UDC 535.3 Nikolay Gorlov Siberian state University of telecommunications and Informatics, Novosibirsk, Russia [email protected] Ali Mehtiyev Karaganda state technical University, Karaganda, Kazakhstan [email protected] Elena Neshina Karaganda state technical University, Karaganda, Kazakhstan [email protected] Arkadiy Bilichenko Karaganda state technical University, Karaganda, Kazakhstan [email protected] THE RESULTS OF INVESTIGATIONS OF LIGHT WAVES SCATTERING AND REFLECTION IN OPTICAL FIBER The article presents the research results of optical radiation parameters. It was calculated the maximum power level of the reflected light and inverse scattering light. It was made an estimate of the receiver sensitivity by averaging the signals. It was carried out the diagram of the levels of light wave power reflection in the fiber. The testing is performed using a reflectometer Optical Time Domain Reflectometer. It was estimated the influence of the index of reflection of backscattered and reflected signals. Keywords: optical fiber, optical radiation, reflection, signal, impulse, power, noise level, scattering, range, reflectometer. Now the optical fiber is considered the most perfect physical medium for information transmission, as well as the most promising medium for transmission of large information flow over significant distances. The reasons to consider optical fiber as the most promising medium for transmission of large information flows are derived from the number of features typical for optical waveguides. The optical fiber is a waveguide typically of circular cross-section. The fiber is made of certain dielectric materials such as polymer or silica glass. The optical fiber works by means of light signals transmitting instead of electric ones, as those that is transmitted over conventional copper wires. The fiber optic cables do this by acting as the wave conductors for the light waves of a certain frequency. It is possible thanks to the physical phenomenon such as refraction. The refraction is the change of wave direction (in this case a light wave) due to the changes of speed. [1] It is commonly known that the main parameters of the considered devices are: the maximum range of discontinuity detection, minimum resolution allowing identifying two neighboring discontinuities of the fiber, and also the accuracy of discontinuities identification. To evaluate these parameters it is first necessary to determine the minimum level of the detected reflected signal and to establish the factors affecting the decrease of its value. On exposure, for example, of the pulse source of optical radiation with power Р0 and duration of At = 100ns to the fiber with the following typical parameters S = 3.8-10-3, Vг –c/n = 2.85-108 m/s , а = 2.5 dB/km = 6 • 10-4 Np/m as a result of these values substituting to the last formula, we’ll get or what is the same, where the value of x is given in km and а —in dB/km. At the point with an abrupt change of refractive index, Frenel reflection takes place which is determined by the reflection coefficient (1) and on the frontier line, for example, glass (n1= 1.5) — air (n2= 1)? R2= 0.04 corresponds to 4% of the light reflection from this boundary. Typically, the first peak of the sharp change of refraction index occurs in the inlet section of the optical fiber in the time of inputting the radiation to it that on the signal level it is always higher than that required to measure by the reflectometer. Therefore, such a signal generally overloads the photoreceiver and its restoration takes some time. This time interval at which the reflectometer is insensitive to other signals of reflection during the transition to a distance is called the "dead zone" of the reflectometer. Currently many techniques are used to reduce the influence of this effect; however, it fails to eliminate it completely. To assess the impact of this index it is required to determine the difference between back-scattered and reflected signals. Let Рс — the power reflected from the end surface at the beginning of the fiber, and Рг — the power scattered in the reverse direction, (2) Then, with values taken in the previous calculation, we’ll get Or 101og(Pc/Pr) = 32d£. Therefore, the difference in the level of capacities of the Рс, and Рг in the present case is 32 dB and the radiation power reflected from the discontinuity of the fiber is approximately 1/100 000 of the light wave power propagating in the forward direction at the point of reflection, which requires extremely sensitive methods for its detection. In Fig. 1 there is a diagram that illustrates the range of power levels with which OTDR works. From this diagram it can be defined both the highest and the lowest signal levels of the reflection and inverse scattering, and also the maximum equivalent noise level (NEP) at the receiver input, which provides the desired dynamic range of OTDR. To calculate the maximum power level of the reflected light and inverse scattering light, let’s take a laser source of radiation with a maximum pulse power of +13 dBm. Then, taking the losses of the connector on the OTDR connector equal 3 dB, the initial power at its output (the input of fiber) will be +10 dBm. In the case of using on the front panel the non-contact connector, on the nearest end of the fiber 4% reflection appears caused by glass-air transition. It corresponds to a reflected light pulse which is approximately 14 dB below than the information pulse and it is equal to -4 dBm. For single-mode fiber when λ = 1310 nm the power level of inverse scattering will be for 49 dB/µs below than the maximum power level that at the pulse duration of 10 μs it will correspond to backscattered signal approximately equal to 30 dBm and for 100 μs is about -50 dBm. Taking into account the attenuation of optical fiber, the backscattered signal decreases with increasing of distance and eventually becomes weaker than the noise level of the receiver. Obviously, to test at large distances it is necessary to use more powerful source of radiation. On the other hand, as will be shown below, to ensure optimum resolution capability and dynamic range of OTDR the working frequency range of the receiver must be adapted to the selected measurement range, enabling the use of higher level of NEP for short distances. Figure 1 – Level diagram of OTDR In addition, the receiver sensitivity can be improved by averaging the signals. To assess this possibility, let’s consider an optical fiber of length 20 km which is tested using OTDR with the conversion efficiency of the pulse width/distance, equal to 10 μs/km, and determine the degree of noise reduction by averaging the signals in a single phase of measurement equal to 1 s and 3 min, respectively. In view of the fact that 10% of the time will be lost, and the time required for signal propagation in the forward and backward directions, is defined as the corresponding degree of noise reduction and Nls and N3min will be equal to As the level of noise reduction is proportional to the square root of N, bilateral SNR improvement will be It is obvious that the noise reduction is mainly achieved during the first second of the measurement, and after 3 minutes the noise level on screen is reduced to (29.5 - 18.3)/2 dB as compared to the first display updating. List of references: 1. Оптические кабели / И. И. Гроднев, Ю. Т. Ларин, И. И. Теумен. - М.: Энергоиздат, 1991. УДК 535.3 Горлов Николай Ильич Телекоммуникациялар және информатика Сібір мемлекеттік университеті, Россия [email protected] Мехтиев Али Джаванширович Қарағанды мемлекеттік техникалық университеті, Қарағанды, Қазақстан Республикасы [email protected] Нешина Елена Геннадьевна Қарағанды мемлекеттік техникалық университеті, Қарағанды, Қазақстан Республикасы [email protected] Биличенко Аркадий Петрович Қарағанды мемлекеттік техникалық университеті, Қарағанды, Қазақстан Республикасы [email protected] ОПТИКАЛЫҚ ТАЛШЫҚТАР ЖЕҢІЛ ТОЛҚЫНДАР НӘТИЖЕЛЕР ШАШЫРАУ ЖӘНЕ КӨРІНІС Мақала оптикалық сәулелену параметрлерін зерттеу нәтижелерін ұсынылады. Артқа шарықтың шашырау мен шағылысқан жарықтын максималды қуаты деңгейін есептеу. Сигналдарды орташаланған, ресивердің сезімталдығын бағалау. Талшықты жарық толқынының көрініс қуатын диаграмма деңгейлері болып табылады. Тестілеу OTDR Оптикалық Time Domain көрсетуін пайдаланып жүзеге асырылады. Қайта ұмытшақ пен сигналдар көрінісінің әсерін бағалау. Түйінді сөздер: талшықты-оптикалық, оптикалық сәулелену, шағылу, сигнал, серпін, қуат, шу деңгейі, шашаырау, диапазон, рефлекторметр. УДК 535.3 Горлов Николай Ильич Сибирский государственный университет телекоммуникаций и информатики, Новосибирск, Россия [email protected] Мехтиев Али Джаванширович Карагандинский государственный технический университет, Караганда, Республика Казахстан [email protected] Нешина Елена Геннадьевна Карагандинский государственный технический университет, Караганда, Республика Казахстан [email protected] Биличенко Аркадий Петрович Карагандинский государственный технический университет, Караганда, Республика Казахстан [email protected] РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ РАССЕЯНИЯ И ОТРАЖЕНИЕ СВЕТОВОЙ ВОЛНЫ В ОПТИЧЕСКОМ ВОЛОКНЕ В статье приводятся результаты исследований параметров оптического излучения. Приведен расчёт максимального уровня мощности отраженного света и света обратного рассеяния. Произведена оценка чувствительности приемника путем усреднения сигналов. Приведена диаграмма уровней отражения мощности световой волны в волокне. Тестирование выполняется с использованием рефлектометра Optical Time Domain Reflectometer. Выполнена оценка влияния показателя отражения обратно-рассеянного и отраженного сигналов. Ключевые слова: оптическое волокно, оптическое излучение, отражение, сигнал, импульс, мощность, уровень шума, рассеяние, диапазон, рефлектометр.
© Copyright 2026 Paperzz