Exam next week • Covers everything about all sensory modalities except hearing • This includes: vision balance/touch/taste/smell/ proprioception/theroception Color Vision Perceiving Color • Primary colors Red Green Blue Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone “Blue” “Green” “Red” Signal to Brain Blue Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone Signal to Brain “Blue” “Green” “Red” Green Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone Signal to Brain “Blue” “Green” “Red” Red Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone Signal to Brain “Blue” “Green” Equal Parts Red and Green = Yellow “Red” Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone Signal to Brain “Blue” “Green” Equal Parts Red and Green = Yellow “Red” Color Vision Trichromatic Theory of Color Vision Wavelength Input Cone Signal to Brain “Blue” “Green” Equal Parts Red and Green = Yellow “Red” Theories of Color Vision: Trichromatic Theory • Problem with Trichromatic Theory: YELLOW Theories of Color Vision: Opponent-Process Theory • Opponent-Process Theory – color is determined by outputs of two different continuously variable channels: • red - green opponent channel • blue - yellow opponent channel Theories of Color Vision: Opponent-Process Theory • Opponent-Process Theory – Red opposes Green – (Red + Green) opposes Blue • Opponent-Process Theory explains color afterimages – because the “opposite” of blue is yellow, the “opposite” of green is red, etc. • Everything you’ve learned so far is wrong. • Everything you’ve learned so far is wrong. • Well, not really wrong, just far from complete. What Newton Found (and everyone believed) • White light can be split into all wavelengths by a prism • According to previous theories: two wavelengths combine to yield intermediate color and no others Red + Green = YELLOW What Newton Found (and everyone believed) • White light can be split into all wavelengths by a prism • According to previous theories: two wavelengths combine to yield intermediate color and no others • Red + Green light can never yield blue • Blue + Green light can never yield red What twist did Land do to this paradigm that confounds the conventional understanding of color mixing? What Land found: • Two bands (colors) of the spectrum recombine to produce all the possible colors – provided the appropriate relative amount of each wavelength is projected transparency slides How did Land project the “appropriate” ratio of wavelengths? Short- and Long- “record” Camera • Capture two greyscale images of the scene using filters that allow only the film wavelengths you will project “Long” filter Object “short” filter Projector “Long” filter “short” filter Image Camera splits image into maps of “longer” and “shorter” wavelengths long filter medium filter Projector combines “longer” and “shorter” wavelengths using the maps to get the appropriate amounts of each long/“red” light medium/ “green” light Viewer perceives desaturated hues including blues What is Land’s interpretation? How do we perceive color? Land’s interpretation: • perception of color is a weighing of the ratio of shorter and longer wavelengths Land’s interpretation: • perception of color is a weighing of the ratio of shorter and longer wavelengths Why would the visual system have evolved this way? Why would the visual system have evolved this way? • Hint: “Within broad limits, the actual values of the wavelengths make no difference, nor does the over-all available brightness of each” What is color for? • What is color vision used for? – Identification - what is this thing? – Discrimination - what other things is this thing like? – Communication - indicates this thing to others • But in each case color refers not to the illuminating light, but to the surface of the object itself What is color for? Does the color of an object remain constant under different lighting conditions? Color Constancy Sunlight Relative Intensity Relative Intensity • The “color” of objects is independent of the ambient light – even though light can vary dramatically Wavelength Incandescent Light Color Constancy • Because of our mechanism of color constancy we can even use completely artificial spectra Color Constancy • The “color” of objects is independent of the ambient light Next Time • ATTENTION!
© Copyright 2026 Paperzz