA 99% MVA MVA A 99% A -4437.97 $/MWh MVA A A 3390 A 1.70 Mvar 7.33 Mvar $/MWh 3195 729.78 $/MWh 1.01 pu 3394 MECKESVI A MVA pu ARROWHEA A MVA 1.04 p M VA A KEY CM 1 Removing the negative loads at NAZARETH and an equivalent amount of positive load at SIEGFRIE relieves the otherwise difficult overloads on the branches between them. 9.63 Mvar 567 33 $/MWh M8: LMP Large System 3412 -3403.1 MVA 99% MVA -5219.33 $/MWh 1.03 pu MVA CH HL A A MVA 3415 NAZARETH1.03 pu 3375 CH HL T1 A MVA A A MVA MVA -4410.75 $/MW 1.03 pu -3157.48 $/MWh 1.03 pu -3157.48 $/MWh 3393 3392 LSTAR T1 A MVA 1.03 pu LSTAR T2 -3067.50 $/M 1.03 pu © 2014 PowerWorld Corporation 41 After these changes we remove all unenforceable Constraints • Still some very high cost constraints remain • BIRDBORO – PINE LANE = $753/MVAhr M8: LMP Large System © 2014 PowerWorld Corporation 42 Birdboro – Pine Lane • Yellow Region forms a “load pocket” for two large loads 15.59 $/MWh 1730 1.06 pu TITUS 1164 M 16.33 $/MWh 1606 1.02 pu TITUS 0.0 Mvar TITUS 1607 16.24 $/MWh M 1729 16.89 $/MWh A M V A SREADING 1.02 pu A M V A V A M 1572 18.43 $/MWh A A V A TITUS 1.02 pu V A 4.2 MW 0.0 Mvar V A 32.3 MW 1731 1.06 pu A M 46.69 $/MWh 1.01 pu A V A M 15.47 $/MWh A 4.0 MW 0.0 Mvar SREADING A M M FLYING H 1.02 pu A V A A V A M A V A A M V A M 1600 35.9 MW 16.33 $/MWh 0.0 Mvar 1.02 pu 15.59 $/MWh 1732 1.06 pu TITUS A 1608 A M 24.51 $/MWh 1610 17.20 $/MWh 1.02 pu U.CORSTK V A TITUS V A ADAMSTWN 1.01 pu A M A V A M M V A M 16.4 MW -3.3 Mvar A 1.02 pu A 24.51 $/MWh V A A M V A V A M M V A 1.02 pu A A M V A 1609 24.05 $/MWh 1579 CORSTK T 1.01 pu LINC 821 V A A M A V A M -81.03 $/MWh 1582 1.02 pu LORANE -37.53 $/MWh 32.3 MW 0.0 Mvar 1.02 pu 1563 25.52 $/MWh 1574 BIRDFERO 1.02 pu GLENSIDE A A M A M ARMORCST V A M M 1.02 pu W.RDG A M A V A 12.6 MW 5.0 Mvar 1580 A M V A V A LINC 822 -88.98 $/MWh A 1.02 pu A LINCOLN 1.02 pu V A M 1581 25.73 $/MWh V A 1612 A V A M V A A V A 25.18 $/MWh 1553 A M – 85.3 MW – 193.7 MW 1551 21.65 $/MWh SREADING A V A M M 25.34 $/MWh V A 1.01 pu V A 1562 27.80 $/MWh 1568 BIRDBORO 1.02 pu DANA -88.98 $/MWh A 100% 1.02 pu M V A 29.18 $/MWh 1564 1.02 pu CAR TECH A 1593 441.99 $/MWh MVA PINE LNE 0.0 MW 1.02 pu 43.11 $/MWh 1595 1.02 pu RIVRVIEW V A A 0.0 Mvar A M A M V A M 1596 1592 33.11 $/MWh CARSONIA 1.02 pu 100% V A 1565 29.00 $/MWh OUTR STA 1.02 pu A A M RNGROCKS V A MVA 1611 64.53 $/MWh 1156 1.02 pu NBOYERTO M V A 1585 252.69 $/MWh 1.02 pu A W.BOYTWN M A M MC-KN GP 31.69 $/MWh V A 1589 M A 95% 216.53 $/MWh A A M M V A 1.02 pu A V A M 1587 V A SPG VAL A M M V A M 41.58 $/MWh 1597 1.02 pu ROSEDALE V A A M 1.02 pu 49.44 $/MWh 1591 1.02 pu NTEMPLE A 1578 95.95 $/MWh 1.01 pu 94%0.0 MW V A BERK 24 A 1.02 pu A V A M V A S.HAMBRG 1577 64.80 $/MWh 1.02 pu LEESPORT 57.18 $/MWh M A 54.67 $/MWh 1.02 pu 1599 0.0 Mvar 1566 A M V A M 1602 A M V A V A 268.5 MW -35.7 Mvar SIMON 54.04 $/MWh 1.02 pu V A 1.02 pu CLOUSER V A SIMON TP 54.04 $/MWh A M M A 119.00 $/MWh 1.01 pu M A V A M V A 1598 64.80 $/MWh 1558 S.HAMBRG 1.02 pu BERK 835 50.00 $/MWh A A A M 88.89 $/MWh 1583 1.01 pu LYNNVILE M 1.02 pu A V A A M V A M 1561 V A M V A A 1715 1.02 pu HILL RD V A 1560 BERNVILL 64.63 $/MWh M A BERN CH V A M 58.09 $/MWh V A 53.35 $/MWh 1.02 pu 1.02 pu A 106.35 $/MWh 1569 64.17 $/MWh E PENN 1.00 pu M M 1716 V A 0.96 pu A 1559 BERKLEY HILL RD V A 50.00 $/MWh A 187.23 $/MWh 1.02 pu 62.25 $/MWh 1556 M BARTO 109.34 $/MWh 1555 61.10 $/MWh M 0.96 pu A M 1.06 pu V A V A 1704 PANTHER 63.4 MW 0.0 Mvar A M 1717 A BALDY 1.00 pu V A PANTHER 0.96 pu M 63.23 $/MWh 1552 1.01 pu ALTN CMT A A A V A M V A M V A V A A M V A 115.29 $/MWh 1576 A M 69.42 $/MWh 1605 1.01 pu ST PETRS V A KUTZTOWN 1.00 pu A A A M 129.35 $/MWh 1.00 pu 75.00 $/MWh 1588 1.01 pu MOSELEM M V A V A 1570 E.TOPTON M 1584 105.97 $/MWh A V A © 2014 PowerWorld Corporation 97% LYONS 1.00 pu A 193.7 MW83% -16.4 Mvar M8: LMP Large System 1557 1.02 pu A V A 1603 57.18 $/MWh MVA M M LEESPORT A A V A V A 1573 FRIEDNBG • The 69 kV lines feeding this region have high loadings M A 34.11 $/MWh 1.02 pu V A V A AT&T 1.02 pu A A V A 1554 33.73 $/MWh 1.02 pu M NTEMPLE A V A M 85.3 MW -25.6 Mvar 1159 1.01 pu V A 1.02 pu V A MG IND T 1.02 pu A A M EXIDE A V A 1.02 pu 1571 216.11 $/MWh A M NBOYERTO 207.74 $/MWh 1604 M MVA K.B.I. 1590 34.75 $/MWh V A V A 1575 1 8 .8 0 M v a r M 57.67 $/MWh A 34.94 $/MWh M CONTY LN MUHLENBG 36.13 $/MWh A A 1567 MG IND 1.02 pu 1.02 pu V A 280.51 $/MWh 1.02 pu 1586 34.94 $/MWh MVA 62.13 $/MWh 1154 1.02 pu LYONS MVA 43 Contour of Prices around Birdboro – Pine Lane • Load Pocket • These prices could be reasonable. 15.59 $/MWh 1730 1.06 pu TITUS 1164 4.0 MW 0.0 Mvar SREADING 46.69 $/MWh A M V A M V A 1606 TITUS 16.33 $/MWh 1.02 pu 15.47 $/MWh 1731 1.06 pu TITUS 32.3 MW 0.0 Mvar A M A M V A V A M A M 1607 TITUS 16.24 $/MWh 1.02 pu A V A 4.2 MW 0.0 Mvar 1.01 pu A V A 1729 SREADING 16.89 $/MWh 1.02 pu A M V A M V A A M 1572 FLYING H 18.43 $/MWh 1.02 pu A V A A M A V A A M V A M 1600 35.9 MW 16.33 $/MWh 0.0 Mvar 1.02 pu 15.59 $/MWh 1732 A M V A M TITUS 1.06 pu 1608 17.20 $/MWh 1.02 pu V A A V A 1551 21.65 $/MWh SREADING A M TITUS 24.51 $/MWh 1610 1.02 pu U.CORSTK ADAMSTWN 1.01 pu A A M V A A M V A 24.51 $/MWh A A M M V A M M V A 1609 24.05 $/MWh 1579 1.01 pu LINC 821 CORSTK T 1.02 pu A V A 16.4 MW -3.3 Mvar V A V A A M V A A M -81.03 $/MWh 1582 1.02 pu LORANE -37.53 $/MWh 32.3 MW 0.0 Mvar 1.02 pu 1563 25.52 $/MWh 1574 BIRDFERO 1.02 pu GLENSIDE 1553 ARMORCST A M V A M M V A V A M V A A M A M M V A V A 1580 A V A V A LINC 822 -88.98 $/MWh A LINCOLN 1.02 pu 1612 W.RDG V A M 1581 25.73 $/MWh A 25.18 $/MWh 1.02 pu A A M A A M A 1.02 pu V A M 25.34 $/MWh 1.01 pu V A V A 1562 27.80 $/MWh 1568 1.02 pu DANA BIRDBORO -88.98 $/MWh 1.02 pu 12.6 MW 5.0 Mvar A M A 100% V A 1564 29.18 $/MWh M VA A PINE LNE 0.0 MW 1.02 pu CAR TECH 1.02 pu 1593 441.99 $/MWh M 43.11 $/MWh 1595 1.02 pu RIVRVIEW V A A A 0.0 Mvar M V A M 29.00 $/MWh 1565 1.02 pu CARSONIA V A 1592 33.11 $/MWh OUTR STA 1.02 pu A 100% M VA 1596 A A M 64.53 $/MWh 1156 1.02 pu NBOYERTO RNGROCKS V A M V A 1585 252.69 $/MWh 1.02 pu 1611 W.BOYTWN A M A M MC-KN GP 31.69 $/MWh 1.02 pu V A MG IND 1.02 pu 280.51 $/MWh 1567 34.94 $/MWh M M V A A V A M 34.75 $/MWh 1604 1.02 pu SPG VAL A MUHLENBG 36.13 $/MWh A M V A 57.67 $/MWh 1159 1.01 pu NTEMPLE 1.02 pu V A MG IND T 1.02 pu V A A V A M VA V A 1571 A M EXIDE K.B.I. 33.73 $/MWh 1.02 pu M 41.58 $/MWh 1597 1.02 pu ROSEDALE V A A V A 1554 A V A M M 216.11 $/MWh 1.02 pu A M A V A A 95% 1575 1 8 .8 0 M v a r 1590 NBOYERTO 1587 V A M A CONTY LN 216.53 $/MWh 1.02 pu A A M 1589 A 1.02 pu M V A 1586 34.94 $/MWh M A 34.11 $/MWh 1.02 pu 1.02 pu M A V A M V A 268.5 MW -35.7 Mv ar AT&T 207.74 $/MWh V A 49.44 $/MWh 1591 1.02 pu NTEMPLE 1573 FRIEDNBG A 1578 95.95 $/MWh 1.01 pu 85.3 MW -25.6 Mv ar LEESPORT V A 1557 M V A 1577 S.HAMBRG 64.80 $/MWh 1.02 pu M A V A M M 1602 M M SIMON 54.04 $/MWh V A 1.02 pu A V A M V A 1598 64.80 $/MWh 1558 S.HAMBRG 1.02 pu BERK 835 50.00 $/MWh 1.02 pu A A A M 88.89 $/MWh 1583 1.01 pu LYNNVILE M A V A M A V A M V A A M HILL RD 1.02 pu A BERN CH 53.35 $/MWh BERNVILL 58.09 $/MWh 1715 64.63 $/MWh V A 1560 1561 V A M V A V A A 57.18 $/MWh 1.02 pu A 1.01 pu A 54.67 $/MWh 1.02 pu LEESPORT 1.02 pu CLOUSER 119.00 $/MWh V A V A M 1599 0.0 MW 0.0 Mvar 1566 A V A BERK 24 A A A 94% M VA M SIMON TP 54.04 $/MWh A M A V A 1603 57.18 $/MWh 1.02 pu A M M V A 1.02 pu M V A 1.02 pu A 106.35 $/MWh 1569 64.17 $/MWh E PENN 1.00 pu 1716 V A 1559 BERKLEY HILL RD 0.96 pu A M M V A 50.00 $/MWh A 187.23 $/MWh 1.02 pu 62.25 $/MWh 1556 M V A 109.34 $/MWh 1555 A M 1.06 pu V A A 61.10 $/MWh 0.96 pu BALDY 1.00 pu 1717 PANTHER 0.96 pu BARTO M V A 1704 PANTHER 63.23 $/MWh 1552 1.01 pu ALTN CMT 63.4 MW 0.0 Mvar A A A M V A A M M V A M V A V A A M V A 115.29 $/MWh 1576 A M 193.7 MW -16.4 Mvar V A KUTZTOWN 1.00 pu A M 129.35 $/MWh 1.00 pu 69.42 $/MWh 1605 1.01 pu ST PETRS A 75.00 $/MWh 1588 1.01 pu MOSELEM M V A V A A 1570 97% E.TOPTON A M V A 1584 105.97 $/MWh M VA LYONS 1.00 pu A 83% M VA M8: LMP Large System © 2014 PowerWorld Corporation 62.13 $/MWh 1154 1.02 pu LYONS 44 Unenforceable Constraints Summary • Look for radial systems and “load pockets” • Look for generators or phase‐shifters which can relieve problems – Give the OPF more controls to FIX the problems • Look for constraints which don’t make sense – Radial lines serving load – Radial transformers/lines leaving generators • Use your judgment to setup a reasonable case • Realize that some unenforceable constraints are inevitable at first M8: LMP Large System © 2014 PowerWorld Corporation 45 Eastern.pwb Insufficient Reserves • Load Eastern.pwb and M08 LMP Large System\aux1000Master.aux, then solve LP OPF • In this example, Area 28 (JCP&L) does not have enough AGCable generation • Message Log: “Insufficient controls to enforce area … constraint” M8: LMP Large System © 2014 PowerWorld Corporation 46 Insufficient Reserves: Tips • Examine Generator records or Area field “Gen MW AGC Range Up” • To resolve – Commit more generation – Make more generation AGCable, or designate some units as OPF Fast Start – Increase imports, or make Area part of a Super Area – Decrease load, or make load dispatchable M8: LMP Large System © 2014 PowerWorld Corporation 47 M08EasternWideAreaMarket.pwb Too Much Power Transfer • In the OPF solution, a linear program (LP) iterates with the non‐linear power flow to achieve convergence of the entire solution • If an AC OPF is performed over a very large Area (or Super Area), the LP may dispatch generators in a manner that exceeds voltage stability margins • WECC cases may be especially susceptible M8: LMP Large System © 2014 PowerWorld Corporation 48 Too Much Power Transfer • Example: A Northern and a Southern section of the eastern interconnection are modeled as one ISO market (Super Area) – North: includes eastern PJM, AEP, First Energy – South: includes TVA, Southern Company, Entergy • Assume generation much less expensive in the south, so LP OPF will initially try to increase the transfer from south to north • OPF may exceed stability margin of power flow • Load M08EasternWideAreaMarket.pwb, then solve LP OPF M8: LMP Large System © 2014 PowerWorld Corporation 49 Too Much Power Transfer • Excerpt from Message Log LP attempts massive power transfer Game Over! M8: LMP Large System © 2014 PowerWorld Corporation 50 Too Much Power Transfer: Tips • Tighten MW Limits on generators with unrealistic limits (e.g. Max MW = 9999): in this example, AGC is set to NO for such units • Place less of the system on OPF control • Use interface limits • Break a large area (or super area) into two or more smaller areas; use OPF dispatchable transactions between the smaller areas • Manually move generation in the direction of the LP transfer, resolve power flow, restart OPF • Use DC Power Flow M8: LMP Large System © 2014 PowerWorld Corporation 51 OPF Dispatchable Transactions • Example: Break MMWG super area into Northern and Southern super areas • Reopen M08EasternWideAreaMarket.pwb and load M08_LMP Large System\EasternNorthSouthSuperAreas.aux • Add a new transaction between a Northern area (e.g. AEP) and a Southern area (e.g. TVA) • Set MW limits on the new transaction and make it “Dispatchable in OPF” • If OPF and power flow solve, try increasing the limits of the new transaction – stop when the power flow will not converge M8: LMP Large System © 2014 PowerWorld Corporation 52 OPF Dispatchable Transactions South‐North transaction limited to 500 MW beyond base case transfer OPF determines optimal transaction. If transaction is non‐binding at the solution, then areas are acting as a single super area. M8: LMP Large System © 2014 PowerWorld Corporation 53 Manually Move Generation Reopen M08EasternWideAreaMarket.pwb Solve a “Single Outer Loop” of the OPF Look at OPF controls following the failure Move generation in direction of transfer (e.g. 10% of the transfer) • Attempt to resolve the OPF • • • • – Often additional transmission constraints will become binding before the full transfer is made – OPF will know to move in a different direction M8: LMP Large System © 2014 PowerWorld Corporation 54 Manually Move Generation: OPF Controls M8: LMP Large System © 2014 PowerWorld Corporation 55 Manually Move Generation: Spreadsheet • Use a spreadsheet to step the transfer (GeneratorAdjust.xls) • Set GenMW = Orig. Value + Delta Value * Percent Move 1. Copy OPF controls to the spreadsheet 2. Paste Gen Records back into Simulator, solve power flow, and restart LP OPF M8: LMP Large System © 2014 PowerWorld Corporation 56
© Copyright 2026 Paperzz