PERFORMANCE ASSESSMENT OF A BAYESIAN FORECASTING SYSTEM (BFS) FOR REALTIME FLOOD FORECASTING Biondi D. , De Luca D.L. Laboratory of Cartography and Hydrogeological Modeling, University of Calabria (Italy) GOALS Properties of BFS under different hypothesis Adeguate verification tools for probabilistic forecasts → robust analysis of forecasting capability Interaction among different sources of error GOALS Properties of BFS under different hypothesis Adeguate verification tools for probabilistic forecasts → robust analysis of forecasting capability Interaction among different sources of error Few Studies Stochastic model for rainfall prediction Effect of more intense rainfall events Journal of Hydrology , Volume 479, 4 February 2013, Pages 51-63 BFS ARCHITECTURE Deterministic Hydrological Model Probabilistic Quantitative Precipitation Forecast (PQPF) Precipitation Uncertainty Processor (PUP) Hydrologic Uncertainty Processor (HUP) s n n yn | sn , y0 , Integrator INT Some refs: Krzysztofowicz,1999 Krzysztofowicz & Kelly, 2000 Kelly & Krzysztofowicz, 2000 Krzysztofowicz & Herr, 2001 Krzysztofowicz, 2001 Krzysztofowicz, 2002 Krzysztofowicz & Maranzano, 2004 Maranzano & Krzysztofowicz, 2004 Krzysztofowicz & Maranzano, 2004 Other input n yn | y0 Prior y0 PRECIPITATION UNCERTAINTY PROCESSOR (PUP) PQPF –PRAISE stochastic model (Prediction of Rainfall Amount Inside a Storm Event, Sirangelo et al., 2007) W total precipitation amount on T t1 s3 t2 n sn PSn sn t3 n sn T=1 hour i 1, 2, ..., M wi, j j 1, 2, ..., T t Perfect Deterministic Hydrological Model (RISE) s n sn 0 PQPF 1 a a 'n sn sn sn 0 Other input a t0 s2 a PW 0 PUP PRAISE s n Integrator INT 1-a s1 M simulations for W Sn evaluation of Yn at tn sn0 Sn HYDROLOGIC UNCERTAINTY PROCESSOR (HUP) Deterministic Hydrological Model Off-line estimation other input sn Observed rainfall data (perfect input) HUP Prior y0 n yn | sn , y0 , T y0 t2 t1 s1 y1 ? t1 s2 t2 Integrator INT t3 y2 ? s3 Posterior Likelihood Prior f n sn yn , y0 g n yn y0 n yn sn , y0 k n sn y0 y3 ? t3 Precipitation dependent processor (Krzysztofowicz & Herr, 2001) t0 n=1 n=2 n=3 W=0 V=0 n0 yn sn , y0 ,V 0 W>0 V=1 n1 yn sn , y0 ,V 1 INTEGRATORE (INT) i 1, 2, ..., M wi , j j 1, 2, ..., T t a PW 0 PQPF (PRAISE) Deterministic Hydrological Model (RISE) s n sn 0 sn PUP PV 1 Altri input Prior HUP s n y0 n yn | sn , y0 , Integrator INT n yn | y0 00 y0 1 a n yn | y0 n 0 y n | sn 0 , y0 0 y0 01 y0 a n1 yn | sn , y0 n' sn dsn 0 y0 s n0 CASE STUDY AND DATA DESCRIPTION Area 29.2 km2 DTM resolution 30 m Max Altitude 1015 m Min Altitude 75 m Mean Altitude 291 m 1. Database November – March heights forecast with1991 2.Rainfall Precipitation t =- 2005 20 min River discharges 2000 – 2005 3. Precipitation forecasting period T = 1 hour t = 20 min 4. V = 0 ↔ 0 < W < 2 mm and V = 1 ↔ W ≥ 2 mm 5. probabilistic forecasts of river discharge in 1-h steps Selected flood events ID Date 1 2 3 4 5 6 7 8 9 28/12/2000 24/12/2000 01/01/2003 07/01/2003 28/01/2004 28/02/2004 14/02/2005 26/02/2005 06/03/2005 Qmax (m3/s) 17.75 14.32 19.57 16.00 28.78 18.35 21.25 20.40 18.55 HYPOTHESES ABOUT BFS a) Perfect hydrological model n (.) is provided by PUP, and estimated on the basisi on observed discharge y0, and probability a e , evaluated on-line. (UD) (4) y 1 a 01 y0 a ' n yn | y0 00 0 n yn 0 y0 0 y0 prior distribution Gn(·|y0) (PD), b) Non-informative PQPF for discharge forecasting with climati prior probability ’ y n sn 0 00 y0 1 ' 01 y0 ' Gn yn | y0 Gn 0 yn | y0 Gn1 yn | y0 0' y0 0' y0 c) Perfect PQPF: The BFS provides a predictive distribution equal to the posterior distribution (HD) , provided by HUP. 1 1 1 Q ( ( y )) A Q ( ( s )) D Q ( ( y )) B nv nv n nv n nv 0 v 0 nv ( y | s , y ) Q nv n n 0 T nv d) Total predictive distributon (TD), which takes into account both sources of uncertainty; s 00 y0 1 1 a a n yn n 0 yn | sn 0 , y0 n 0 y n | sn , y 0 n' sn dsn 1 s 1 0 y0 01 y0 a ' y | s , y s ds 0 y0 s n1 n n 0 n n n n1 n0 n1 EVALUATION TOOLS FOR FORECAST VERIFICATION (MURPHY, 1993) • Calibration: probabilistic correctness of the forecasts or the statistical consistency between the observed time series and its predictive distribution (Reliability) • Sharpness: the spread of the predictive distribution of the forecasts (attribute only for forecasts) • Accuracy: Agreement between an observed value and a representative index, assumed as the best deterministic prediction (expected value, median, etc.) • CRPS: Continuous Ranked Probability Score (Brown, 1974;Hersbach, 2000) CRPS y n 0 n | y0 H yn yobs, n dy n 2 y H PROBABILISTIC CALIBRATION Empirical cumulative distribution Negative Bias Positive Bias Under dispersion Over dispersion zi=yobs,i) zi=yobs,i) should be i.i.d. U[0,1] Nz z 1 2 i 1 zit R i / Nz Nz z 1 Nz 1(0,1) zit / N z i 1 1 if zit 0 or zit 1 1( 0,1) zit 0 otherwise Laio & Tamea, 2007; Renard et al., 2010 RESULTS – CALIBRATION a) b) 1 Ri/Nz 1 Ri/Nz UD UD PD 0.8 PD 0.8 TD TD HD HD 0.6 0.6 0.4 0.4 5 % Kolmogorov bands 0.2 0 0.2 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 zi t zi t n = 1 hour n = 2 hours Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore n st Z Z UD PD HD TD UD PD HD TD UD PD HD TD 1 hour 8.69 1.60 1.33 1.22 0.50 0.72 0.74 0.84 0.46 1.00 1.00 1.00 2 hours 4.31 -1.24 -0.21 0.25 0.61 0.62 0.83 0.84 0.47 1.00 0.97 1.00 - UD: significant positive bias (many observed values with a predictive probability very small or null) a very narrow distribution - PD: a marked underestimation associated to forecasted values - HD: an overestimation for forecasts (due to the adopted hydrological model) - TD: a slight overestimation associated to predicted values RESULTS - SHARPNESS Box-plot for InterQuartile Range (IQR) 10 10 Forecast interval width (m3/s) b) 12 Forecast interval width (m3/s) a) 12 8 6 75 % 4 25 % 2 0 PD HD n = 1 hour 2. 3. 4. 5. 6 4 2 0 UD 1. 8 Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore TD UD PD HD TD n = 2 hours TD provides the worst results, with respect to the other BFS hypotheses, and median value of IQR is the highest. HD is characterized by an higher sharpness (only Hydrological Uncertainty is considered) compared with TD UD provides the narrowest bands. For n = 1 hour, PD has a median IQR similar to UD but the bands are wider. For n = 2 hours UD has a median IQR less than n=1 hour, unlike other BFS hypotheses. This is due to the presence of sn0, which implies truncated probability distributions with generally small values of CV. RESULTS - SHARPNESS . Event #2 uncertainty bands for n=1 hour UD 50% 25% 20 22:40 22.20 22:00 21.40 21:20 21.00 20:40 18.20 22:40 22.20 22:00 21.40 21:20 0 21.00 0 20:40 5 20.20 5 20:00 10 19.40 10 20.20 15 20:00 15 5% 19.40 m3/s 5% 19:20 observed discharge 75% 25% 18:40 95% 30 25 50% 18.20 m3/s 20 b) 19:20 75% 25 observed discharge 19.00 95% 18:40 30 19.00 a) PD Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore HD 20 22:40 22.20 22:00 21.40 21:20 21.00 20:40 20.20 20:00 22:40 22.20 22:00 21.40 21:20 21.00 0 20:40 0 20.20 5 20:00 5 19.40 10 19:20 5% 15 10 18:40 25% 19.40 15 50% 19:20 5% observed discharge 19.00 25% 18.20 m3/s 20 95% 75% 25 50% m3/s 25 d) 30 18:40 75% TD observed discharge 18.20 95% 19.00 c) 30 (Biondi & De Luca, 2011) RESULTS - ACCURACY a) b) 35 35 Inside Interquartile UD 30 30 25 Inside Interquartile PD Outside Interquartile Outside Interquartile 25 50% quantile (m3/s) 50% quantile (m3/s) n = 1 hour 20 15 10 20 15 10 18% 5 40% 5 RMSE=7.7 0 0 0 c) 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 d) Observed discharge (m3/s) Observed discharge (m3/s) 35 Inside Interquartile Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore Inside Interquartile 35 HD 30 TD Outside Interquartile 30 25 50% quantile (m3/s) 50% quantile (m3/s) RMSE=6.2 20 15 10 44% 5 Outside Interquartile 25 20 15 10 51% RMSE=5.4 5 RMSE=5.2 0 0 0 5 10 15 20 25 Observed discharge (m3/s) 30 35 0 5 10 15 20 Observed discharge 25 (m3/s) 30 35 RESULTS - ACCURACY a) b) 35 35 Inside Interquartile UD 30 30 25 Inside Interquartile PD Outside Interquartile Outside Interquartile 25 50% quantile (m3/s) 50% quantile (m3/s) n = 2 hours 20 15 10 20 15 10 11% 5 36% 5 RMSE=7.4 0 0 0 c) 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 d) Observed discharge (m3/s) Observed discharge (m3/s) 35 Inside Interquartile Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore Inside Interquartile 35 HD 30 TD Outside Interquartile 30 25 50% quantile (m3/s) 50% quantile (m3/s) RMSE=7.1 20 15 10 36% 5 Outside Interquartile 25 20 15 10 38% RMSE=7.9 5 RMSE=6.1 0 0 0 5 10 15 20 25 Observed discharge (m3/s) 30 35 0 5 10 15 20 Observed discharge 25 (m3/s) 30 35 RESULTS - CRPS CRPS n UD PD HD TD 1 ora 5.27 3.43 2.63 2.82 2 ore 5.00 4.48 3.54 4.29 F(y) Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore n=2 n=1 Sn0 Sn0 yobs y CONCLUSIONI CONCLUSIONS Calibration TD: best results PD – HD: negative and positive bias, respectively UD: marked overprediction (due to sn0) Sharpness UD: the best results (due to sn0) TD: the worst results Accuracy and CRPS TD and HD: the best results (TD is the best for a real time prediction) Crucial role of HUP Similar results beyond T Importance of performing a comprehensive analysis by using different validation tools (in order to avoid misleading conclusions) Figura 1. Diagrammi QQ-plots per a) n=1 ora e b) n=2 ore
© Copyright 2026 Paperzz