Parabolic Resonance: A Route to Hamiltonian Spatio-Temporal Chaos Eli Shlizerman and Vered Rom-Kedar Weizmann Institute of Science Publications: [1] ES & VRK, Hierarchy of bifurcations in the truncated and forced NLS model,CHAOS-05 [2] ES & VRK, Three types of chaos in the forced nonlinear Schrödinger equation, PRL-06 [3] ES & VRK, Parabolic Resonance: A route to intermittent spatio-temporal chaos, SUBMITTED [4] ES & VRK, Geometric analysis and perturbed dynamics of bif. in the periodic NLS, PREPRINT http://www.wisdom.weizmann.ac.il/~elis/ Stability and Instability in Mechanical Systems, Barcelona, 2008 The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results The perturbed NLS equation -i t xx 0εeforcing 2 dispersion i(2 t+θ0 ) + i damping focusing • Change variables to oscillatory frame Ψ(x,t)=B(x,t)e i(Ω2 t+θ0 ) • To obtain the autonomous NLS -iBt Bxx ( B -Ω )B ε 2 2 +damping : [Bishop, Ercolani, McLaughlin 80-90’s] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos The autonomous NLS equation -iBt Bxx ( B -Ω )B ε 2 • Boundary • Periodic • Even (ODE) 2 B(x+L,t) = B(x,t) B(-x,t) = B(x,t) • Parameters • Wavenumber k = 2π/L • Forcing Frequency Ω2 Formulation of Results The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results The problem • Classify instabilities near the plane wave in the NLS equation • Route to Spatio-Temporal Chaos Regular Solution Temporal Chaos Spatio-Temporal Chaos in time: almost periodic in time: chaotic in time: chaotic in space: coherent in space: coherent in space: decoherent The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Main Results Decompose the solutions to first two modes and a remainder: B(X,T)=[c(T)+b(T)coskX+η(X,T)] And define: I2 = c(T)+b(T)coskX L2 x ODE: The two-degrees of freedom parabolic resonance mechanism leads to an increase of I2(T) even if we start with small, nearly flat initial data and with small ε. PDE: Once I2(T) is ramped up the solution of the forced NLS becomes spatially decoherent and intermittent - We know how to control I2(T) hence we can control the solutions decoherence. The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Integrals of motion Spatio-Temporal Chaos - iB t Bxx ( B - Ω 2 )B ε 2 • Define: 2 1 I B dx L 1 1 4 2 2 2 H 0 Bx + B - B dx L 2 i H1 B-B* dx L • Integrable case (ε = 0): Infinite number of constants of motion: I,H0, … • Perturbed case (ε ≠ 0): The total energy is preserved: All others are not! I(t) != I0 Formulation of Results HT=H0 + εH1 The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description The plane wave solution B pw (0, t ) c e Formulation of Results - iB t Bxx ( B - Ω 2 )B 0 2 i t 0 Resonant: 0 Re(B(0,t)) 0 Re(B(0,t)) Non Resonant: Spatio-Temporal Chaos θ₀ θ₀ Im(B(0,t)) Im(B(0,t)) The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Linear Unstable Modes (LUM) • The plane wave is unstable for 0 < k2 < 2|c|2 • Since the boundary conditions are periodic k is discretized: kj = 2πj/L for j = 0,1,2… (j - number of LUMs) • Then the condition for instability becomes the discretized condition j2 (2π/L)2/2 < |c|2 < (j+1)2 (2π/L)2/2 • The solution has j Linear Unstable Modes (LUM). As we increase the amplitude the number of LUMs grows. Ipw = |c|2, IjLUM = j2k2/2 The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description The plane wave solution B pw (0, t ) c e Spatio-Temporal Chaos Formulation of Results - iB t Bxx ( B - Ω 2 )B 0 2 i t 0 Heteroclinic Orbits! Bh Re(B(0,t)) Re(B(0,t)) Bh θ₀ θ₀ Bpw Im(B(0,t)) Bpw Im(B(0,t)) The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Modal equations Spatio-Temporal Chaos Formulation of Results - iB t Bxx ( B - Ω 2 )B 0 2 • Consider two mode Fourier truncation B(x , t) = c(t) + b (t) cos (kx) • Substitute into the unperturbed eq.: 1 4 1 2 2 3 4 1 2 2 2 1 2 2 1 2 2 2 2 H0= | c | | b | | c | | b | - Ω + k | b | - | c | b c + b c 8 2 16 2 2 8 I0 1 2 2 = (| c | | b | ) 2 H1= i ε 2 (c - c* ) [Bishop, McLaughlin, Ercolani, Forest, Overmann ] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results General Action-Angle Coordinates • For b≠0 , consider the transformation: c |c| e i b ( x iy) e 1 I | c |2 x 2 y 2 2 iγ • Then the system is transformed to: H( x, y, I , ) H0 (x, y, I )+ H1 ( x, y, I , ) • We can study the structure of H0 (x, y, I ) [Kovacic] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Preliminary step - Local Stability B(X , t) = [|c| + (x+iy) coskX ] eiγ Fixed Point x=0 y=0 x=±x2 y=0 Stable Unstable I>0 I > ½ k2 I > ½k2 - x =0 y=±y3 I > 2k2 x =±x4 y=±y4 validity region I > 2k2 [Kovacic & Wiggins 92’] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results PDE-ODE Analogy ODE y x -Bsol=Soliton (X=L/2) Bpw=Plane wave +Bsol=Soliton (X=0) PDE -Bh=Homoclinic Solution +Bh=Homoclinic Solution The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Hierarchy of Bifurcations Formulation of Results H0 (x,y,I) • Level 1 • Single energy surface - EMBD, Fomenko • Level 2 • Energy bifurcation values - Changes in EMBD • Level 3 • Parameter dependence of the energy bifurcation values - k, Ω The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Level 1: Singularity Surfaces Construction of the EMBD (Energy Momentum Bifurcation Diagram) Fixed Point x=0 y=0 x=±x2 y=0 x =0 y=±y3 x =±x4 y=±y4 H(xf , yf , I; k=const, Ω=const) H1 H2 H3 H4 [Litvak-Hinenzon & RK - 03’] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results EMBD Iso-energy surfaces H4 H3 H1 H2 Parameters k and are fixed. Dashed – Unstable, Solid – Stable The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Level 2: Bifurcations in the EMBD Each iso-energy surface can be represented by a Fomenko graph 4 5* Energy bifurcation value 6 Formulation of Results The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Possible Energy Bifurcations • Folds Branching Crossings - Resonances –surfaces Global Bifurcation – Parabolic Circles H Iθp1 0H 3 0 H I I H [ Full classification: Radnovic + RK, RDC, Moser 80 issue, 08’ ] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Level 3: Changing parameters, energy bifurcation values can coincide • Example: Parabolic Resonance for (x=0,y=0) • Resonance IR= Ω2 hrpw = -½ Ω4 • Parabolic Circle Ip= ½ k2 hppw = ½ k2(¼ k2 - Ω2) Parabolic Resonance: IR=IP k2=2Ω2 Formulation of Results Periodic NLS (Review) The Problem ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Perturbed solutions classification Integrable - a point Perturbed – slab in H0 ? • Away from sing. curve: Regular / KAM type • Near sing. curve: Standard phenomena (Homoclinic chaos, Elliptic circles) √ • Near energy bif. val.: Special dyn phenomena (HR,PR,ER,GB-R …) The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Numerical simulations I I H0 H0 I H0 The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Numerical simulations – Projection to EMBD I I H0 H0 I H0 The Problem ODE Phase Space and Bifurcations Periodic NLS (Review) PDE Phase Space Description Bifurcations in the PDE Spatio-Temporal Chaos Formulation of Results - iB t Bxx ( B - Ω 2 )B 0 2 Looking for the standing waves of the NLS B Ψ E (x)e iEt Ψ E (x) R The eigenvalue problem is received (Duffing system) HE Ψ E ( xx Ψ E - Ω 2 )Ψ E EΨ E Periodic b.c. select a discretized family of solutions! 2 Phase space of the Duffing eq. Denote: U ΨE , V x ΨE solution U a dn(a x, ) , U x V 1 2 2 3 b1cn(b 2 x, ) V ( E ) U U x The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Bifurcation Diagrams for the PDE We get a nonlinear bifurcation diagram for the different stationary solutions ΨE ( x) : EMBD – I(ΨE ( x)) vs. H(Ψ E ( x)) Standard – I(ΨE ( x)) vs. E The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Classification of initial conditions in the PDE Unperturbed Perturbed KAM like Perturbed Chaotic The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Previous: Spatial decoherence - iB t Bxx ( B - Ω 2 )B εeiθ0 iB 2 For asymmetric initial data with strong forcing and damping (so there is a unique attractor) Behavior is determined by the #LUM at the resonant PW: • Ordered behavior for 0 LUM • Temporal Chaos for 1 LUMs • Spatial Decoherence for 2 LUMs and above Temporal chaos θ₀ Spatio-temporal chaos [D. McLaughlin, Cai, Shatah] The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results New: Hamiltonian Spatio-temporal Chaos - iB t Bxx ( B - Ω 2 )B εeiθ0 2 • All parameters are fixed: The initial data B0(x) is almost flat, asymmetric for all solutions - δ=10-5. B0(x) |B| δ Bpw(x) The initial data is near a unperturbed stable plane wave I(B0) < ½k2 (0 LUM). Perturbation is small, ε= 0.05. x Ω2=0.1 • Ω2 is varied: Ω2=0.225 Ω2=1 The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Spatio-Temporal Chaos Characterization A solution B(x,t) can be defined to exhibit spatio-temporal chaos when: • B(x,t) is temporally chaotic. • The waves are statistically independent in space. • When the waves are statistically independent, the averaged in time for T as large as possible, T → ∞, the spatial Correlation function decays at x = |L/2|. • But not vice-versa. [Zaleski 89’,Cross & Hohenberg93’,Mclaughlin,Cai,Shatah 99’] The Problem ODE Phase Space and Bifurcations Periodic NLS (Review) PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results The Correlation function t T / 2 L / 2 C T ( B, y , t ) * B ( x , s ) B ( x y, s )dxds t T / 2 L / 2 t T / 2 L / 2 B ( x, s ) 2 dxds Properties: • Normalized, for y=0, CT(B,0,t)=1 • T is the window size • For Spatial decoherence, the Correlation function decays. Re(CT(B,y,T/2)) t T / 2 L / 2 1 Coherent |x/L| De-correlated The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Intermittent Spatio-Temporal Chaos • While the Correlation function over the whole time decays the windowed Correlation function is intermittent HR ER PR The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Choosing Initial Conditions Projecting the perturbed solution on the EMBD: Parabolic Resonant like solution • Decoherence can be characterized from the projection • “Composition” to the standing waves can be identified The Problem ODE Phase Space and Bifurcations Periodic NLS (Review) PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Conjecture / Formulation of Results • For any given parameter k, there exist εmin = εmin(k) such that for all ε > εmin there exists an order one interval of initial phases γ(0) and an O(√ε)-interval of Ω2 values centered at Ω2par that drive an arbitrarily small amplitude solution to a spatial decoherent state. ε STC √ε εmin(k) Ωpar Ω The Problem Periodic NLS (Review) Spatio-Temporal Chaos PDE Phase Space Description Formulation of Results Conjecture / Formulation of Results • Here we demonstrated that such decoherence can be achieved with rather small ε values (so εmin(0.9) ~ 0.05). • Coherence for long time scales may be gained by either decreasing ε or by selecting Ω2 away from the O(√ε)-interval. The Problem Periodic NLS (Review) ODE Phase Space and Bifurcations PDE Phase Space Description Spatio-Temporal Chaos Formulation of Results Summary • We analyzed the ODE with Hierarchy of bifurcations and received a classification of solutions. • Analogously to the analysis of the two mode model we constructed an EMBD for the PDE and showed similar classification. • We showed the PR mechanism in the ODE-PDE. Initial data near an unperturbed linearly stable plane wave can evolve into intermittent spatio-temporal regime. • We concluded with a conjecture that for given parameter k there exists an ε that drives the system to spatio-temporal chaos. Thank you! http://www.wisdom.weizmann.ac.il/~elis/
© Copyright 2026 Paperzz