Phys 628: HW #1 Jason E. Turnquist 1 Normally Distributed Random Data The below figures where created in MATLAB 2007a using normally distributed random data. The Box-Muller algorithm(1) was used to create a normally distributed ensemble with zero mean (µ = 0) and unit variance (σ 2 = 1) from two sets of uniformly distributed random numbers in the interval (0, 1]. Using a linear transform of the form X = σZ + µ, the ensemble was given mean, µ = −1 and standard deviation, σ = 0.5. N ormal y Di stri b u ted R an d o m Data µ = -0. 9 3713, σ = 0. 48772 0.5 0 −0.5 −1 −1.5 −2 −2.5 0 10 20 30 40 50 60 70 80 90 100 10 8 6 4 2 0 −2.5 −2 −1.5 −1 −0.5 0 0.5 −0.5 0 0.5 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −2.5 −2 −1.5 −1 Figure 1. Normally distributed random data for n = 100. Preprint submitted to Elsevier February 1, 2010 N ormal y Di stri b u ted R an d om Data µ = -1. 020 2, σ = 0. 49852 1 0 −1 −2 −3 0 100 200 300 400 500 600 700 800 900 1000 70 60 50 40 30 20 10 0 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 −0.5 0 0.5 1 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −3 −2.5 −2 −1.5 −1 Figure 2. Normally distributed random data for n = 1000. N ormal l y Di stri b u ted R an d om Data µ = -0. 999 87, σ = 0. 49991 1 0 −1 −2 −3 −4 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 700 600 500 400 300 200 100 0 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −3 −2.5 −2 −1.5 −1 −0.5 0 Figure 3. Normally distributed random data for n = 10000. 2 0.5 1 For a small number of data points (n) the set approximates a normal distribution. Increasing the numbers of data points the ensemble more closely approximates the normal distribution as can be seen in the histograms for n = 100, 1000, 10000. By increasing the number of data points the Discrete Cumulative Distribution(4), begins to become smoother and can be approximated by D (x) = � P (x) X≤x � 1 ≈ 1 + erf 2 � x−µ √ σ 2 �� where P (x) is the normal distribution. 2 Uniformly Distributed Random Data The below figures where created in MATLAB 2007a using uniformly distributed random data centered about zero (µ = 0) and contained in the interval [−2, 2]. U n i forml y Di stri b u ted R an d om Data µ = -0. 027 338, σ = 1. 2243 2 1 0 −1 −2 0 10 20 30 40 50 60 70 80 90 100 5 4 3 2 1 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0.5 1 1.5 2 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −2 −1.5 −1 −0.5 0 Figure 4. Uniformly distributed random data for n = 100. 3 U n i forml y Di stri b u ted R an d om Data µ = -0. 004 6231, σ = 1. 1821 2 1 0 −1 −2 0 100 200 300 400 500 600 700 800 900 1000 30 25 20 15 10 5 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0.5 1 1.5 2 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −2 −1.5 −1 −0.5 0 Figure 5. Uniformly distributed random data for n = 1000. U n i forml y Di stri b u ted R an d om Data µ = 0. 000 49312, σ = 1. 1619 2 1 0 −1 −2 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 250 200 150 100 50 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0.5 1 1.5 2 Cumul i ti ve D i stri buti on 1 0.8 0.6 0.4 0.2 0 −2 −1.5 −1 −0.5 0 Figure 6. Uniformly distributed random data for n = 10000. 4 Discrete uniformly distributed(2) data has a constant probability. That is for a set of random elements, the nth element has an equal probability of taking on a value as any other element in the finite set. For a uniform distribution on the interval [a, b], the discrete probability density function is a step function and the discrete cumulative distribution function is a linear line with positive slope. This can be seen in the above figures. As the size of the ensemble increases, the closer the probability density (histogram) approximates a step function and the discrete cumulative distribution approximates a positive slope line with slope m ≈ x−a , over the interval [a, b] = [−2, 2]. b−a References [1] Weisstein, Eric W. "Box-Muller Transformation." From MathWorldA Wolfram Web Resource.http://mathworld.wolfram.com/BoxMullerTransformation.html [2] Weisstein, Eric W. "Normal Distribution." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/NormalDistribution.html [3] Weisstein, Eric W. "Uniform Distribution." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/UniformDistribution.html [4] Weisstein, Eric W. "Distribution Function." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/DistributionFunction.html 5
© Copyright 2026 Paperzz