ws 2

MATH /stat 304
worksheet II
Axioms of probability
Conditional probability
independence
1.
Carefully state the three axioms of a probability law on a sample space ๏—.
2. Let A, B, C be events in a sample space ๏—๏€ฎ Using only the axioms prove that
(a) P(A) + P(Ac) = 1.
(b) if ๐ด โŠ‚ ๐ต ๐‘กโ„Ž๐‘’๐‘› ๐‘ƒ(๐ด) โ‰ค ๐‘ƒ(๐ต).
(c) ๐‘ƒ(๐ด โˆช ๐ต) = ๐‘ƒ(๐ด) + ๐‘ƒ(๐ต) โˆ’ ๐‘ƒ(๐ด โˆฉ ๐ต).
(d) ๐‘ƒ(๐ด โˆช ๐ต) โ‰ค ๐‘ƒ(๐ด) + ๐‘ƒ(๐ต).
(e) ๐‘ƒ(๐ด โˆช ๐ต โˆช ๐ถ) = ๐‘ƒ(๐ด) + ๐‘ƒ(๐ต โˆฉ ๐ด๐‘ ) + ๐‘ƒ(๐ถ โˆฉ ๐ด๐‘ โˆฉ ๐ต๐‘ )
3. Let A and B be events and assume that P(B) โ‰  0. Define conditional probability, P(A|B),
of A given B.
4. Let B be an event in ๏—. Prove that ๐‘ƒ(โˆ™ |๐ต) is a probability measure on the new sample
space B.
5. Let A and B be events in a sample space ๏—๏€ฎ๏€ ๏€ Define: โ€œA and B are independent.โ€
6. Consider the following experiment: A four-sided die is tossed twice and the results X, Y
recorded. Assume that this experiment defines an equiprobable sample space.
Let E be the event โ€œX + Y = 4โ€.
Let F be the event โ€œminimum of X and Y is 2โ€.
Calculate each of the following:
(a)
(b)
(c)
(d)
P(E)
P(F)
P(F๏ƒท E)
P( E๏ƒท F)
Are E and F independent events?
2