MATH /stat 304 worksheet II Axioms of probability Conditional probability independence 1. Carefully state the three axioms of a probability law on a sample space ๏. 2. Let A, B, C be events in a sample space ๏๏ฎ Using only the axioms prove that (a) P(A) + P(Ac) = 1. (b) if ๐ด โ ๐ต ๐กโ๐๐ ๐(๐ด) โค ๐(๐ต). (c) ๐(๐ด โช ๐ต) = ๐(๐ด) + ๐(๐ต) โ ๐(๐ด โฉ ๐ต). (d) ๐(๐ด โช ๐ต) โค ๐(๐ด) + ๐(๐ต). (e) ๐(๐ด โช ๐ต โช ๐ถ) = ๐(๐ด) + ๐(๐ต โฉ ๐ด๐ ) + ๐(๐ถ โฉ ๐ด๐ โฉ ๐ต๐ ) 3. Let A and B be events and assume that P(B) โ 0. Define conditional probability, P(A|B), of A given B. 4. Let B be an event in ๏. Prove that ๐(โ |๐ต) is a probability measure on the new sample space B. 5. Let A and B be events in a sample space ๏๏ฎ๏ ๏ Define: โA and B are independent.โ 6. Consider the following experiment: A four-sided die is tossed twice and the results X, Y recorded. Assume that this experiment defines an equiprobable sample space. Let E be the event โX + Y = 4โ. Let F be the event โminimum of X and Y is 2โ. Calculate each of the following: (a) (b) (c) (d) P(E) P(F) P(F๏ท E) P( E๏ท F) Are E and F independent events? 2
© Copyright 2026 Paperzz