Discrete Fourier Transform ENE 208 Electrical Engineering Mathematics (2/2008) Class 4, January 26, 2009 [email protected] 1 Amplitude Modulation (AM) Frequency shifting, ℑ{f(t)ej2πf0t} = ∫f(t)ej2πf0 te–j2πftdt = ∫f(t)e–j2π(f–f0)tdt ℑ F(f–f0) f(t)ej2πf0 t ℑ–1 AM, ℑ{ f(t) cos(2πf0t) } = ½ ℑ{ f(t) ej2πf0 t } + ½ ℑ{ f(t) e–j2πf0 t } = ½ F(f–f0) + ½ F(f+f0) ℑ{AM} –f0 0 f0 f 2 1 Convolution f(t)∗g(t) = ∫τ=–∞→∞ f(τ) g(t–τ) dτ = ∫τ=–∞→∞ g(τ) f(t–τ) dτ = g(t)∗f(t) 3 Convolution (Cont’d) f(t) 0 t g(t) 0 t g(t– τ) f(t) … 0 … τ 4 t 2 Unit Step Function u(t) 1 0 t u(t) = 0 , t<0 = 1 , t>0 Unit step function is discontinuous at t=0. 5 Unit Impulse Function (Dirac Delta Function) δ(t) = du(t)/dt u(t) = ∫τ=–∞→t δ(τ) dτ or To derivative u(t) at t=0, uε(t) 1 θ 0 ε t δε(t) = duε(t)/dt = slope = tanθ = 1/ε δε(t) Area = 1 1/ε 0 ε t 6 3 Unit Impulse Function (Cont’d) δ(t) 0 t δ(t) = limε→0 δε(t) Therefore the area under the curve is infinite. • δ(t) = 0 when t≠0 • δ(t) is not defined at t=0 (∞) • ∫t=–∞→∞ δ(t) dt = 1 • f(t) δ(t–t0) = f(t0) δ(t–t0) • δ(t) = δ(–t) even function • ℑ{δ(t)} = ∫t=–∞→∞ δ(t)e–j2πft dt = ∫t=–∞→∞ δ(t) dt = 1 7 Sampling Convolution of unit impulse function, ∫t=a→b f(t) δ(t–tk) dt = ∫t=a→b f(tk) δ(t–tk) dt = f(tk) ∫t=a→b δ(t–tk) dt = f(tk) ∫t=a→b δ(t–tk) d(t–tk) = f(tk) f(t) δ(t–t0) δ(t–t1) … 0 f(t)∗δ(t) = f(t) f(tk) discrete, if tk discrete … t0 t1 t 8 4 Sampling (Cont’d) Nyquist rate: What’s the least number of points we need to tell that a wave is oscillating once? 1 oscillation → 2 points 2 oscillation → 4 points … N/2 oscillation → N points fsampling ≥ 2fmax 9 Impulse Response Input System Output x(t) g(t) y(t) = x(t)∗g(t) δ(t) Impulse ? g(t) Impulse Response 10 5 Discrete-time Fourier Transform f(t) = f(kτ) where discrete-time k is integer 0 τ 2τ 3τ … … … … F(f) = ∫t=–∞→∞ f(t) e–j2πft dt = Σk=–∞→∞ τ f(kτ) e–j2πfkτ = τ Σk=–∞→∞ f(kτ) e–j2πτfk = Σk=–∞→∞ f(k) e–j2πfk Maximum frequency, fmax = 1/Tmin = 1/τ t 11 Discrete-time Fourier Transform (Cont’d) ejθ = cosθ + j sinθ = cos(θ+2π) + j sin(θ+2π) = ej(θ+2π) F(f) = Σk=–∞→∞ f(k) e–j2πfk F(ω) = Σk=–∞→∞ f(k) e–jωk F(ω+2πn) = Σk=–∞→∞ f(k) e–j(ω+2πn)k , n=0,1,2,… = Σk=–∞→∞ f(k) e–jωk e–j2πnk = Σk=–∞→∞ f(k) e–jωk = F(ω) “Periodic spectrum” Note: e–j2πnk = cos(2πnk) – j sin(2πnk) = 1 12 6 Discrete-time Fourier Transform (Cont’d) Inverse transform, ∫f=–∞→∞F(f)ej2πτfkdf = ∫f=–∞→∞ [τΣk=–∞→∞f(kτ)e–j2πτfk] ej2πτfkdf = τ Σk=–∞→∞ f(kτ) ∫f=–∞→∞e–j2πτfkej2πτfkdf = τ Σk=–∞→∞ f(kτ) ∫f=–∞→∞df = Σk=–∞→∞ f(kτ) = Σk=–∞→∞ f(t)δ(t–kτ) δ(t–τ) δ(t–2τ) f(t) … 0 … τ 2τ t 13 Discrete Fourier Transform f(t) 2τ 3τ 0 τ … … (N–2)τ (N–1)τ N points t Fundamental frequency, fmin = 1/Tmax = 1/Nτ where n=0,1,2,…,N-1 f = n fmin = n / Nτ 14 7 Discrete Fourier Transform (Cont’d) F(f) = τ Σk=–∞→∞ f(kτ) e–j2πτfk F(n/Nτ) = τ Σk=0→N-1 f(kτ) e–j2πτ(n/Nτ)k F(n) = τ Σk=0→N-1 f(k) e–j2πnk/N = Σk=0→N-1 f(k) e–j2πnk/N , if τ=1 15 Discrete Fourier Transform (Cont’d) Discrete Fourier transform F(n) = Σk=0→N-1 f(k) e–j2πnk/N , n=0,1,2,…,N-1 Inverse Discrete Fourier Transform f(k) = 1/N Σn=0→N-1 F(n) e–j2πnk/N , k=0,1,2,…,N-1 16 8 Implementation F(n) = Σk=0→N–1 f(k) e–j2πnk/N = Σk=0→N–1 ωnk f(k) where ω = e–j2π/N = cos(2π/N) – j sin(2π/N) DFT, F(n) = 1 1 1 1 . . . 1 1 ω ω2 ω2 ω4 ω3 ω6 1 ω3 ω6 ω9 . . . . . . . . . … 1 … ωN–1 … ω2(N–1) … ω3(N–1) f(0) f(1) f(2) f(3) . . . . . . 1 ωN–1 ω2(N–1) ω3(N–1) … ω(N–1)(N–1) f(N–1) (N–1)×(N–1) (N–1)×1 = Ғ(ω)(N–1)×(N–1) f(t)(N–1)×1 17 Implementation (Cont’d) Inverse DFT, f(k) = 1/N Ғ(ω)(N–1)×(N–1) F(n)(N–1)×1 where ω = 1/ω = ej2π/N 18 9 Harmonics An integer multiple of the fundamental frequency (fmin) e.g. Signal with N points 0 1 2 … 3 N–1 Time Tmax We get N frequencies 0 fmin 2fmin 3fmin DC Tmax Tmax Tmax 2 3 … … (N–1)fmin Tmax N–1 Frequency Period 19 Dealing with Nyquist Rate fsampling ≥ 2fmax 1/τ ≥ 2/Tmin Tmin ≥ 2τ fFundamental = fmin = 1/Tmax = 1/Nτ Harmonics, nfmin = n/Nτ , n=0,1,2,3,… e.g. Signal with N points (even) f(t) = f(kτ) , k=0,1,...,N-1 1 2 3 0 τ Tmin = 2τ Tmax = Nτ … N-1 fmax = nmaxfmin nmax = fmax/fmin = Tmax/Tmin t = Nτ/2τ = N/2 20 10 Properties Imaginary • Conjugate Symmetry F(f) = F∗(-f) |F(f)| = |F∗(-f)| F = R+jI = |F|ejφ |F| φ 0 -φ Real |F∗| φ = ωt = 2πft F∗ = R–jI = |F|e–jφ • Periodicity f(k) = f(k+N) F(n+N) = Σk=0→N-1 f(k) e–j2π(n+N)k/N = Σk=0→N-1 f(k) e–j2πnk/N e–j2πk = F(n) Note: e–j2πk = cos(2πk) – j sin(2πk) = 1 21 Shifting of DFT By multiplying f(k) by (-1)k before the transform f(k)ej2π(N/2)k = f(k)(ejπN)k = f(k)(–1)k N–1 0 -N/2 N/2–1 N/2 F(0) is DC Coefficient = Σf(k) F(1) is Fundamental Frequency Coefficient |F(f)| N f N f 1 Period (N Samples) 0 N-1 –N/2 N/2–1 N/2 |F(f)| 22 11 Displaying Transform • For f(k) → F(n), |F(0)| is usually very much larger than all other values. • Take stretching out the values by |F(n)|new = log( 1 + |F(n)|old ) |F(n)|new -1 0 |F(n)|old 1 23 Discrete Time & Discrete Frequency Time Frequency Discrete-time Fourier Transform • Discrete • Continuous • Non-periodic • Periodic Discrete Fourier Transform • Discrete • Periodic • Discrete • Periodic 24 12 Filtering F(f) f(t) DFT 0 F(f)H(f) 0 t f H(f) Lowpass Filter 1 0 f0 Filtering 0 f f f(t) Filter h(t) f(t)∗h(t) F(f) Filter H(f) F(f)H(f) 25 Filtering (Cont’d) G(f) = 1 – H(f) 1 0 Highpass Filter f0 f Bp(f) Bandpass Filter 1 0 f1 f2 f Br(f) Bandreject Filter 1 0 f1 f2 f 26 13 Happy Chinese New Year 2009 ^_^ “Learn without thinking begets ignorance. Think without learning is dangerous.” 27 14
© Copyright 2026 Paperzz